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ABSTRACT 
 

Pedestrian bridge is a structure constructed to maintain the safety of citizens in crowded and 
high-traffic areas. With the expansion of cities and the increase in population, the 
construction of bridges is necessary for easier and faster transportation, as well as the safety 
of pedestrians and vehicles. In this article, it is decided to consider the most economical 
cross-sections for these bridges according to the design regulations and codes of Practice in 
order to achieve the minimum weight, which will ultimately reduce the cost of construction 
and production and the usage of less resources. For this purpose, new GSS-PSO algorithm 
has been used and its results have been compared with GA and PSO algorithms, by the 
means of which an enhancement of PSO algorithm is seen. This enhancement on the 
conventional PSO technique reduces the search space more desirably and swiftly to a space 
close to the global optimum point. This algorithm has been implemented with MATLAB 
mathematical software and has been integrated with SAP2000v22 structural design software 
for analysis and optimum design under resistance and displacement constraints. The final 
results of the analyses are compared with an already designed and implemented 
infrastructure. In addition to a bridge optimization, a bench-mark frame optimization was 
also used in order for a better comparison between this algorithm and the other ones. 
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1. INTRODUCTION 
 

Optimization algorithms provide useful tools for steel structure designers by which the 
topology, size and shape of steel structures profiles can be optimized [1, 2]. The costs 
associated with structural elements are not necessarily proportionate with their weight, and 
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minimizing the total cost should be the ultimate goal of structural optimization, but 
structural weight still constitutes a significant part of the cost [3, 4]. Hence, optimizing 
structural weight in today's world with declining work resources is quite important for 
structural designers [5, 6]. 

The designer of steel structures has to select sections from a catalog list that contains 
specific profiles available in the market. Therefore, design problems for steel structures 
could justifiably be considered a discrete problem [7, 8]. 

In recent years, several Swarming intelligent (SI) algorithms, mimicking the social 
behavior of birds, insects, and other animals have developed [9]. For example, one may refer 
to particle swarm optimization (PSO), which is a popular SI algorithm based on the 
intelligence and movement of flocks of birds and similar to their behavior [10, 11]. The 
main difference between PSO and other evolutionary computational techniques such as 
Genetic Algorithms (GA) [12] is that PSO has no evolutionary operators such as crossovers 

and mutations. In addition, PSO requires fewer parameters than GA and is implemented 

with only a few lines of code in each programming language [9, 13]. Also, in line with 
various issues, the performance of this algorithm has greatly improved over the past decade 
and has been published under various articles. One of these improvements is called GSU-
PSO [14], which is based on a hybrid Grid Search Univariate method and PSO. In this 
method, using the grid search method, the entire search space is divided into a series of 
grids. The objective function is calculated with a randomly generated population. Finally, 
using the method obtained from the univariate method, the variables of the best particle are 
allowed to correct their values step by step and finally it will reach the global optimum 
solution [15, 16]. In this study, the GSS-PSO method will be introduced and implemented to 
optimize the weight of pedestrian bridges. The bridge weight minimization under all the 
applied design constraints, according to AISC allowable stress Code of Practice, will be 
utilized. For this purpose, three algorithms GA, PSO, GSS-PSO are used, the results of 
which will be presented in the following sections. 

To carry the analysis of the bridge in the optimization process, SAP2000 software has 
been used to design according to the AISC allowable stress regulations [17] and in order to 
connect MATLAB software to the latest version of SAP2000, a toolbox developed for 

MATLAB by Javanmardi and Ahmadi Nedushan Used under the name SM Toolbox. 
 
2. WEIGHT OPTIMIZATION OF STEEL STRUCTURES ACCORDING TO 

AISC 
 
The purpose of optimizing a typical pedestrian bridge in the present study is to find the 
lowest possible weight according to AISC / ASD 360-16 design constraints. This may be 
achieved by reducing the cross section of the elements as variables to the lowest possible. 
Thus, Eq. 1 states that:  
 

𝑓ሺ𝑥ሻ ൌ෍𝛾௜. 𝑥௜ . 𝑙௜

ே

௜ୀଵ

 (1) 
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where 𝛾௜ is the element density 𝑖, 𝑥௜ is the variable 𝑖, 𝑙௜ is the length of the 𝑖௧௛ variable and N 
is the number of members in the structure. According to AISC / ASD 360-16, the design of 
structural members has various constraints, including resistance and displacement 
constraints, as follows:  
 

Resistance constraints: 
As we know, real structures are subject to different loads and net axial and even 

bending forces rarely occur in members and most of the interaction of forces affects the 
member, so the design must be according to Equation C-H1-1 of AISC/ASD 360-16 
regulation. 

 
𝑓௔
𝐹௔
൅

𝐶௠𝑓௕

൬1െ
𝑓௔
𝐹௘ᇱ
൰ 𝐹௕

൑ 1.0 (2) 

 
in which 𝐹௔ and 𝐹௕ are, respectively, the axial and flexural allowable stresses permitted 

by this specification, and 𝑓௔ and 𝑓௕ are the corresponding stresses due to the axial force and 
the bending moment, respectively. The allowable axial stress, 𝑓௔, was usually determined for 
an effective length that is larger than the actual member length for moment frames. The term 
ଵ

ଵି
೑ೌ
ಷ೐
ᇲ

 is the amplification of the inter-span moment due to member deflection multiplied by 

the axial force (the P-δ effect). 𝐶௠ accounts for the effect of the moment gradient. 
The effective length K to compute compression and Euler stresses factors is required. 
 

𝐹௘ ൌ
𝜋ଶ𝐸

ሺ𝐾𝐿/𝑟ሻଶ
 (3) 

 
For column members, K values are calculated by SAP2000 from the following equations 

[18]: 
for sidesway inhibited frames:  
 

𝐾 ൌ
3𝐺஺𝐺஻ ൅ 1.4ሺ𝐺஺ ൅ 𝐺஻ሻ ൅ 0.64
3𝐺஺𝐺஻ ൅ 2ሺ𝐺஺ ൅ 𝐺஻ሻ ൅ 1.28

 (4) 

 
And for sidesway uninhibited frames:  
 

𝐾 ൌ ඨ
1.6𝐺஺𝐺஻ ൅ 4ሺ𝐺஺ ൅ 𝐺஻ሻ ൅ 7.5

𝐺஺ ൅ 𝐺஻ ൅ 7.5
 (5) 

 

  𝑤ℎ𝑒𝑟𝑒  𝐺 ൌ
∑ቀಶ಺

ಽ
ቁ
಴೚೗ೠ೘೙

∑ሺாூ/௅ሻಳ೐ೌ೘
 (6) 
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where, 𝐺஺ and 𝐺஻ are the stiffness ratios of columns and girders at the two end joints 

A and B of the column section, respectively. 
 
Displacement constraints: 
 
The real design constraints, based on AISC/ASD 360-16 regulation may be as 

follows: 
 
Maximum lateral displacement: 

𝜈∆ ൌ 𝑅 െ
∆்
𝐻
൑ 0 (7) 

 
Inter-story displacements: 
 

𝜈௝
ௗ ൌ 𝑅௧ െ

𝑑௝
ℎ௝
൑ 0   𝑗 ൌ 1,2, … ,𝑛𝑠 (8) 

 
R is the maximum drift index; ∆் is the maximum lateral displacement; H is the height of 

the frame structure; 𝑑௝ is the inter-story drift; ℎ௝ is the story height of the j-th floor; 𝑛𝑠 is the 
total number of stories and 𝑅௧ is the inter-story drift index permitted by the code of practice. 

 
 

3. REVIEW OF PSO ALGORITHM 
 
Since the GSS-PSO algorithm uses the PSO search engine, it is primarily worthened to 
introduce PSO algorithm. It basically maintains a population of particles (𝑥ଵ, 𝑥ଶ, ..., 𝑥௣) that 
are evenly distributed in the search space. In the PSO algorithm, each particle represents a 
potential answer to an optimization problem.  

Thus, if one denotes the number of particles as P, Kennedy and Eberhart proposed the 
position of the 𝑖௧௛ particle, 𝑥௜ be updated in the following manner: 

 
𝑥௞ାଵ
௜ ൌ 𝑥௞

௜ ൅ 𝑣௞ାଵ
௜  (9) 

 
Each particle in PSO is associated with a constructed velocity 𝑣௞ାଵ

௜ , which indicates the 
rate of change of position for the 𝑖௧௛ particle. 

 
𝑣௞ାଵ
௜ ൌ 𝜔௞𝑣௞

௜ ൅ 𝑐ଵ𝑟ଵሺ𝑃௞
௜ െ 𝑥௞

௜ ሻ ൅ 𝑐ଶ𝑟ଶሺ𝑃௞
௚ െ 𝑥௞

௜ ሻ (10) 
 
Equation (10) calculates the new particle velocity 𝑣௞ାଵ

௜ , based on the current velocity 𝑣௞
௜  

and the two other terms, the distance of its current position 𝑥௞
௜  from the best position of the 

ith particle in its own history, 𝑃௞
௜  and the best position of all particles 𝑃௞

௚ up to that increment 



PRACTICAL OPTIMIZATION OF PEDESTRIAN BRIDGES USING 

 

449 

of time and iteration. 
k represents the iteration number. 𝑟ଵ 𝑎𝑛𝑑 𝑟ଶ represent uniform random numbers between 

0 and 1, respectively. 
𝑐ଵ 𝑎𝑛𝑑 𝑐ଶ are the two positive numbers called cognitive and social learning 

coefficients, respectively, here set as fixed values. 
The inertia weight 𝜔௞ is employed to control the impact of the previous history of 

velocities on the current velocity, thus to influence the trade-off between global (wide-
ranging) and local (nearby) exploration abilities of the particles [10, 19, 20, 21]. 

 
 

4. GSS-PSO ALGORITHM 
 
The GSS-PSO algorithm is a meta-heuristic algorithm based on improving the 
performance of the PSO algorithm through sensitivity analysis. This algorithm consists 
of two parts: first, a grid search followed by a sensitivity analysis. The next part is to 
carry PSO based optimization. 

In the first part, primarily the search space is gridded where it was divided into a 
number of sub-divisions causing the scope of the search to be determined. Then the 
objective function is evaluated at all points. The performance of each particle (value of 
the objective function) is measured by connecting the MATLAB code to the 
SAP2000v22 software enabled via the SM toolbox and the point with the lowest 
standard deviation (DCV) is then selected. 

Then, based on a step size where 10% of the value of the variables is selected, the 
values of the variables are changed and the objective function is recalculated. After 

calculating the new objective function and comparing it with the previous value, the 
sensitivity analysis was carried out on each variable using the Forward Finite Diffrence 
(FFD) method; the lower the sensitivity, the more the variable needs to be changed, and 
the higher the sensitivity, the less this need to be changed. So we sort the sensitivities 
from small to large and normalize the values, and then subtract from a big number, 
which we also consider 10% of the maximum sensitivity here to get new sensitivities, 
this sensitivity Will be the direction of the values towards the optimal answer and the 
variables of other points will also change according to these values. 

Therefore, in subsequent repetitions, this sensitivity and its orientation become more 
precise, and the most maneuver is performed around the response area, thus preventing 
irrelevant outcomes. This section seeks to generate a sequence of improved 
approximations at the minimum point. In the second part, each particle moves within the 
previously limited search space, updating its speed and position based on the best 
positions ever discovered by itself and all other particles. Therefore, particles tend to 
move to a better position in the search area. The whole process is repeated until the 
values are converged to the global optimal solution. The concepts expressed is displayed 
in the flowchart of Figure 1. 
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Fig. 1. Flowchart of GSS-PSO 
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5. DESIGN EXAMPLES 
 

5.1 Design of 3-bay 15-story frame 

 

 
Fig. 2. The 3-bay 15-story steel frame structure 

 
A fifteen-story frame structure with three openings containing 105 members is studied 

here with the loading as shown in Figure 2. The displacement and resistance constraints are 
considered according to AISC in the limit state (LRFD) for the problem. The modulus of 
elasticity and the yield stress are equal to 200 GPa and 248.2 MPa, respectively. Beams and 
columns groups of elements are selected from all 267 W cross section profiles of the AISC 
standard list.  
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Table 1: Optimization results obtained for the 3-bay 15-story frame problem 

AISC W-shapes Group 
No. GSS-PSO ES-DE5 ICA4 HBB-BC3 HPSACO2 PSO1 

W21X44 
W33X130 
W18X143 
W14X82 
W21X101 
W21X68 
W14X82 
W24X55 
W30X90 
W14X38 
W18X40 

 

403.64 
 
 

4000 

W18 X 106 
W36 X 150 
W12 X 79 
W27 X 114 
W30 X 90 
W10 X 88 
W18 X 71 
W18 X 65 
W8 X 28 

W12 X 40 
W21 X 48 

 

415.06 
 
 

4050 

W24 X 117 
W21 X 147 
W27 X 84 

W27 X 114 
W14 X 74 
W18 X 86 
W12 X 96 
W24 X 68 
W10 X 39 
W12 X 40 
W21 X 44 

 

417.466 
 
 

6000 

W24 X 117 
W21 X 132 
W12 X 96 
W18 X 119 
W21 X 93 
W18 X 97 
W18 X 76 
W18 X 65 
W18 X 60 
W10 X 39 
W21 X 48 

 

434.54 
 
 

9900 

W21X 111 
W18 X 158 
W10 X 88 
W30 X 116 
W21 X 83 
W24 X 103 
W21 X 55 
W27 X 114 
W10 X 33 
W18 X 46 
W21 X 44 

 

426.36 
 
 

6800 

W33 X 118 
W33 X 263 
W24 X 76 
W36 X 256 
W21 X 73 
W18 X 86 
W18 X 65 
W21 X 68 
W18 X 60 
W18 X 65 
W21 X 44 

 

496.68 
 
 

50.000 
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analyses 

1- particle swarm optimization [11] 
2- heuristic particle swarm ant colony optimization [11] 
3- hybrid Big Bang–Big Crunch optimization [22] 
4- imperialist competitive algorithm [23] 
5- eagle strategy algorithm with differential evolution [24] 
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Fig. 3. Convergence history for the 3-bay 15-story frame obtained by GSS-
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The Convergence history for the 3-bay 15-story frame is shown in Figure 3. The global 
optimum design of the frame is obtained after 4000 analyzes with a minimum weight of 
403.64 KN, an acceptable performance compared to the PSO [11], HPSACO [11], HBB-BC 
[22], ICA [23] and ES-DE [24] algorithms, each of which required 50,000, 6,800, 9900, 
6000 and 4050 analyses, respectively, as displayed in Table 1. Also, an approximately 2.5% 
weight improvement has been recorded compared to the best algorithm on this list, namely 
ES-DE [24], endorsing a valid approach as proposed with satisfactorily results. 

 
5.2 Design of pedestrian bridge  

A real pedestrian bridge has been optimized to evaluate the effectiveness of the GSS-PSO 
algorithm in minimizing its weight allowing for the member size changes. The bridge 
problem was chosen with all the necessary design information collected from a real bridge 
problem according to its actual geometry and sections as built. 

Figure 4 shows the overview of the pedestrian bridge. It had been designed and built with 
conventional pipe sections. The initial weight of the bridge is 11.5 tons according to the data 

available. 
 

 
Fig. 4. Overview of the pedestrian bridge 

 
Table 2 shows the grouping of the bridge elements: 
 

Table 2: Grouping of the bridge elements 
Braces  Columns  Beams Type 

R15 R14 R13 R12 R11 R10 R9 C8 C7 C6 B5 B4 B3 B2 B1 
Group 

No.  

8  82  2  18  26  36  48  2  26  72 26  48 36  26  60  
Elements 
in each 
Group  
 

For better visualization, parts for each group are shown in Figs. 5-19: 
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Figs. 5-19. An indication for each design variable (group) of the pedestrian bridge problem 

The Pipe sections used to optimize the bridge are listed in Table 3: 
Table 3: Existing sections for optimization 

Thickness (mm) Outer Diameter (mm) No. 
3, 3.5, 4, 4.5, 5, 5.5, 6 
3, 3.5, 4, 4.5, 5, 5.5, 6 
3, 3.5, 4, 4.5, 5, 5.5, 6 
3, 3.5, 4, 4.5, 5, 5.5, 6 
3, 3.5, 4, 4.5, 5, 5.5, 6 
3, 3.5, 4, 4.5, 5, 5.5, 6 
3, 3.5, 4, 4.5, 5, 5.5, 6 

60.3 
76 

88.9 
114.3 
140.3 
168.3 
219.1 

1-7 
8-14 
15-21 
22-28 
29-35 
36-42 
43-49 

 

Loading: 
After applying the coefficients related to the earthquake load, dead and live loads are 

applied as the equivalent loads on the nodes in the direction of Gravity and the wind load is 
applied as the equivalent load of the node in the Y direction. Table 4 shows the values of the 
loads. 

Table 4: Loads applied to the bridge 

Magnitudes (kgf/m2) Location of the applied loads Types of Load 
120 
1500 
35 
158 

C=0.09, K=1.205 

Floor of the bridge 
Floor of the bridge 

Laterally (Bridge Base) 
Laterally (Bridge Deck) 

Laterally 

Dead 
Live 
Wind 
Wind 

Earthquake 

Group 15 

Group 14 Group 13 
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The bridge is designed in accordance with AISC / ASD 360-16 and the drift ratio 
constraint is used for the base that has a more critical position in the displacements, that is; 
inter story drift < story height / 300. The modulus of elasticity of the pipe sections is set to 

200 GPa and the Yield limit stress 𝑓௬ to 2400. 
Table 5 shows the initial sections of the bridge and the sections obtained after 

optimization for each group: 
 

 
Fig. 20. Convergence histories for the pedestrian bridge using GA, PSO and GSS-PSO 

algorithms 
 

Table 5: Optimum weights and sections of the bridge using GA, PSO and GSS-PSO algorithms 

GSS-PSO 
Optimum Sections 

PSO 
Optimum Sections 

GA 
Optimum Sections 

Initial 
Sections 

Groups 
name 

PIPE-D219.1×3 
PIPE-D60.3×3 
PIPE-D60.3×3 
PIPE-D60.3×3 
PIPE-D219.1×3 

PIPE-D76×3 
PIPE-D60.3×3 
PIPE-D140.3×3 
PIPE-D60.3×3 
PIPE-D60.3×3 
PIPE-D88.9×4 
PIPE-D60.3×3 
PIPE-D114.3×3 
PIPE-D60.3×3 
PIPE-D219.1×6 

 
7.6 ton 

 
2000 

PIPE-D219.1×3 
PIPE-D60.3×4 
PIPE-D140.3×4 
PIPE-D88.9×3 
PIPE-D219.1×4 
PIPE-D219.1×3 
PIPE-D114.3×3 
PIPE-D140.3×5 
PIPE-D76×3.5 
PIPE-D114.3×3 
PIPE-D140.3×4 
PIPE-D60.3×3 
PIPE-D60.3×3 
PIPE-D60.3×3 
PIPE-D168.3×4 

 
9.5 ton 

 
2000 

PIPE-D219.1×3 
PIPE-D60.3×3 
PIPE-D60.3×3 
PIPE-D88.9×6 

PIPE-D219.1×6 
PIPE-D219.1×3 

PIPE-D114.3×3.5 
PIPE-D140.3×4.5 
PIPE-D114.3×5 
PIPE-D114.3×3 
PIPE-D88.9×6 
PIPE-D60.3×3 
PIPE-D60.3×3 
PIPE-D60.3×3 

PIPE-D168.3×4 
 

9.8 ton 
 

2000 

PIPE-D168.3×4 
PIPE-D88.9×3.5 

PIPE-D168.3×3.5 
PIPE-D168.3×3.5 
PIPE-D168.3×3.5 
PIPE-D168.3×4 

PIPE-D168.3×3.5 
PIPE-D406.4×6.3 
PIPE-D88.9×3.5 
PIPE-D88.9×3.5 
PIPE-D168.3×4 

PIPE-D168.3×3.5 
PIPE-D88.9×3.5 
PIPE-D88.9×3.5 
PIPE-D168.3×4 

 
11.5 ton 

 
- 

 
Group 1 
Group 2 
Group 3 
Group 4 
Group 5 
Group 6 
Group 7 
Group 8 
Group 9 

Group 10 
Group 11 
Group 12 
Group 13 
Group 14 
Group 15 

 
Weight 

 
Number of 
Analyses 
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The convergence histories of the optimum results based on the three metaheuristic 

algorithms are illustrated in Figure 20. The GSS-PSO algorithm has a faster convergence 
rate than the other two algorithms and in the first 2000 analyzes the optimal solution is 
almost achieved. The PSO algorithm has shown the second promising performance with 
rather a slower act and more gradual convergence in the optimization process. In general, the 
GSS-PSO algorithm outperforms better in both convergence speed and the globality of the 
optimal solution. 

 
6. CONCLUSION 

 
The optimum design of pedestrian bridges under all the design constraints according to 
AISC Code of Practice is the objective of the present study. For that purpose, an innovative 
technique was employed inside which a modified PSO technique also plays a major role. It 
is a novel method inspired by the social behavior of animals such as birds or fish. 

In the proposed technique here, randomly generated particles that were previously evenly 
distributed throughout the space, is consciously disturbed by dividing the search space into 
subspaces using a grid search method. This will cause the distribution of particles more 
attentive around the optimal solution. 

Then, the sensitivity analysis was carried out where it consists of two parts: first, 
determining the orientation based on a step size and then followed by the Forward Finite 
Difference (FFD) method on the variables of the best particle under the presented spaces. 
They are allowed to adjust their values step by step, before tolerated to enter the modified 
PSO.  

The proposed GSS-PSO method, was tested on a two-dimensional steel frame and a real 
three-dimensional pedestrian bridge. It displayed a high convergence speed, where a 
comparatively low number of analyzes was utilized with a more cost-effective optimal 
weight. This method is in particular recommended for problems where there are no borders 

predefined for the side constraints in the search space. 
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