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ABSTRACT 
 

This paper presents the application of metaheuristic methods to the minimum crossing 
number problem for the first time. These algorithms including particle swarm optimization, 
improved ray optimization, colliding bodies optimization and enhanced colliding bodies 
optimization. For each method, a pseudo code is provided. The crossing number problem is 
NP-hard and has important applications in engineering. The proposed algorithms are tested 
on six complete graphs and eight complete bipartite graphs and their results are compared 
with some existing methods. 
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1. INTRODUCTION 
 

In recent years, various kinds of metaheuristic algorithms are proposed to solve instances of 
problems that are believed to be hard in general. These algorithms achieve this by reducing 
the effective size of the search and exploring that space efficiently. The metaheuristic 
algorithms are easy to implement and the basic idea behind these methods is usually natural 
phenomena. In this paper, particle swarm optimization (PSO) [1], improved ray optimization 
(IRO) [2], colliding bodies optimization (CBO) [3] and enhanced colliding bodies 
optimization (ECBO) [4] are applied to the minimum crossing number problem. 
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The study of crossing numbers began during the Second World War [5]. The crossing 
number of a graph G is the smallest number of pairwise crossings of edges among all 
drawings of G in the plane. The crossing numbers for basic graphs such as the complete 
graphs and complete bipartite graphs is still unknown. This problem has important 
applications such as printed circuit board layout, VLSI circuit routing, automated graph 
drawing [6] and finding the degree of statical indeterminacy in structure, Kaveh [7,8]. In this 
paper, the problem involves placing the vertices of the graph along a horizontal “node line” 
in the plane and then adding edges as specified by the interconnection pattern. The objective 
of this problem is to embed the edges so that the total number of crossings is minimized [7]. 
This kind of problem is studied by Shahrokhi et al. [8], Cimikowski and Shope [9] and 
Wang and Okazaki [7]. 

The remaining sections of this paper are organized as follows. In Section 2, the 
mathematical formulation of the minimum crossing number problem is presented. 
Optimization algorithms are briefly described in Section 3. To show the efficiency and 
robustness of metaheuristic algorithms to the minimum crossing number problem, these are 
applied to some complete graphs and complete bipartite graphs in Section 4. Finally the 
paper is concluded in Section 5. 
 
 

2. FORMULATION OF THE OPTIMIZATION PROBLEM 
 
A graph K consists of a set of elements called nodes, a set of elements called edges, together 
with a relation of incidence which associates two distinct nodes with each edge, known as its 
ends. Two nodes of a graph are called adjacent if these nodes are the end nodes of an edge. An 
edge is called incident with a node if it is an end node of the edge. A graph is called a complete 
graph if all its r nodes are connected to each other, denoted by Kr. A graph is a complete 
bipartite graph if its nodes consist of two sets A and B with all nodes of A being connected to 
all nodes of B. A graph containing r nodes in A and s nodes in B, is denoted by Kr,s. 

A drawing  Kp of a graph K in the plane is a mapping of the nodes of K to distinct points 
of Kp, and the members of K to open arcs of Kp such that: 

(i) the image of no member contains that of any node; 
(ii) the image of a member (ni,nj) joins the points corresponding to ni and nj. 
A drawing is called good  if the members are such that: 
(iii) no two edges with a common end point meet; 
(iv) no two edges meet in more than one point; 
(v) no three arcs meet in a common point. 
A point of intersection of two members in a drawing is called a crossing, and the crossing 

number cr(Kp) of a graph K is the minimum number of crossings in any good drawing of K 
in the plane. 

The crossing number for a complete graphs Kr is calculated by [12]: 
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This formula holds only for r ≤ 12. 
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The crossing number for a complete bipartite graph Kr,s can be evaluated by [13]: 
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This is known to be true for r ≤ 6 and all s, and also for r = 7 when s ≤ 10. 
In the 2-page drawing representation used here, each edge is embedded in either the 

upper page or the lower page [9]. Embedding of the complete graph K6 is shown in Fig. 1. 
 

 
Figure 1. Embedding of the complete graph K6 

 
The state yij=1 indicates that the edge ij is embedded in the upper page, and the state yij=0 

indicates that the edge ij is embedded in the lower page. Therefore, the number of variables 
is equal to the number of edges in a given graph. The linear crossing number problem can be 
formulated as [9]: 
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where dijkl is crossing condition and calculated by: 
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gij indicates whether the edge ij exist. 
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3. OPTIMIZATION ALGORITHMS 
 
A brief overview of four optimization algorithms will be provided in the subsequent sub-
sections (PSO, IRO, CBO and ECBO). All of these methods are population-based stochastic 
algorithms that start with a set of randomly selected candidate solutions. According to a 
series of rules, mainly inspired from natural phenomena, the existing solutions are perturbed 
iteratively in order to improve their objective function values [14]. 

 
3.1 Particle swarm optimization (PSO) 

The particle swarm optimization (PSO), as one of the successful stochastic optimization 
algorithms, is based on simulation of the social behavior of bird flocking and fish schooling 
that was introduced by Eberhart and Kennedy [15, 16]. The PSO is a population based 
technique that involves a number of particles which represent the swarm being initialized 
randomly in the search space. Each particle represents a candidate solution of the optimum 
design problem and iteratively moves across the search space. During each generation, each 
particle updates its velocity and position by learning from the best position achieved so far 
by the particle itself (pBest) and the location of the best fitness achieved so far across the 
whole population (gBest). In 1998, Shi and Eberhart [1] first introduced a new parameter, 
namely the inertia weight ω to influence convergence. In this paper, the PSO with a fixed 
inertia weight is utilized. The general structure of a PSO algorithm is as follows: 
 
procedure Particle Swarm Optimization (PSO) 

Initialize algorithm parameters 
for each particle 

Initial position is created randomly 
Fitness value is evaluated 

end for 
pBest and gBest are updated 
While maximum iterations is not fulfilled 

for each particle 
Velocity is updated 
new_positioni = current_positioni + velocityi 

end for 
pBest and gBest are updated 

end while 
end procedure 
 
3.2 Improved ray optimization (IRO) 

The ray optimization (RO) algorithm proposed by Kaveh and Khayatazad [17,18] was 
conceptualized using the relationship between the angles of incidence and fraction based on 
Snell's law. In this method, each agent is modeled as a ray of light that moves in the search 
space in order to find the global or near-global optimum solution. Improved ray optimization 
(IRO), proposed by Kaveh et al. [2], employed a new approach for generating new solution 
vectors which has no limitation on the number of variables, so in the process of algorithm 
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there is no need to divide the variables into groups like RO. In order to generate new 
solution vectors in the IRO, dynamic parameters are utilized that make a better balance 
between exploration and exploitation. The procedure which returns the violated agents into 
feasible search space is also modified in IRO. Instead of changing all the components of 
violating agents, only the components that violate the boundary are refunded. As a pseudo 
code, the IRO method has the following form: 
 
procedure Improved Ray Optimization (IRO) 

Initialize algorithm parameters 
for each agent 

Initial position and movement vector are created randomly 
Fitness value is evaluated 

end for 
/* LBM and GB are local best memory and global best, respectively*/ 
LBM and GB are updated 
While maximum iterations is not fulfilled 

for each agent  
new_positioni = current_positioni + movement_vectori 
Violated components are regenerated 

end for 
LBM and GB are updated 
for each agent 

The direction of movement vector is calculated 
The magnitude of movement vector is calculated 

end for 
end while 

end procedure 
 
3.3 Colliding bodies optimization (CBO) and its enhanced version (ECBO) 

As a newly developed type of meta-heuristic algorithm, colliding bodies optimization 
(CBO) was introduced by Kaveh and Mahdavi [3,19]. CBO is a population-based stochastic 
optimization algorithm based on the governing laws of one dimensional collision between 
two bodies from the physics. Each agent is modeled as a colliding body (CB) with a 
specified mass and velocity. One object collides with other object and they move toward 
minimum energy level. The CBO has a simple formulation, and it requires no internal 
parameter tuning. CBO codes in MATLAB and C++ are presented in [20]. The basic 
structure of a CBO algorithm is as follows: 
 
procedure Colliding Bodies Optimization (CBO) 

Initialize algorithm parameters 
for each CB 

Initial position is created randomly 
end for 
While maximum iterations is not fulfilled 

for each CB  
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Fitness value is evaluated 
The value of mass is calculated 

end for 
Stationary and moving groups are created 
for each CB 

The velocity before collision is calculated 
The velocity after collision is calculated 
Position is updated 

end for 
end while 

end procedure 
 

The enhanced colliding bodies optimization (ECBO) is introduced by Kaveh and Ilchi 
Ghazaan [4]. In order to improve the exploration capabilities of the CBO and to prevent 
premature convergence, a stochastic approach is employed in ECBO that changes some 
components of CBs randomly. Colliding memory (CM) is also considered to save some 
historically best CB vectors and their related mass and objective function values to improve 
the performance of the CBO and reduce the computational cost. MATLAB and C++ codes 
for ECBO are provided in [20]. The general structure of an ECBO algorithm is as follows: 
 
procedure Enhanced Colliding Bodies Optimization (ECBO) 

Initialize algorithm parameters 
for each CB 

Initial position is created randomly 
end for 
While maximum iterations is not fulfilled 

for each CB  
Fitness value is evaluated 
The value of mass is calculated 

end for 
CM is updated 
Population is updated 
Stationary and moving groups are created 
for each CB 

The velocity before collision is calculated 
The velocity after collision is calculated 
Position is updated 

end for 
end while 

end procedure 
 

4. NUMERICAL EXAMPLES 
 

Six complete graphs (K8, K9, …, K13) and eight complete bipartite graphs (K3,10, K3,15, K4,5, 
K4,10, K4,15, K5,5, K5,10, K5,15) are considered to verify the efficiency of the metaheuristic 
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algorithms. For all algorithms, the population of 40 agents are utilized in K8, K9, K3,10, K4,5, 
K4,10, K5,5 problems and for the remaining problems 50 agents are considered. In PSO, the 
value of acceleration coefficients c1 and c2 are both set to 2; the legal velocity range is set to 
50% of the search range; and the inertia weight is set to ω = 0.4. In ECBO, the size of the 
colliding memory is taken as n/10 (n is the number of colliding bodies) and the value of Pro 
set to 0.35. Because of the stochastic nature of the algorithms, each example has been solved 
20 times independently. 

The optimal values of crossing number on complete graphs obtained by metaheuristic 
algorithms and some other previous studies reported in the literature are presented in Table 1. 

 
Table 1: Best results comparison on complete graphs 

Graph Optimum 
Shahrokhi 
et al. [10] 

Cimikowski 
and Shope [11]

Wang and 
Okazaki [9] 

Present work 
PSO IRO CBO ECBO 

K8 18 19 18 18 18 18 18 18 
K9 36 36 36 36 36 36 36 36 
K10 60 62 60 60 60 60 60 60 
K11 100 100 100 100 104 100 100 100 
K12 150 154 150 150 158 153 151 150 
K13 - 265 225 225 245 227 231 225 

 
It can be seen that the best answers are achieved by Cimikowski and Shope [11], Wang 

and Okazaki [9]; and ECBO. These methods obtained the optimum values for K8 through 
K12 and for K13 their results are identical. Shahrokhi et al. [9] and PSO has the worst 
performance and the results achieved by IRO and CBO are approximately identical. The 
statistical results are shown in Table 2 (The parameters "success rate" and "FEs" indicate the 
percentage of successful runs for which the optimum value could be found and the number 
of function evaluations for the best result, respectively). Wang and Okazaki [9]; and ECBO 
obtain the optimum values in all independent runs. The performance of the remaining 
methods except the PSO is nearly the same. Embedding of the complete graph K8 obtained 
by ECBO is shown in Fig. 2. 

 
Table 2: Statistical results on complete graphs 

Graph  
Cimikowski 

and Shope [11] 
Wang and 

Okazaki [9] 
Present work 

PSO IRO CBO ECBO 

K8 

Success rate 19 100 15 50 40 100 
Average 19.8 18 20.1 18.95 19.1 18 
Std. dev. N/A N/A 1.89 1.14 1.09 0

FEs N/A N/A 240 280 240 280 

K9 

Success rate 44 100 45 65 75 100 
Average 38.9 36 38.4 37.8 36.8 36 
Std. dev. N/A N/A 7.84 7.56 2.56 0 

FEs N/A N/A 200 400 200 280 

K10 
Success rate 12 100 5 10 5 100

Average 63.6 60 69.8 63.75 64.6 60 
Std. dev. N/A N/A 22.36 4.58 7.34 0 
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FEs N/A N/A 280 1100 1650 1000 

K11 

Success rate 29 100 0 5 5 100 
Average 108 100 115.4 106.6 105.5 100 
Std. dev. N/A N/A 24.4 29.24 11.95 0 

FEs N/A N/A 300 950 1750 950 

K12 

Success rate 13 100 0 0 0 100 
Average 166 150 183.8 164.45 161.15 150 
Std. dev. N/A N/A 84.46 109.24 59.53 0

FEs N/A N/A 550 1850 1350 2300 

K13 

Success rate - - - - - - 
Average 239 225 278.2 245.1 244.5 225 
Std. dev. N/A N/A 180.96 187.39 115.15 0 

FEs N/A N/A 500 3350 1650 2150 

 

 
Figure 2. Embedding of the complete graph K8 obtained by ECBO 

 
Table 3 provides a comparison between the best results obtained by proposed algorithms 

on complete bipartite graphs. The best results found by CBO and ECBO are identical and 
they perform better than PSO and IRO. 

 
Table 3: Best results comparison on complete bipartite graphs 

Graph Optimum PSO IRO CBO ECBO 
K3,10 20 28 20 20 20 
K3,15 49 71 49 49 49 
K4,5 8 10 10 10 10 
K4,10 40 63 54 54 54 
K4,15 98 217 133 130 130 
K5,5 16 20 20 20 20 
K5,10 80 109 100 100 100 
K5,15 196 360 264 244 244 

 
The optimum values can be achieved by IRO, CBO and ECBO only for K3,10 and K3,15. 
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The average and standard deviation of results for twenty independent runs and number of 
function evaluations for the best results are shown in Table 4. ECBO performs better than 
other algorithms because its standard deviation is zero in all examples. Embedding of the 
complete bipartite graph K3,10 found by ECBO is depicted in Fig. 3. 

 
Table 4: Statistical results on complete bipartite graphs 

Graph  PSO IRO CBO ECBO 

K3,10 
Average 37.25 24.35 26.45 20 
Std. dev. 31.28 39.62 22.34 0 

FEs 560 680 960 450 

K3,15 
Average 94.9 64.7 66.8 49 
Std. dev. 214.99 230.91 233.16 0 

FEs 350 3350 1500 1150 

K4,5 
Average 12.3 11.35 10.95 10 
Std. dev. 8.61 6.32 1.94 0 

FEs 200 240 320 320 

K4,10 
Average 86.2 66.8 67 54 
Std. dev. 93.16 108.76 130.7 0 

FEs 440 1680 880 520 

K4,15 
Average 235.5 160.85 157.7 130 
Std. dev. 200.55 336.55 587.41 0 

FEs 350 1490 1650 1750 

K5,5 
Average 26.2 22.3 23 20 
Std. dev. 25.16 11.71 9.4 0 

FEs 160 360 480 240 

K5,10 
Average 152.05 122.45 118.85 100 
Std. dev. 276.25 317.34 193.42 0 

FEs 500 8750 1500 1150 

K5,15 
Average 406.4 316.6 307.2 244 
Std. dev. 463.44 1326.44 1634.96 0 

FEs 400 8850 2050 2700 

 

 
Figure 3. Embedding of the complete graph K3,10 obtained by ECBO 
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5. CONCLUSION 
 

Four metaheuristic algorithms are considered for the fixed linear crossing number problem. 
In this problem, the vertices of a graph are placed in a fixed order along a horizontal “node 
line” in the plane, each edge is drawn as an arc in one of the two half-planes (pages), and the 
objective is to minimize the number of edge crossings. The experimental results indicate that 
all algorithms nearly have an acceptable performance for the crossing number problem. 
ECBO yields near-optimal solutions and outperforms the other methods. It is superior over 
other methods in terms of reliability and solution accuracy. However, the performance of 
IRO and CBO is approximately the same and better than PSO. 
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