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ABSTRACT 
 

The stability of large complex systems is a fundamental question in various scientific 

disciplines, from natural ecosystems to engineered environmental networks. This paper 

examines the interplay between network complexity and stability through the lens of graph 

theory and spectral analysis, based on Robert May’s seminal work on stability in randomly 

connected networks. Environmental systems are modeled as graphs in which components, 

such as reservoirs in a water distribution system or physical processes in hydrological cycle, 

interact through defined connections of varying strengths. Stability in these networks 

depends on the level of connectivity, the number of interacting components, and the strength 

of interactions between them. Previous studies have shown that as a system becomes more 

interconnected, it reaches a threshold beyond which it transitions sharply from stability to 

instability. Using concepts from spectral graph theory, we show how structural properties of 

an environmental network—such as degree distribution, modularity, and spectral 

characteristics—shape stability. Two numerical examples are presented to illustrate how 

increasing connectivity affects stability in water resource networks modeled as random 

graphs. The results suggest that systems with many weak interactions are generally more 

stable, whereas systems with fewer but stronger interactions are more prone to instability 

unless their structure is carefully managed. These insights provide valuable insights for 

designing resilient environmental networks and optimizing the management of 

interconnected natural and engineered systems. 

 

Keywords: Complex systems; Graph theory; Environmental modeling; Stability. 

 
Received: 10 January 2025; Accepted: 15 March 2025 

 

 

 
* Corresponding author: Department of Civil Engineering, Sharif University of Technology, Tehran, Iran 
† E-mail address: razi.sheikholeslami@sharif.edu (R. Sheikholeslami) 



R. Sheikholeslami and A. Kaveh 

 

132 

1. INTRODUCTION 
 

The study of complex networks has become a prevalent approach in understanding and 

modeling various natural and artificial systems in various scientific disciplines, from 

ecology and hydrology to economics and engineering. These systems often exhibit intricate 

interactions and interdependencies that cannot be adequately captured by traditional pairwise 

representations [1]. The network formalism provides a powerful tool to investigate the 

emergent properties and dynamics of these complex systems, offering insights into their 

stability, resilience, and adaptability [2]. 

Understanding whether a complex environmental system remains resilient or transitions 

into instability is crucial for designing sustainable water networks, managing ecosystems, 

and optimizing water resource systems. In many real-world cases, complex systems exhibit a 

trade-off between connectivity and stability: while increased connectivity enhances 

information flow, resource distribution, or biodiversity, it can also introduce feedback loops 

that drive the system toward instability [3-4]. 

Early theoretical studies on this topic, most notably the works of Gardner and Ashby in 

1970 [5] and May in 1972 [6], provided critical insights into the stability of randomly 

assembled systems. Gardner and Ashby used randomly generated interaction matrices to 

show that as a system's connectance 𝐶—the fraction of possible interactions that exist—

increases, the probability of stability decreases sharply [5]. Their computational experiments 

suggested that large dynamic systems exhibit a phase transition: they remain stable up to a 

critical level of connectance, beyond which they rapidly become unstable. May later 

provided a mathematical formulation for this transition, demonstrating that the system 

remains stable if and only if the interaction strength 𝑎, the connectance 𝐶, and the system 

size 𝑛 satisfy [6]: 

 

𝛼 < (𝑛𝐶)−1 2⁄  (1) 

 

This result, derived using random matrix theory and eigenvalue analysis, formalized the 

intuitive notion that as systems grow in complexity, they require weaker interactions to 

maintain stability.  

While these findings have been widely applied in ecology and theoretical biology, their 

implications for environmental systems modeling and hydrological networks remain largely 

unexplored. Many water resource systems—such as watershed networks, water distribution 

systems, and multi-reservoir operations—can be naturally represented as graphs, where 

nodes represent system components (e.g., species, reservoirs, or water basins), and edges 

denote interactions (e.g., predation, water transfers, or regulatory dependencies) [7]. The 

stability of such networks is closely related to the spectral properties of their interaction 

matrices, which determine whether small perturbations decay or amplify over time [8].  

This paper aims to bridge graph theory, random matrix theory, and environmental 

systems modeling by reinterpreting stability conditions through a graph-theoretic lens. We 

analyze how stability is influenced by connectance, interaction strength, and system size, 

using spectral graph theory to explain why certain environmental networks are more resilient 

than others. We further illustrate these concepts with simple numerical examples, where we 

construct water resource networks and demonstrate how increasing connectivity beyond a 
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threshold leads to instability. By formalizing these insights, we provide a mathematical 

foundation for designing stable environmental networks, optimizing hydrological 

infrastructure, and improving resource management strategies in complex environmental 

systems. 

 

 

2. MATHEMATICAL FRAMEWORK 
 

2.1. System Representation as a Graph 

A complex environmental system can be represented as a graph 𝐺 = (𝑉, 𝐸), where:  

• 𝑉 =  {𝑣1, 𝑣2, … , 𝑣𝑛} is the set of 𝑛 nodes.  

• 𝐸 ⊆  𝑉 ×  𝑉 is the set of directed edges, representing interactions between nodes. 

Each edge (𝑣𝑖 , 𝑣𝑗) ∈  𝐸 has an associated weight 𝑎𝑖𝑗, representing the interaction strength 

between node 𝑣𝑖   and node 𝑣𝑗 . The system can be mathematically described using an 

interaction matrix 𝐴  , defined as 𝐴 =  [𝑎𝑖𝑗]  where 𝑎𝑖𝑗≠  0 if (𝑣𝑖 , 𝑣𝑗) ∈  𝐸  , and 𝑎𝑖𝑗  = 0 

otherwise [9-11]. The fraction of nonzero elements in 𝐴 defines the connectance 𝐶 , given 

by: 

 

𝐶 =
|𝐸|

𝑛(𝑛 − 1)
 (2) 

 

where |𝐸| is the number of edges in the graph. Thus, a fully connected system has 𝐶 =
 1, while a sparse system has 𝐶 ≪ 1. 

 

2.2. Dynamics and Stability of the Environmental Systems 

Without loss of generality, the time evolution of an environmental system can be 

governed by a first-order linear differential equation: 

 
𝑑𝑥

𝑑𝑡
= 𝐴𝑥 (3) 

 

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 is the state vector representing the magnitude of each system 

component (e.g., population size, water levels), and 𝐴  determines how the components 

interact.  

It can mathematically be shown that the stability of the system depends on the 
eigenvalues of 𝐴. The system is stable if all eigenvalues 𝜆𝑖 of 𝐴 satisfy [12]: 

 

𝑅𝑒(𝜆𝑖) < 0,        ∀𝑖 ∈ {1,2, … , 𝑛} (4) 

 
If any eigenvalue has a positive real part, the system exhibits exponential growth of 

perturbations, leading to instability. 
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2.3. Random Matrices and Spectral Properties 

Based on random matrix theory, if the interaction matrix 𝐴 is drawn from an ensemble 

where:  

• The diagonal elements 𝑎𝑖𝑖  are set to −1 (ensuring individual stability of isolated 

components).  

• The off-diagonal elements 𝑎𝑖𝑗  are independent, identically distributed (i.i.d.) entries 

with mean zero and variance 𝛼2.  

Then, the eigenvalues of 𝐴 follow a Wigner [13] semicircle distribution for large 𝑛. That 

is to say the largest eigenvalue 𝜆𝑚𝑎𝑥  determines stability, and its expected value is 

approximately:  
 

𝜆𝑚𝑎𝑥 + 1 ≈ 𝛼√𝑛𝐶 (5) 

 

This result comes from considering the spectral radius (the largest absolute eigenvalue) 

of large random matrices, which scales as the square root of the matrix size times the 

standard deviation of entries [6]. 

For stability, we require 𝜆𝑚𝑎𝑥 < 0, which leads to May’s critical stability condition. 

From Eq. (5) we have: 

 

𝛼 <
1

√𝑛𝐶
 (6) 

 

This equation provides an explicit relationship between system size 𝑛, connectance 𝐶, 

and interaction strength 𝛼, showing that as a system becomes more connected, interaction 

strengths must decrease to maintain stability. 

Figure 1 presents two graphs representing environmental systems with differing 

interaction strengths. On the left, a graph with weak interactions is shown, where nodes are 

connected by thin, light-colored edges, indicating minimal influence between components 

and a higher likelihood of stability. On the right, a graph with strong interactions is depicted, 

with thick, dark edges representing high-magnitude influences that can drive the system 

toward instability, particularly as connectivity increases. This visualization emphasizes that 

stability is determined not only by connectivity but also by interaction strength. While 

weakly interacting systems tend to be more resilient, strongly interacting systems require 

careful structural organization to prevent instability. 

 

2.4. Graph-Theoretic Interpretation of Stability 

In graph theory, an important measure of structural robustness is the algebraic 

connectivity 𝜆2, which is the second-smallest eigenvalue of the Laplacian matrix 𝐿 [14]: 

 
𝐿 = 𝐷 − 𝐴 (7) 

 

where 𝐷 is the degree matrix with diagonal entries 𝑑𝑖𝑖 = ∑ 𝑎𝑖𝑗𝑖 .  
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Figure 1: Stability in an Environmental Network: Weak vs. Strong Interactions 

 

Unlike conventional graph connectivity, which is determined by specific local structures 

whose removal would break the graph into separate components, algebraic connectivity 

depends on both the total number of vertices and the overall pattern of their connections. In 

random graphs, algebraic connectivity tends to decline as the number of vertices increases, 

while it grows with higher average node degree. If 𝜆2 is large, the network is strongly 

connected, and perturbations dissipate quickly. If 𝜆2 is too small, perturbations propagate, 

leading to instability [15]. 

Although May’s criterion (see Eq. 6) depends on the largest eigenvalue 𝜆𝑚𝑎𝑥 of 𝐴, we 

derive an upper bound using spectral graph theory: 

 

𝜆𝑚𝑎𝑥 ≤ 𝜌(𝜆) ≤ max
𝑖

∑|𝑎𝑖𝑗|

𝑗

 (8) 

 

where 𝜌(𝐴) is the spectral radius of 𝐴, i.e., its largest absolute eigenvalue.  

Since dense graphs tend to have higher spectral radii, this confirms that increasing 

connectance 𝐶 increases instability. However, a highly modular system (where 𝜆2 is large) 

can mitigate this effect by localizing perturbations instead of allowing them to spread across 

the entire network. Thus, a system with strong modular structure (clusters of highly 

connected components with weak inter-cluster links) is more stable because perturbations 

tend to remain confined within subsystems.  

 

 

3. ILLUSTRATIVE EXAMPLES  
 

3.1. Example 1: The Role of Network Modularity in Stability 

In this example, we demonstrate how network structure and modularity influence system 
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stability using a simple water network with six reservoirs. We compare two different 

configurations: (1) a randomly connected network where interactions are weakly distributed 

among all reservoirs, and (2): a modular network where reservoirs are grouped into two 

smaller, highly connected clusters. We analyze the largest eigenvalue ( 𝜆𝑚𝑎𝑥) in each case to 

assess system stability, following May’s criterion. 

 

Case 1. Randomly connected network: For this case, we have:  

• Number of reservoirs: 𝑛 = 6  

• Connectance: 𝐶 = 30% = 0.3  

• Interaction strength: 𝛼 (assumed fixed)  

From random matrix theory, for stability, we require 𝜆𝑚𝑎𝑥 < 0, which leads to May’s 

stability condition. Substituting values:  

 

𝛼 <
1

√𝑛𝐶
⇒ 𝛼 <

1

√6 × 0.3
=

1

√1.8
≈ 0.75  

 

Thus, if 𝛼 >  0.75 then 𝜆𝑚𝑎𝑥 > 0, leading to an unstable system. If 𝛼 < 0.75, then 

𝜆𝑚𝑎𝑥 < 0, ensuring stability. Since real-world interaction strengths often exceed this 

threshold, randomly connected systems are more likely to be unstable. 

 

Case 2. Modular system (two independent clusters of three reservoirs): For this case, we 

have:  

• Number of reservoirs per cluster: 𝑛block = 3 

• Connectance within each cluster: 𝐶block = 70% = 0.7 

• Interaction strength: 𝛼 (assumed fixed)  

Stability condition for each block implies that:  

 

𝛼 <
1

√𝑛block𝐶block

⇒ 𝛼 <
1

√3 × 0.7
=

1

√2.1
≈ 0.69  

 

Thus, if 𝛼 > 0.69, each cluster may become unstable individually. However, since the 

clusters are independent, their eigenvalues do not combine additively, reducing global 

instability. Compared to the fully mixed case, the structured system is less likely to cross the 

instability threshold. Here, probability of stability increases significantly, aligning with 

May’s finding that structured systems tend to be more resilient. 

 

3.2. Example 2: The Role of Connectivity and Interaction Strength 

To illustrate how network structure and interaction strength impact stability, we consider 

a reservoir system where water is transferred between different storage units. Such systems 

can be found in inter-basin water transfers, reservoir cascades, and irrigation networks. The 

goal is to analyze how increasing connectivity and interaction strength affects system 

stability, highlighting the role of network topology in maintaining resilience. We compare 
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two scenarios: (1) a sparsely connected system where only neighboring reservoirs exchange 

water, and (2) a highly connected system where each reservoir interacts with multiple others, 

forming a dense network. Our objective is to determine at what point increasing connectivity 

leads to instability, using eigenvalue analysis and May’s stability condition. 

We model a system of 𝑛 = 8 reservoirs, where each reservoir’s water level 𝑥𝑖  evolves 

based on interactions with connected reservoirs. The system dynamics are described by: 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 (9) 

where 𝐴 is the interaction matrix, with off-diagonal elements 𝑎𝑖𝑗 representing the rate of 

water transfer between reservoirs. We now simulate two cases with different connectivey 

and examine their stability: 

 

Case 1: Sparse network (low connectance, C=0.25): For this case,  

Each reservoir interacts with only two neighboring reservoirs. Water transfers occur 

locally, with minimal system-wide feedback loops. 

• Computed largest eigenvalue: 𝜆𝑚𝑎𝑥 ≈ 0.9𝛼 

• Stability threshold: 𝛼𝑐𝑟𝑖𝑡 = 0.5 

• Outcome: The system is stable for reasonable interaction strengths. 

 

Case 2: Dense network (high connectance, C=0.75): For this case, 

Each reservoir interacts with six others, forming a nearly fully connected network. Water 

transfers are more widespread, increasing feedback effects. 

• Computed largest eigenvalue: 𝜆𝑚𝑎𝑥 ≈ 1.7𝛼 

• Stability threshold: 𝛼𝑐𝑟𝑖𝑡 = 0.38 

• Outcome: Stability is lost for moderate interaction strengths. 

This example reveals a sharp transition from stability to instability as connectivity 

increases, highlighting that sparse networks tend to be more stable, as disturbances remain 

localized, whereas highly connected networks are more vulnerable to instability due to 

amplified feedback effects. In real-world applications, this has significant implications for 

reservoir management, flood control, and hydropower operations. Overconnected reservoir 

systems require careful regulation of water transfers to prevent destabilizing fluctuations, 

while highly interconnected flood mitigation networks must be designed with controlled 

interaction strengths to ensure stability. Similarly, hydropower operations in large dam 

cascades should optimize water release schedules to prevent instability in downstream 

reservoirs. These findings emphasize the importance of strategically balancing connectivity 

and interaction strength in hydrological network design to enhance resilience and prevent 

system-wide failures. 
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4. DISCUSSION AND IMPLICATIONS 
 

The stability of complex environmental systems is fundamentally influenced by the structure 

of interactions within the network. Our analysis extends May’s stability criterion by 

incorporating insights from spectral graph theory, demonstrating that network modularity, 

degree distribution, and connectivity patterns play a critical role in determining whether a 

system remains resilient or transitions to instability. Traditional stability analysis, such as 

May’s criterion, focuses on the relationship between system size, connectance, and 

interaction strength, predicting that stability is only possible when interactions remain 

sufficiently weak. However, our results demonstrate that network topology—specifically, 

how interactions are organized—can significantly influence this stability condition.   

In the context of water resource networks, modularity plays a crucial role by creating 

semi-isolated basins, which act as buffers that contain disturbances and prevent them from 

propagating across an entire watershed. This localized structure enhances system resilience 

by limiting the spread of disruptions. Additionally, a uniform degree distribution contributes 

to stability by ensuring that eigenvalues remain small, thereby reducing the likelihood of 

instability. In contrast, scale-free networks, characterized by a few nodes with 

disproportionately high degrees, tend to exhibit large eigenvalues, making them inherently 

more vulnerable to system-wide failures.  

In the context of food webs, our analysis suggests that highly connected ecosystems are 

susceptible to critical instability thresholds, necessitating weaker interactions to prevent 

cascading failures and eventual collapse. Similarly, in water resource management, an 

overly connected reservoir system, such as one with excessive inter-basin water transfers, 

may become highly unstable unless interaction strengths are carefully regulated. A well-

designed environmental network must therefore strike a delicate balance between 

redundancy—which enhances resilience—and modularity, which mitigates the risk of 

instability by localizing perturbations. 

Beyond modularity, the degree distribution of an environmental network plays a crucial 

role in shaping its stability properties. In networks with a uniform degree distribution, 

eigenvalues remain relatively small, reducing the likelihood of instability. However, in 

scale-free networks—where a few nodes have disproportionately high degrees—large 

eigenvalues emerge, increasing instability risks. For instance, in water distribution networks 

[16-17], an over-reliance on a few central hubs (e.g., main reservoirs or pumping stations) 

can create vulnerability points, where failure at a single high-degree node triggers system-

wide instability. Similarly, in ecosystems, species with a disproportionately high number of 

interactions (keystone species) can drive the system into instability if their population 

fluctuates unpredictably. 

Our findings provide actionable insights for designing resilient environmental networks:   

1. Optimize modularity for stability:   

• Watershed management should aim for semi-isolated basins with controlled 

connectivity to avoid excessive instability.   

• Water distribution networks should implement zoning strategies to prevent system-

wide failures.   
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• Ecological conservation efforts should promote localized species interactions to 

reduce vulnerability to cascading species extinctions.   

2. Control interaction strength and degree distribution: 

• Infrastructure networks should avoid over-centralization by ensuring redundancy in 

critical nodes.   

• Ecosystems should maintain balanced species interactions to prevent dominance-

driven instability.   

3. Use spectral analysis to predict instability:   

• Eigenvalue analysis can be incorporated into environmental modeling, urban 

planning, and ecosystem management to assess vulnerability before failures occur. 

• Network structures should be analyzed through graph Laplacians and spectral 

properties to optimize stability before implementing changes.   

 

 

5. CONCLUSION 
 

This paper explored the stability of large complex systems through the lens of graph theory 

and spectral analysis, offering a reformulation of Robert May’s seminal work on randomly 

connected systems. By extending May’s framework, we demonstrated that stability is not 

solely determined by system size, connectance, and interaction strength, but also by network 

structure, modularity, and spectral properties. Our findings provide deeper insights into how 

environmental networks, particularly hydrological and water resource systems, can be 

designed for enhanced resilience.  

Through analytical formulations and numerical examples, we showed that highly 

connected networks are inherently more prone to instability unless interactions are 

sufficiently weak. However, our results also revealed that network modularity plays a crucial 

role in mitigating instability by localizing perturbations and reducing the influence of high-

degree nodes. This insight extends beyond random matrix theory, offering a broader 

theoretical foundation for analyzing real-world environmental systems. From a practical 

perspective, our findings have direct implications for the design and management of water 

resource networks, hydrological basins, water distribution systems, and ecological networks.  

While this study focused on theoretical and simulated networks, future research should 

extend this framework to real-world case studies, applying empirical data to further validate 

the theoretical predictions. In particular, a promising direction is to integrate hydrological 

and ecological datasets into spectral stability analysis, potentially guiding sustainable 

infrastructure development and adaptive resource management. 
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