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ABSTRACT 
 

In this paper, an efficient multi-objective model is proposed to solve time-cost trade off 
problem considering cash flows. The proposed multi-objective meta-heuristic is based on 
Ant colony optimization and is called Non Dominated Archiving Ant Colony Optimization 
(NAACO). The significant feature of this work is consideration of uncertainties in time, cost 
and more importantly interest rate. A fuzzy approach is adopted to account for uncertainties. 
Mathematics of cash-flow analysis in a fuzzy environment is described. A case study is done 
using the proposed approach and the decision maker’s options to handle the uncertainties are 
investigated and discussed. 
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1. INTRODUCTION 
 

One of the managerial issues for project scheduling is to decide upon the resources, 
processes, or technologies needed for operating tasks. In recent decades construction 
industry has witnessed drastic technological and operational improvements providing 
managers with more options to choose from. Inductively, when using advanced technology 
or allocating more resources to an activity, the duration of the activity could be shortened 
with possible increase in direct cost.  As a result, there is a trade-off between time and cost 
of an activity with regard to different operational modes. This has led to the emergence of 
the Time-Cost Trade off Problem (TCTP) in the construction management domain. A 
detailed literature review on the TCTP may be found in Kalhor et al. [1]  

In any construction project a realistic schedule should encompass the time value of money. 
The idea of considering net present value of money in scheduling was first introduced by 
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Russell [2]. In his so-called Payment Scheduling Problem (PSP) he used Taylor expansion of 
net present value in connection with a linear programming (LP) model. Grinold [3] also used a 
linear programming approach to solve PSP using a weighted distribution problem. Erengus et 
al. [4] used a mixed integer nonlinear programming to solve PSP. Icmeli and Erenguc [5] 
suggested a heuristic procedure to maximize net present value of money. 

While mathematical approaches are accurate and heuristic procedures are simple to 
follow, both methods are likely to show an exponential worst case complexity when the size 
of the problem increases (De et. al. [6]).  Meta heuristic approaches, on the other hand, have 
shown a good capability to handle NP-hardness of problems like TCTP and PSP. Such 
algorithms search a vast solution space intelligently rather than completely, however they do 
not guarantee the optimal results. A variety of Meta heuristics are applied to address TCTP 
and PSP, including GAs ([7], [8], [9]), PSO ([10]), and ACO ([11], [1]). 

So far, most of the researches carried out on the scheduling problems neglect the 
uncertainty of the project parameters such as activity duration, activity cost, and interest rate. 
However, a real construction project is governed by environmental, geotechnical, political, 
psychological and economical factors, which introduce uncertainty into the aforementioned 
projects’ parameters. In order to address uncertainties Feng et al. [12] allocated a probability 
distributed function to activity cost and time and adopted the probability theory. 

Bonnal et al. [13] argues that despite the indisputable power of probability theory in 
modeling statistical uncertainties, two basic assumptions of this theory make it less practical 
for modeling uncertainties in construction projects. First, one should have knowledge about 
all the possible discrete events associated with an uncertain phenomenon, and second, they 
should know the probability of occurance of each phenomenon so that their accumulated 
probability is 100%. On the other hand, uniqueness is one of the well perceived features of 
construction projects. It is safe to say that the [1] mission of studying and quantifying all the 
events associated with above mentioned governing factors dates back to centuries ago and 
no one know when it is the time to put an end to it.  

Fuzzy sets theory, introduced by Zadeh [14] has provided researchers with a tool to approach 
their goal with the flickering light of information. Eshtehardian et al. [15] and Kalhor et al [1] 
successfully used fuzzy mathematics for time cost trade off optimization; Afshar et al. [16] also 
adopted fuzzy approach to address uncertainties in finance based scheduling problem.  

In this study, as an extension to previous work done by Aladini et. al. [17], a Non-
dominated Archiving Ant Colony Optimization (NAACO) approach is adopted to solve 
stochastic multi-objective TCTP with discounted cash flow. Uncertainties in activity 
duration and cost as well as uncertainties in interest rate are addressed by means of fuzzy 
mathematics. This study fully applies α cut approach to account for decision maker’s 
attitude towards risks.  

 
 

2.  MODEL FORMULATION 
 
2.1. Deterministic TCTP with disocunted cash flow 

The deterministic TCTP with discounted cash flow can be defined as selecting an array of 
activity modes so as to minimize both time and discounted cash of the project. 
Mathematically, there is a set of activities denoted by i {i∈A} and corresponding to each 
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activity there is a set of implementation modes denoted by j {j∈  M (i)}. ijt  and ijc are time 
and cost of activity i when it is implemented by mode j. Total project duration (T) and 
discounted cash flow (DC) shall be minimized as defined in equations (1) and (2): 
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Where: 
pT  : Duration of path p in the activity network 

pA : Set of activities on path p in the activity network 

)(iMn : Number of feasible operation modes of activity i 

ijx : Zero-one variable where 




=
otherwise   0

j modeby  edimpelement is iactivity  if    1
ijx  

fs  and : Start and finish months of project (usually s =1) 

mC : Total cost paid in mth month 
r : interest rate 
Am : Set of activities which are entirely or partially pending in mth month  

mipe , : Percent of duration of activity i pending in thm  month 

mO : Overhead cost of month m  
An answer for the bi-objective TCTP whith discounted cash flow yields a set of non-

dominated solutions. A solution is dominated when there is another solution which yields 
lesser duration with the same discounted cash, or lesser discounted cash with same duration 
or both lesser duration and discounted cash. The detailed description of the problem can be 
found in Aladini et al.[17]  

 
2.2. stochastic TCTP with disocunted cash flow 

In this article, time and cost of activities as well as interest rate and their functions are dealt 
with as fuzzy numbers, the stochastic TCTP-DCF may be represented as (3): 
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Where superscripted ~ symbolizes fuzzy numbers. Fuzzy numbers describe the degree to 
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which a real number (or an object) belongs to a set. Correspondingly, a fuzzy number A is 
shown as (4) 

  }|))(,{(~ CcccA A ∈= µ  (4) 
 
In which c is a real number in the global set C and ])1,0[( )( ∈µµ cA  is the degree to 

which c belongs to set A. Graphically, most of the fuzzy numbers are triangular, rectangular, 
trapezoidal, Gaussians etc. For example, a triangular fuzzy number for cost of activity i is 
shown in Figure 1. As shown in Figure 1 L2 belongs to low cost of activity i with the highest 
membership degree ( 1=µ ) while it does not belong to medium cost of activity i. With no 
loss of generality, in this paper, only medium range of cost, duration and interest rate is 
considered and the numbers are graphically shown by a single triangle. 

 
 

Low Medium High

l1
M1

l2 l3 M2 M3H1
H2

H3 Cost of Activity i

µ

1

 
Figure 1. Fuzzy cost 

 
In order to account for the decision maker’s attitude towards risk, the concept of 
cut−α is introduced. cut−α set in a fuzzy set A in the universal set X is a crisp set 

denoted as αA  that consists of all elements x in X, whose membership degrees are greater 
than or equal to α .  α it is mathematically shown as (5): 

 

  }[0,1] ,|{ )(~ ∈≥= ααµα xAxA  (5)  
 
By choosing smaller cut−α , a decision maker shows that she is eager to consider a 

wider range of possibilities and vice versa. In other words, α value is a representation of 
decision maker’s risk aversion/adoption. Guerra et. al. [18] used cut−α  setting to describe 
a fuzzy number mathematically and proposed fuzzy extensions of uni-variate functions. 
Basic fuzzy arithmatics are referred to [18] . The fuzzy Power functions applied in this 
model is presented as (6). 

Assume that a continuous fuzzy number is a pair of functions −u and +u ( ℜ→± ]1,0[:u ) 
which: 

i. ℜ∈→
−−

αα uu :  is bounded monotonic increasing (non decreasing) continuous 
function ];1,0[∈∀α  
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ii. ℜ∈→ ++
αα uu :  is bounded monotonic decreasing (non increasing) continuous 

function ];1,0[∈∀α  
iii. ]1,0[∈∀≤ +− ααα uu if +− ≤ 11 uu we have a fuzzy interval and if +− = 11 uu we have a fuzzy 

number. 
−u and +u  are lower and upper branches of u~  respectively, and αu is shown as [ −

αu , +
αu ] 

When both −u and +u are differentiable, one can represent fuzzy number u~  as 
( ++−−

iiii uuuu δδ ,,, ) and simply ( ++−−
iiii dudu ,,, ) if ++

−
+−−− ≤≤≤≤≤≤≤ 0110 ...... uuuuuu NNN and 
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In order to compare two fuzzy numbers various approaches are proposed. In this paper, 

left and right dominance approach is adopted. The left and right dominances of fuzzy 
number u~  over v~  are (7) 
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In other words, left and right dominance are the average difference of the left and right 

spreads of two fuzzy numbers at some cut−α s. overall dominance of fuzzy number u over 
v is denoted as )(, βvuD (8). 
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Where β is the index of optimism and belongs to [0, 1]. In a minimization problem, greater 

β values reflect that the decision maker is more optimistic and she pays more attention to 
possibilities of lesser values. In order to distinguish fuzzy parameters α and β from ACO 
similar parameters in the rest of this paper αf and βf are used for fuzzy parameters. 

 
 

3. NON-DOMINATED ARCHIVING ANT COLONY OPTIMIZATION 
 

Ant colony optimization (ACO) introduced by Dorigo [19] is inspired by the natural 
behavior of real ants. Artificial ants search a solution graph (including nodes and arcs) in a 
stepwise manner. At each step, a colony of ants select and travel on an arc from a set of 
feasible arcs and proceeds to the next step. When the final step is completed a solution is 
formed. Ants are attracted by the pheromone accumulated on paths, they are also reinforced 
by the heuristic information a planner or a resource other than ants gives to them.  

Equations (9) to (11) represents the ACO rules (14-16).  
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Where ijp is the probability that an ant chooses node j  when standing at point i . k

ijτ  is 

the pheromone accumulated on arc ij  at thk  generation, k
ijτ∆  is the pheromone laid on path 

ij  at thk generation, and ρis the evaporation rate which is set into the algorithm in order to 
prevent stagnation. kQ  is a constant and )(Bf k is the best fitness value in the thk  generation 
(iteration best) or the global best fitness value found until the thk  generation(global best). 

ijη is the heuristic information about path ij.  
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In order to optimize two objectives concurrently, NAACO approach uses two colonies of 
ants exchanging their pheromone information on a shared solution graph. The concept of 
NAACO is shown in Figure 2. Similar to single objective ACO, several generations of ants 
explore a solution graph to find optimal results. Pheromone reinitation and probability of 
selecting a path in NAACO similarly follows Eqs. (9) to (11). However, ants are devided to 
two colonies. Each colony seeks its own objective. For the case at hand, a colony 
corresponds to finding the minimum duration and the other colony aims to minimize the 
project’s discounted cashflow. Ants of each colony try to find the path which result in the 
best solution according to their own objective. In order to find non-dominated solutions ants 
should share information about both objectives. In NAACO, this is furnished by using a 
common solution graph for both colonies. Colonies do not communicate with each other, 
rather they interact via a shared solution space. 

 

Objective #1 
Heuristic info. 

Colony 1 

Objective #2 
Heuristic info. 

 

Colony 2 

 Pheromone 
information 

Pheromone 
information 

Update 

Receive 

Update 

Graph of 
solution space 

Receive 

 
Figure 2. The concept of NAACO 

 
Colonies explore the solution space separately. Receiving pheromone information on the 

solution graph, ants of a colony finds their solutions.Next, solutions are assessed based on 
the colony’s objective. Corresponding to the best solution found, phermone information on 
paths are updated. The active colony stands by until the other colony go through a similar 
routine. By the end of the second colony’s exploration, a cycle is completed. 

All solutions resulted by both colonies are stored. Next, non-dominated solutions are 
extracted and archived while other solutions are discarded. The archive is updated each time 
a cycle is completed and any dominated solutions are deduced from the archive. In order to 
avoid stagnations, at some intervals pheromone on all paths are cleared and only paths 
regarding the non-dominated solutions in the archive receive pheromone; this is called 
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Pheromone Reinitiation. In addition, both iteration and global best solutions are used for 
phermone reinitiation as suggested by Dorigo and Stutzle [19] suggest. More detailed 
description of the proposed NAACO is refered to Kalhor et al. [1] 

 
 
4. APPLICATION OF THE MODEL AND ANALYSIS OF THE RESULTS 

 
An 18-activity project devised by Feng et al. [9] is solved using the proposed model. 
Network of the problem is shown in Figure 3. Table 1 shows 13 paths appearing on the 
network with corresponding activity set. The fuzzy input data regarding time and cost of 
activities are tabulated in Table 2. As noted earlier, the fuzzy numbers show only medium 
sets of cost and time for simplicity. The overhead cost and interest rate fuzzy numbers are 
also shown in Figure 4.  
 

1 

start 

5 7 11 

2 

3 

4 

6 

8 

9 

10 

12 

13 

14 16 

15 

17 

18 

# 

Activity ID

 
Figure 3. Example project’s network 

 
Table 1. Path list of case project’s networks 

pa
th

 N
o.

1 1 5 12 15 17 18
2 1 5 7 11 17 18
3 1 6 10 12 15 17 18
4 1 6 9 12 15 17 18
5 1 6 10 14 17 18
6 1 6 10 14 16 18
7 1 6 8 11 17 18
8 2 10 12 15 17 18
9 2 10 14 17 18
10 2 10 14 16 18
11 3 13 16 18
12 4 14 17 18
13 4 14 16 18

Activities on Path
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Table 2. Parameters of the example project 

1 10 14 19 2100 2400 2890 1 13 15 19 420 450 492

2 11 15 20 1900 2150 2560 2 21 22 27 385 400 485

3 13 16 20 1720 1900 2280 3 30 33 39 290 320 356

4 16 21 24 1250 1500 2000 1 10 12 16 410 450 510

5 19 24 31 985 1200 1750 2 14 16 20 313 350 395

1 12 15 21 2870 3000 3420 3 16 20 26 284 300 352

2 16 18 23 2185 2400 2850 1 18 22 29 1850 2000 2450

3 18 20 25 1650 1800 2255 2 19 24 30 1565 1750 2050

4 20 23 28 1300 1500 1950 3 20 28 36 1325 1500 1880

5 19 25 30 900 1000 1190 4 21 30 45 915 1000 1350

1 11 15 23 4250 4500 4990 1 12 14 18 3650 4000 4540

2 17 22 29 3850 4000 4460 2 16 18 20 2970 3200 3385

3 29 33 40 2985 3200 3560 3 23 24 26 1595 1800 2160

1 10 12 16 42050 45000 48800 1 7 9 11 2580 3000 3685

2 13 16 21 38500 35000 39000 2 13 15 19 2200 2400 2880

3 17 20 28 28500 30000 33550 3 16 18 23 2080 2200 2850

1 19 22 25 18500 20000 22550 1 10 12 15 4385 4500 4850

2 22 24 27 16000 17500 19950 2 13 16 18 3200 3500 3750

3 24 28 33 14150 15000 17050 1 18 20 23 2650 3000 3850

4 29 30 34 8500 10000 12600 2 19 22 26 1850 2000 2480

1 12 14 17 38500 40000 42860 3 20 24 30 1340 1750 2240

2 17 18 21 29800 32000 34550 4 22 28 34 1250 1500 1950

3 21 24 29 16550 18000 21000 5 23 30 39 860 1000 1320

1 8 9 10 28500 30000 33670 1 12 14 18 3750 4000 4670

2 11 15 19 21670 24000 28560 2 15 18 22 3000 3200 3530

3 16 18 23 20000 22000 23560 3 22 24 29 1650 1800 2140

1 11 14 16 185 220 282 1 8 9 12 2850 3000 3575

2 13 15 19 182 215 255 2 11 15 20 2030 2400 2950

3 13 16 21 182 200 245 3 14 18 22 1950 2200 2660

4 17 21 25 175 208 234

5 21 24 29 110 120 132

1 11 15 20 290 300 313

2 16 18 23 212 240 288

3 18 20 22 165 180 225

4 20 23 28 125 150 196

5 21 25 28 85 100 124

2

time cost

1
10

11

12

9

13

14

3

4

5

6

7

8

17

18

15

16

time cost

option
ac

tiv
ity

ac
tiv

ity

option

 
 
For implementation purposes, the detailed NA-ACO is completely coded using MATLAB 

and used to search for optimum Pareto front for the problem at hand. The size of solution space 
is 5.90E9 and the proposed NAACO surveyed to near optimal Pareto front in approximately 15 
minutes. The parameters are tuned on a trial and error basis, and based on the authors’ relative 
knowledge. Non-dominated solutions for αf=0 and bf=0.5 are shown in Table 3.  

 

800 1000 1200 

1 

.06 .08 .1 

1 

Overhead 
cost 

Discount 
rate 

µ µ 

 
Figure 4. Graph of fuzzy overhead cost and discount rate 
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Table 3. Non-dominated solutions for αf=0 and βf =0.5 

1 2 3 4 5 6 7 8 9 10 1 1 12 13 14 15 16 17 1 8
1 83 10 0 13 0 2 455 58.1 25 657 8.6 2 68 429 .3 1 5 3 3 3 1 1 1 1 1 2 1 1 2 1 4 1 1
2 84 10 1 13 1 2 434 12.2 25 433 6.4 2 66 083 .6 2 5 3 3 3 1 1 1 1 1 3 1 1 3 1 4 1 1
3 87 10 1 13 0 2 393 61.8 25 010 4.1 2 61 655 .8 1 5 3 3 4 1 2 2 1 1 2 1 1 2 1 4 1 1
4 88 10 2 13 1 2 377 44.9 24 841 4.7 2 59 888 .4 2 5 3 3 4 1 2 1 1 1 1 1 1 3 1 4 1 1
5 88 10 4 13 4 1 676 80.4 17 520 5.8 1 83 298 .1 1 5 3 3 4 2 1 3 1 1 1 1 2 2 1 2 1 1
6 89 10 5 13 5 1 617 55.8 16 901 5.3 1 76 821 .7 2 5 3 3 4 2 2 2 1 1 2 1 1 2 1 4 1 1
7 89 10 7 13 5 1 580 16.9 16 510 8.6 1 72 734 .5 4 5 3 3 3 1 1 4 1 1 2 1 2 2 1 5 1 1
8 93 10 8 13 5 1 546 16.5 16 155 5.6 1 69 017 .4 4 5 3 3 4 1 2 4 1 1 2 1 1 3 1 4 1 1
9 92 11 0 14 2 9 642 4.28 10 075 1.7 1 05 405 .2 5 5 3 3 1 1 1 1 1 1 3 1 1 2 1 4 1 1

P roejec t 
Durat io n

Discoun ted  cash- flo w
Act ivit ies  mo de

No .

 
 
In Table 3, nine activities are higlighted. These are activities whose corresponding 

optimal modes are constant for all variations in αf and βf values. However, these 
activities do not share common characteristics in terms of budget, time, number of 
predecessors or successors in the network. Another finding is that for lesser αf vlaues, 
fewer paths are appeared in the optimal solutions as critical (longest) paths (only paths 1 
and 4 for αf=0 , paths 1,4, and 6 for αf=0.4 and paths 1,4,2, and 6 for αf=1). 

In some cases, for the same bi-objective values, various options are yielded. For example, 
for duration and discounted cash flow appeared on the sixth solution presented on Table 4, 
there are nine other alternatives. However, total cost of these simialr results are not the same. 
The longest path of all these solution is the same (4th path identified in table 1), and modes 
selected for activities on this path (activities 1,6,9,12,15,17, and 18) are similar. Differences 
are due to none-critical activities (solutions are deffuzifies for ease of comparison) . 

 
Table 4. Solutions whith the same duration and discounted cash flow but different activity 

modes 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
109.67 169197.57 238193.33 2 5 3 3 4 2 2 4 1 1 2 1 3 3 1 4 1 1 4
109.67 169197.57 237995.67 2 5 3 3 4 2 3 4 1 1 1 1 2 1 1 2 1 1 4
109.67 169197.57 239702.67 2 5 3 3 4 2 2 2 1 1 3 1 2 1 1 5 1 1 4
109.67 169197.57 239872.33 2 5 3 3 4 2 2 5 1 1 1 1 2 2 1 3 1 1 4
109.67 169197.57 240533.33 2 5 3 3 4 2 2 2 1 1 2 1 1 2 1 4 1 1 4
109.67 169197.57 245066.00 2 5 3 3 4 2 1 2 1 1 3 1 3 1 1 3 1 1 4
109.67 169197.57 246237.33 2 5 3 3 4 2 1 5 1 1 1 1 2 1 1 4 1 1 4
109.67 169197.57 246356.00 2 5 3 3 4 2 1 2 1 1 3 1 1 3 1 4 1 1 4
109.67 169197.57 246951.67 2 5 3 3 4 2 1 1 1 1 2 1 1 3 1 2 1 1 4
109.67 169197.57 247007.67 2 5 3 3 4 2 1 3 1 1 3 1 1 2 1 2 1 1 4

Defuzzified Values

T: Project Duration

Activities mode
Lo

ng
es

t 

Pa
th

T DC C

 
T: Project Duration  
DC: Discounted  
Cash Flow C: Total Cost 
 



AN EXTENSION TO STOCHASTIC TIME-COST TRADE-OFF PROBLEM... 
 

 

567 

The resulted project duration and net present value of project cost are both fuzzy numbers. 
The graph associated with project duration is a triangle because it is the sum of triangle-shaped 
fuzzy numbers. Nevertheless, the net present value of project cost is not necessarily triangle 
shaped. The fuzzy number associated with the net present value of project discounted cash for 
the solution represented on the first row of Table 3 is shown in Figure 5. 

 

 
Figure 5. Graph of the fuzzy discounted cash flow regarding the solution presented in the first 

row of Table 2 
 
As to verify the results, the problem input is set so that input data for αf =1 matches the input 

data for deterministic problem. This provides a basis for comparison and verification of the 
fuzzy results with those of deterministic results. Compared to a NAACO model for deterministic 
problem with the same set of data, the proposed stochastic TCTP-DCF was verified.  

The results of adopting different α f values are compared in Figure 6. To make results 
visually understandable, they are de-fuzzified using the center of gravity approach. The 
Pareto fronts show a slight left shift as the α f value increases. This is probably due to 
accounting for wider range of possibilities and consequently greater fuzzy numbers. 

Results of various βf values are also investigated, and results for different   s (with  f 
=0.5) are represented in Figure 7. As data suggest, the Pareto fronts are partly shifted from 
left to right as the βf value increases, however the rest of the Pareto front overlap for all 

fβ values. 
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Figure 6. Non-dominated solutions regarding various αs (βf =0.5) 

 

 
Figure 7. Results for various β values αf =0.5 
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5. CONCLUSIONS 
 

In this paper a non-dominate archiving ant colony approach is proposed to solve stochastic 
time cost trade-off problem with discounted cash flow. Fuzzy approach is adopted to answer 
for uncertainties in TCTP-DCF. Activities’ duration and cost as well as interest rate are 
treated as fuzzy numbers.  

Extension to Fuzzy exponential function within the model formulation is based on an 
almost recent work which uses differential rules to extend univariant fuzzy functions. The 
model comprehensively investigates decision maker’s attitude towards risks. A case study is 
solved using the proposed model. The model shows capability of producing results in a 
reasonable time. In fact the NAACO model returned results after searching 0.033 percent of 
a 5904900000 sized solution space. Furthermore, the model resulted in various alternatives 
for similar objective values. 

The solutions found by the model are resulted from fuzzy inputs and mapped by fuzzy 
arithmetic, and the results are returned as fuzzy numbers. The decision maker is provided 
with the Pareto set of results and she may select an answer from this set in a fuzzy format. 
However prior to run of the model she have the opportunity to specify how risk 
averse/seeker she is by means of fα and fβ  values. Effects of adopting various fα and 

fβ values are discussed in the case study. 
The future work of the authors is an in-depth assessment of parameters which affect the 

decision maker’s choice of αf and βf for a stochastic scheduling problem in order to model expert 
judgment.  In addition, there is a need to generate, test and verify fuzzy inputs for stochastic 
construction projects environment which will be considered by authors in a near future. 
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