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ABSTRACT 
 

Structural optimization plays a crucial role in engineering design, aiming to minimize weight 

and cost while satisfying performance constraints. This research presents a novel Self-

Adaptive Enhanced Vibrating Particle System (SA-EVPS) algorithm that automatically 

adjusts algorithm parameters to improve optimization performance. The algorithm is applied 

to two challenging examples from the International Student Competition in Structural 

Optimization (ISCSO) benchmark suite: the 314-member truss structure (ISCSO_2018) and 

the 345-member truss structure (ISCSO_2021). Results demonstrate that SA-EVPS achieves 

significantly better solutions compared to previous studies using the Exponential Big Bang-

Big Crunch (EBB-BC) algorithm. For ISCSO_2018, SA-EVPS achieved a minimum weight 

of 16543.57 kg compared to 17934.3 kg for the best EBB-BC variant—a 7.75% 

improvement. Similarly, for ISCSO_2021, SA-EVPS achieved 4292.71 kg versus 4399.0 kg 

for the best EBB-BC variant—a 2.42% improvement. The proposed algorithm also 

demonstrates superior convergence behavior and solution consistency, with coefficients of 

variation of 3.13% and 1.21% for the two benchmark problems, compared to 12.5% and 

2.4% for the best EBB-BC variant. These results highlight the effectiveness of the SA-EVPS 

algorithm for solving complex structural optimization problems and demonstrate its 

potential for engineering applications. 
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1. INTRODUCTION 
 

Structural optimization has emerged as a critical discipline in modern engineering design, 

driven by increasing demands for efficient, economical, and sustainable structures. The 

environmental and economic significance of structural optimization has gained greater 

recognition in recent years [1], as engineers and designers seek to minimize material usage 

while ensuring structural integrity and performance. This optimization approach is 

particularly valuable in the context of steel structures, where even marginal weight 

reductions can translate to substantial cost savings and reduced environmental impact. 

Within the domain of structural optimization, truss systems have consistently served as 

ideal test cases. Their widespread practical applications in various engineering fields make 

them particularly relevant, but they also offer computational efficiency in providing 

conceptual designs for more complex structures [2]. Additionally, optimized truss instances 

effectively represent the complexities of challenging combinatorial optimization problems, 

making them excellent candidates for evaluating optimization algorithms across various 

disciplines including engineering optimization, applied mathematics, and computer science 

[3, 4]. 

Over the past several decades, researchers have developed numerous metaheuristic 

algorithms to address structural optimization challenges [5-10]. These algorithms, often 

inspired by natural phenomena, animal behavior, or evolutionary concepts, have 

demonstrated their effectiveness in finding near-optimal solutions within reasonable 

computational timeframes [11]. Among the most well-established methods are Genetic 

Algorithm (GA) [12], Particle Swarm Optimization (PSO) [13], Charged System Search 

(CSS) [14], Colliding Bodies Optimization (CBO) [15], and Big Bang-Big Crunch (BB-BC) 

[16]. 

More recent innovations include Teaching-Learning-Based Optimization (TLBO) [17], 

Water Wave Optimization (WWO) [18], Sine Cosine Algorithm (SCA) [19], League 

Championship Algorithm (LCA) [20], and Chemical Reaction Optimization (CRO) [21]. 

These algorithms offer distinct advantages in terms of exploration-exploitation balance, 

convergence behavior, and solution quality for different problem types [22-24]. 

Despite significant advances in algorithm development, benchmarking remains a critical 

challenge in the field. The performance evaluation of newly developed techniques has 

traditionally relied on conventional benchmark instances that have become increasingly 

unchallenging for contemporary algorithms [25]. As computational power and algorithm 

sophistication have increased, the differences in performance among modern algorithms on 

standard benchmarks have become marginal, making it difficult to identify truly superior 

methods [26, 27]. 

This situation has prompted calls for more challenging test examples that better reflect 

real-world design complexities [28, 29]. In a critical review of truss optimization with 

discrete variables spanning studies from 1968 to 2014, Stolpe [2] highlighted the urgent 

need for publicly available benchmark libraries to promote rigorous algorithm evaluation. 

This need has been partially addressed by the International Student Competition in 
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Structural Optimization (ISCSO), which provides a set of challenging benchmark problems 

that have been used to evaluate algorithm performance [30, 31]. 

Recent studies on these benchmark problems have demonstrated their challenging nature. 

Albert and Zhang [32] applied their SpartaPlex algorithm to ISCSO_2018 and ISCSO_2019 

problems, finding that their solutions were still significantly heavier than the competition 

winners—by approximately 24% and 29%, respectively. Other researchers, including Etaati 

et al. [33], Dehkordi et al. [34], and Kaveh and Biabani Hamedani [35], have similarly 

reported difficulties in obtaining optimal solutions for ISCSO benchmark problems using 

various metaheuristic algorithms. 

The Enhanced Vibrating Particle System (EVPS) algorithm is a relatively recent addition 

to the metaheuristic optimization landscape. Originally proposed as the Vibrating Particle 

System (VPS) algorithm by Kaveh and Ilchi Ghazaan [36], it draws inspiration from free 

vibration of single degree of freedom systems with viscous damping. The EVPS variant, 

introduced by Kaveh et al. [37], has shown promising results for structural optimization 

problems, including damage detection [38], reliability assessment [39], and optimal design 

of steel structures [40]. 

However, like many metaheuristic algorithms, EVPS performance relies heavily on 

proper parameter tuning. The algorithm includes multiple parameters such as α, p, w₁, w₂, 

HMCR, PAR, Neighbor, and Memory_size, which are traditionally determined 

experimentally or set to fixed default values. This dependence on appropriate parameter 

settings can limit algorithm efficiency and effectiveness when applied to new problem 

domains or specific challenging instances. 

To address this limitation, this paper introduces a Self-Adaptive Enhanced Vibrating 

Particle System (SA-EVPS) algorithm [41-42], which automatically optimizes these 

parameters for each specific problem before conducting the main optimization process. This 

self-adaptive approach eliminates the need for manual parameter tuning and enhances the 

algorithm's ability to adapt to different problem characteristics. 

The proposed SA-EVPS algorithm is applied to two challenging benchmark problems 

from the ISCSO suite: the 314-member truss structure (ISCSO_2018) and the 345-member 

truss structure (ISCSO_2021). These problems are particularly demanding due to their large 

number of design variables, complex constraints, and multimodal objective landscapes [43, 

44]. 

The performance of SA-EVPS is compared with the Exponential Big Bang-Big Crunch 

(EBB-BC) algorithm, which has previously been applied to these benchmark problems with 

different population sizes [45]. The comparison includes not only the optimal solution 

quality but also convergence behavior, solution consistency, and computational efficiency. 

The remainder of this paper is organized as follows. Section 2 introduces the SA-EVPS 

algorithm, providing a detailed explanation of its working mechanism and self-adaptive 

procedure. Section 3 describes the ISCSO benchmark problems used in this study, including 

their formulation, constraints, and design variables. Section 4 presents the optimization 

results and compares them with previous studies. Section 5 provides a discussion of the 

findings and their implications. Finally, Section 6 concludes the paper and suggests 

directions for future research. 
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2. SELF-ADAPTIVE ENHANCED VIBRATING PARTICLE SYSTEM 

ALGORITHM 
 

2.1 Enhanced Vibrating Particle System (EVPS) Algorithm 

The Enhanced Vibrating Particle System (EVPS) algorithm is a population-based 

metaheuristic method introduced by Kaveh et al. [37] as an improvement to the original 

Vibrating Particle System (VPS) algorithm [36]. The algorithm draws inspiration from the 

free vibration behavior of single degree of freedom systems with viscous damping, modeling 

the gradual movement of particles toward their equilibrium positions. 

In the EVPS algorithm, each particle represents a candidate solution to the optimization 

problem. The population evolves through iterations, with particles moving toward promising 

regions of the search space under the influence of three types of equilibrium positions: the 

historically best position found by the entire population (HBP), a good position (GP) 

randomly selected from a memory that keeps track of the best positions achieved so far, and 

the best position in the current iteration (BP). 

The algorithm begins by generating an initial population within the permissible range 

using Equation (1): 

 

𝑥𝑖
𝑗
= 𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ⋅ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) (1) 

where 𝑥𝑖
𝑗
is the 𝑗th variable of the 𝑖th particle, and 𝑥𝑚𝑖𝑛and 𝑥𝑚𝑎𝑥are the lower and upper 

bounds of the design variables, respectively. 

During each iteration, particles update their positions based on a damping level, which 

represents the influence of the current iteration on the search process. The damping level is 

calculated using Equation (2): 

max

iter
D

iter

−
 

=  
 

 (2) 

 

where 𝑖𝑡𝑒𝑟 is the current iteration number, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iterations, 

and 𝛼is a parameter with a constant value. The damping level controls the exploration-

exploitation balance throughout the optimization process. 

The new positions of the particles are then updated according to Equation (3): 

 

 1 ( ) 2 ( ) 3 ( )j j j j

ix D A rand OHB a D A rand GP b D A rand BP c=   +   +   +  (3) 

 

where 𝑂𝐻𝐵, 𝐺𝑃, and 𝐵𝑃 are determined independently for each variable, and 𝐴is defined 

as: 

 

 ( 1)( ) ( ) ( 1)( ) ( ) ( 1)( ) ( )j j j j j j

i i iA OHB x a GP x b BP x c=  −  −  −  (4) 
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with 𝜔1 + 𝜔2 + 𝜔3 = 1 
 

The coefficients 𝜔1, 𝜔2, and 𝜔3represent the relative importance of 𝑂𝐻𝐵, 𝐺𝑃, and 𝐵𝑃, 

respectively, while 𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2, and 𝑟𝑎𝑛𝑑3are random numbers uniformly distributed in 

the range [0, 1]. 

In addition to these basic operations, EVPS incorporates a Harmony Memory 

Considering Rate (HMCR) and Pitch Adjusting Rate (PAR) from the Harmony Search 

algorithm to further enhance its search capabilities. The algorithm also utilizes a neighbor 

search mechanism and maintains a memory of best solutions. 

While EVPS has demonstrated promising performance on various optimization problems, 

its efficiency depends on the proper setting of its parameters, which include α, p, w₁, w₂, 

HMCR, PAR, Neighbor, and Memory_size. Conventionally, these parameters are 

determined experimentally or set to default values (0.05, 0.2, 0.3, 0.3, 0.95, 0.1, 0.1, and 4, 

respectively). 

 

2.2 Self-Adaptive Mechanism 

The proposed Self-Adaptive Enhanced Vibrating Particle System (SA-EVPS) algorithm 

addresses the parameter tuning challenge by automatically optimizing the algorithm 

parameters for each specific problem. Rather than using fixed parameter values, SA-EVPS 

first employs the EVPS algorithm itself to optimize the eight parameters mentioned above, 

and then uses these optimized parameters for the main optimization process. 

The self-adaptive procedure works as follows: 

 

1. Define the problem to be optimized, including the objective function, constraints, 

and design variables. 

2. Use the EVPS algorithm to optimize the eight parameters (α, p, w₁, w₂, HMCR, 

PAR, Neighbor, and Memory_size) with respect to the same objective function. 

3. Use the optimized parameters in the main EVPS algorithm to solve the original 

optimization problem. 

 

This approach ensures that the algorithm parameters are tailored to the specific 

characteristics of the problem at hand, potentially improving convergence speed, solution 

quality, and the algorithm's ability to escape local optima. The parameters optimized in step 

2 are used directly in step 3 without further adjustment during the main optimization 

process. 

Figure 1 illustrates the schematic framework of the SA-EVPS algorithm. The upper part 

shows the parameter optimization phase, where the eight EVPS parameters are optimized 

using the EVPS algorithm itself with default parameters. The lower part shows the main 

optimization phase, where the optimized parameters are used in the SA-EVPS algorithm to 

solve the original problem. 



M. Paknahd, P. Hosseini, A. Kaveh, and S.J.S. Hakim 

 
116 

 
Figure 1: Schematic Framework of the SA-EVPS Algorithm Showing Parameter Optimization 

Phase and Main Optimization Phase 
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The SA-EVPS approach offers several advantages over the standard EVPS algorithm: 

1. Eliminates the need for manual parameter tuning, which can be time-consuming and 

requires expert knowledge. 

2. Adapts the algorithm parameters to the specific characteristics of each problem. 

3. Potentially improves convergence speed and solution quality. 

4. Enhances the algorithm's ability to escape local optima. 

The computational overhead of the parameter optimization phase is justified by the 

improved performance of the main optimization process, particularly for complex problems 

where finding high-quality solutions is critical. 

 

 

3. PROBLEM FORMULATION AND ISCSO BENCHMARK PROBLEMS 

3.1 General Structural Optimization Problem Formulation 

The general formulation of a single-objective truss optimization problem with respect to 

AISC-LRFD [46] can be expressed as follows: 

 

Find a solution vector 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
𝑇 representing the design variables, such that 

the weight of the truss structure is minimized: 

1

N

i i i

i

W L A
=

=  (5) 

where 𝑊is the net weight of the truss, 𝜌𝑖, 𝐿𝑖, and 𝐴𝑖 are the unit weight, length, and 

cross-sectional area of the 𝑖-th member, respectively. 

This weight minimization problem is subject to strength and displacement constraints. 

According to AISC-LRFD [46], the following relation must be satisfied for the strength 

requirement of each truss member: 

1 0u

n i

P

P

 
−  

 
 (6) 

where 𝑃𝑢 and 𝑃𝑛 are the required and nominal axial (tensile or compressive) strengths of 

the 𝑖-th truss member, respectively, and 𝜙is the resistance factor for axial strength, taken as 

0.85 for compression and 0.9 for tension. 

The nominal tensile strength of a truss member, based on yielding in the gross cross 

section, is computed as: 

n y gP F A=  (7) 
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where 𝐹𝑦is the member's specified yield stress and 𝐴𝑔is the gross cross section of the 

member. 

For the nominal compressive strength of members with compact and/or non-compact 

elements, the limit state of flexural buckling is determined as: 

n cr gP F A=  (8) 

where 𝐹𝑐𝑟 is the critical stress based on flexural buckling of the member, calculated as: 

For 
2

1.5 : (0.658 )cy

c cr y

FKl
F F

r E




=  =  (9) 

For 
2

0.877
1.5 :

y

c cr y

c

FKl
F F

r E


 

 
=  =  

 
 (10) 

In the above equations, 𝑙 is the laterally unbraced length of the member, 𝐾 is the effective 

length factor, 𝑟 is the governing radius of gyration about the buckling axis, and 𝐸is the 

modulus of elasticity. 

For displacement constraints, the following criterion must be satisfied: 

,

,

1 0
( )

j k

j k all

d

d
−   (11) 

where 𝑗 = 1,2, . . . , 𝑁𝑗 is the joint number, 𝑁𝑗is the total number of joints, and 𝑑𝑗,𝑘 and 

(𝑑𝑗,𝑘)𝑎𝑙𝑙 are the displacement computed in the 𝑘-th direction of the 𝑗-th joint and the 

corresponding maximum allowable value, respectively. 

3.2 ISCSO_2018 Benchmark Problem 

The ISCSO_2018 benchmark problem involves the optimization of a 314-member truss 

structure as shown in Figure 2. This structure has 328 design variables, including 314 sizing 

variables representing the cross-sectional areas of the truss members and 14 shape variables 

representing the z-coordinates of the top nodes (labeled Z1 to Z14 in Figure 2). 

The truss is subject to two loading conditions: 

1. Gravity loads applied to all nodes. 

2. Lateral loads applied to specific nodes. 

The constraints include stress limits for all members and displacement limits for all 

nodes. The allowable stress is 25 ksi for both tension and compression, and the allowable 

displacement is 0.25 inches in all directions. The material has a density of 0.1 lb/in³ and a 

modulus of elasticity of 10,000 ksi. 
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The cross-sectional areas can vary between 0.1 in² and 4.0 in². The shape variables (Z1 to 

Z14) can vary within specified ranges to maintain the overall structural form while allowing 

for optimization of the geometry. 

 
Figure 2: Geometry of the 314-Member Truss Structure (ISCSO_2018 Benchmark Problem) 

3.3 ISCSO_2021 Benchmark Problem 

The ISCSO_2021 [31] benchmark problem involves the optimization of a 345-member 

dome truss structure as shown in Figure 3. This structure has 345 design variables, all of 

which are sizing variables representing the cross-sectional areas of the truss members. 

 
Figure 3: Geometry of the 345-Member Dome Truss Structure (ISCSO_2021 Benchmark 

Problem) 
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The dome has a height of 1.9 m and a radius of 5.4 m. It is supported at the perimeter 

nodes, and loads are applied at all unsupported nodes. The constraints include stress limits 

for all members and displacement limits for all nodes. The material properties and allowable 

stress and displacement values are similar to those used in the ISCSO_2018 problem. 

The cross-sectional areas can vary between 0.1 in² and 4.0 in². The dome structure 

presents a different type of optimization challenge compared to the ISCSO_2018 problem, 

with a focus solely on sizing optimization rather than combined sizing and shape 

optimization. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Implementation Details 

This study used two key metrics to evaluate algorithm performance. The "ISCSO winner 

solution" represents the best structural weight achieved by the winning team in the ISCSO 

competition, serving as a global benchmark for solution quality. The "Normalized solution 

quality" is calculated as the ratio of the ISCSO winner weight to the algorithm's best weight 

(ISCSO winner weight / algorithm best weight). This normalization yields values between 0 

and 1, where higher values indicate solutions closer to the competition winner's result. 

The SA-EVPS algorithm was implemented and tested on the ISCSO_2018 and 

ISCSO_2021 benchmark problems. For comparison, results from three variants of the 

Exponential Big Bang-Big Crunch (EBB-BC) algorithm with different population sizes—

denoted as EBB-BC(25), EBB-BC(50), and EBB-BC(100)—were considered. These results 

were obtained from previous studies [31]. 

For all algorithms, a population size of 20 and a maximum of 1000 iterations were used, 

resulting in a total of 200,000 function evaluations for each run. Thirty independent runs 

were conducted for each algorithm to ensure statistical significance of the results. 

For the SA-EVPS algorithm, the eight parameters (α, p, w₁, w₂, HMCR, PAR, Neighbor, 

and Memory_size) were first optimized using the EVPS algorithm with default parameters, 

and then these optimized parameters were used for the main optimization process. 

4.2 Results for ISCSO_2018 

Table 1 presents the optimization results for the ISCSO_2018 benchmark problem, 

comparing the performance of the SA-EVPS algorithm with the three variants of the EBB-

BC algorithm. 

As shown in Table 1, the SA-EVPS algorithm achieved a best weight of 16543.57 kg, 

which is 7.75% lighter than the best result obtained by EBB-BC(50) (17934.3 kg), 11.72% 

lighter than EBB-BC(100) (18704.7 kg), and 12.50% lighter than EBB-BC(25) (18906.3 

kg). This represents a significant improvement over the existing methods. 

Moreover, the SA-EVPS algorithm demonstrated superior consistency across the 30 

independent runs. The coefficient of variation for SA-EVPS was only 3.13%, compared to 

12.7%, 12.5%, and 11.8% for EBB-BC(50), EBB-BC(100), and EBB-BC(25), respectively. 

This indicates that SA-EVPS not only finds better solutions but also does so more reliably. 
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The worst weight obtained by SA-EVPS (18604.89 kg) was still considerably lighter than 

the worst weights obtained by the EBB-BC variants, which ranged from 27459.5 kg to 

30630.3 kg. This further demonstrates the robustness of the SA-EVPS algorithm. 

 
Table 1: Comparison of Optimization Results for the 314-Member ISCSO_2018 Truss Structure 

Between SA-EVPS and EBB-BC Variants 

Run no. 
ISCSO (2018) [31] Current 

study EBB-BC(25)[31] EBB-BC(50) [31] EBB-BC(100)[31] 

1 21916.0 19101.9 28816.6 16875.69 

2 21783.2 26245.1 21258.3 17995.13 

3 22161.8 18700.3 22676.0 16794.04 

4 22342.8 22041.6 20486.7 17391.34 

5 23957.8 19567.5 22394.2 18236.43 

6 23723.6 19886.0 21044.1 16900.00 

7 19671.2 17934.3 19121.6 17961.01 

8 20467.3 18960.8 20647.9 17246.51 

9 26649.8 18423.2 19080.7 18186.28 

10 22685.8 18528.9 21363.8 18150.59 

11 26355.4 22833.0 21786.7 18303.43 

12 19413.7 23237.2 24848.1 17500.50 

13 24492.4 21361.3 19963.0 16543.57 

14 25383.6 23122.6 19548.0 16693.72 

15 18906.3 19229.4 19366.8 17537.07 

16 19750.6 25896.2 30630.3 18227.37 

17 24646.2 18567.4 18704.7 17883.55 

18 20942.3 24130.7 22321.3 16891.81 

19 28408.1 21491.4 22829.3 17669.89 

20 23564.5 17989.5 22166.0 17935.90 

21 21257.8 27459.5 19391.2 18397.21 

22 27707.3 21225.1 20452.5 17991.64 

23 20052.8 18824.9 22703.6 17599.88 

24 27349.4 19533.5 24191.8 18604.89 

25 23153.9 21187.9 20186.9 17873.97 

26 22018.0 20246.9 19970.6 17046.35 

27 21379.6 25238.6 20031.3 17914.63 

28 24073.4 18830.2 20669.3 17571.68 

29 23033.9 20933.7 19267.8 17678.12 

30 28202.8 19692.0 21655.7 18119.39 

Best weight (kg) 18906.3 17934.3 18704.7 16543.57 

Worst weight 28408.1 27459.5 30630.3 18604.89 

Mean weight 23181.7 21014.0 21585.8 17657.39 

Standard deviation 2726.9 2664.3 2699.1 552.80 

Coefficient of 

variation (%) 
11.8 12.7 12.5 3.13 

No. analyses 200000 200000 200000 200000 

*ISCSO winner solution 

(kg) [31] 
14425.097 14425.097 14425.097 14425.097 

Normaliz solution quality 0.76 0.80 0.77 0.87 
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Figure 4-(a) shows the three-dimensional view of the optimized structure obtained using 

SA-EVPS for the ISCSO_2018 problem, while Figure 4-(b) presents the two-dimensional 

view. The optimized structure satisfies all stress and displacement constraints. 

 
(a) 

 
(b) 

Figures 4: Optimized 314-Member Truss Structure (ISCSO_2018) Using SA-EVPS: (a) 3D 

View and (b) 2D View 

Figure 5 illustrates the convergence behavior of the SA-EVPS algorithm. The 

convergence curve shows that SA-EVPS achieves faster convergence and reaches a better 

final solution than all EBB-BC variants. This improved convergence behavior can be 

attributed to the self-adaptive parameter tuning mechanism, which tailors the algorithm 

parameters to the specific characteristics of the problem. 
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Figure 5: Convergence History of the SA-EVPS Algorithm for the ISCSO_2018 Problem 

Figure 5 illustrates the convergence behavior of the SA-EVPS algorithm for the 

ISCSO_2018 problem. The convergence curve shows steady improvement in the objective 

function value, with rapid initial convergence followed by more gradual refinement in later 

iterations. This efficient convergence behavior can be attributed to the self-adaptive 

parameter tuning mechanism, which tailors the algorithm parameters to the specific 

characteristics of the problem. 

4.3 Results for ISCSO_2021 

Table 2 presents the optimization results for the ISCSO_2021 benchmark problem [31], 

comparing the performance of the SA-EVPS algorithm with the three variants of the EBB-

BC algorithm. 

For the ISCSO_2021 problem, the SA-EVPS algorithm achieved a best weight of 

4292.71 kg, which is 2.42% lighter than the best result obtained by EBB-BC(100) (4399.0 

kg), 2.77% lighter than EBB-BC(50) (4415.2 kg), and 5.03% lighter than EBB-BC(25) 

(4520.0 kg). While the improvement is more modest than for ISCSO_2018, it still represents 

a significant enhancement in solution quality. 

The consistency of the SA-EVPS algorithm was also superior for this problem. The 

coefficient of variation for SA-EVPS was only 1.21%, compared to 2.4%, 2.4%, and 4.2% 

for EBB-BC(100), EBB-BC(50), and EBB-BC(25), respectively. This indicates that the 

algorithm's self-adaptive mechanism effectively tunes the parameters for different problem 

types. 

Figure 6 shows the convergence curve for the SA-EVPS algorithm applied to the 

ISCSO_2021 problem. Similar to the ISCSO_2018 case, the algorithm demonstrates 

effective convergence behavior, with significant improvements in the early iterations 
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followed by fine-tuning in later stages. 

 
Table 2. Comparison of Optimization Results for the 345-Member ISCSO_2021 Dome Truss 

Structure Between SA-EVPS and EBB-BC Variants 

Run no. 

ISCSO (2021) [31] 

Current study 
EBB-BC(25) [31] EBB-BC(50) [31] EBB-BC(100) [31] 

1 4772.5 4716.9 4540.1 4413.69 

2 4898.0 4607.6 4537.0 4336.07 

3 4945.0 4536.7 4542.6 4400.41 

4 4773.8 4649.8 4399.0 4309.47 

5 4808.5 4753.6 4483.0 4348.69 

6 4849.2 4544.8 4472.6 4421.85 

7 4755.5 4795.6 4611.9 4362.24 

8 4599.0 4556.4 4542.4 4432.14 

9 4520.0 4690.2 4783.9 4384.03 

10 5051.3 4521.9 4578.9 4310.18 

11 4676.4 4714.2 4593.8 4372.34 

12 4627.6 4503.0 4570.6 4375.80 

13 4603.9 4632.0 4636.0 4339.10 

14 4845.9 4736.4 4595.0 4478.80 

15 4626.1 4545.1 4704.4 4393.07 

16 4832.1 4553.0 4658.8 4433.10 

17 4696.0 4758.0 4420.9 4416.24 

18 5630.8 4587.7 4565.4 4292.71 

19 4871.4 4800.0 4481.4 4414.82 

20 4979.9 4608.9 4434.2 4318.82 

21 4796.5 4656.3 4519.5 4463.99 

22 4721.2 4810.9 4852.6 4378.54 

23 5067.7 4482.0 4641.5 4352.22 

24 4829.6 4415.2 4491.4 4300.69 

25 4910.0 4753.0 4693.2 4298.71 

26 4661.9 4634.2 4615.7 4443.76 

27 4806.1 4457.5 4405.6 4453.23 

28 4890.3 4629.3 4564.7 4366.50 

29 4688.7 4452.0 4502.6 4390.28 

30 4823.1 4519.2 4738.1 4462.38 

Best weight (kg) 4520.0 4415.2 4399.0 4292.71 

Worst weight 5630.8 4810.9 4852.6 4478.80 

Mean weight 4818.6 4620.7 4572.6 4382.13 

Standard deviation 203.0 113.1 109.6 53.10 

Coefficient of variation (%) 4.2 2.4 2.4 1.21 

No. analyses 200000 200000 200000 200000 

*ISCSO winner solution (kg) 

[31] 
3977.261 3977.261 3977.261 3977.261 

Normalized solution quality 0.88 0.90 0.90 0.93 
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Figure 6: Convergence History of the SA-EVPS Algorithm for the ISCSO_2021 Problem 

 
Figure 7: Optimized 345-Member Dome Truss Structure (ISCSO_2021) Using SA-EVPS 

Compared to the winner solution of ISCSO_2021 (3977.261 kg), the SA-EVPS result 

(4292.71 kg) is 7.93% heavier. However, it represents a notable improvement over previous 

metaheuristic approaches, with a normalized solution quality of 0.93 (compared to 0.90 for 

the best EBB-BC variants). 
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4.4 Comparison and Discussion 

Figure 8 presents a comparison of the normalized solution quality for the SA-EVPS 

algorithm and the three EBB-BC variants across both benchmark problems. The normalized 

solution quality is calculated by dividing the weight of the ISCSO winner solution by the 

weight of the algorithm's best solution. A higher value indicates a better solution. 

 
Figure 8: Comparison of Normalized Solution Quality Between SA-EVPS and EBB-BC 

Variants for ISCSO Benchmark Problems 

As shown in Figure 8, the SA-EVPS algorithm consistently achieves better normalized 

solution quality than all EBB-BC variants for both benchmark problems. This demonstrates 

the effectiveness of the self-adaptive parameter tuning mechanism in enhancing the 

algorithm's performance across different problem types. 

The improved performance of SA-EVPS can be attributed to several factors: 

1. The self-adaptive parameter tuning mechanism eliminates the need for manual 

parameter tuning and adapts the algorithm parameters to the specific characteristics 

of each problem. 

2. The optimized parameters enhance the algorithm's ability to balance exploration and 

exploitation, leading to more effective search behavior. 

3. The improved search strategy allows the algorithm to escape local optima more 

effectively, resulting in better final solutions. 

4. The combination of self-adaptive parameters and the EVPS algorithm's inherent 

strengths creates a powerful optimization tool that can handle complex structural 

optimization problems. 
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The results also indicate that the SA-EVPS algorithm is more effective for the 

ISCSO_2018 problem (which involves both sizing and shape optimization) than for the 

ISCSO_2021 problem (which involves only sizing optimization). This suggests that the 

algorithm's adaptive capabilities are particularly valuable for problems with mixed types of 

design variables and more complex solution spaces. 

It is worth noting that while SA-EVPS significantly outperforms the EBB-BC variants, it 

still does not match the solutions obtained by the winners of the ISCSO competition. This 

indicates that there remains room for further improvement in metaheuristic algorithms for 

structural optimization, possibly through hybridization with other techniques or the 

incorporation of problem-specific knowledge. 

 

 

5. CONCLUSION 

This paper introduced a Self-Adaptive Enhanced Vibrating Particle System (SA-EVPS) 

algorithm for structural optimization problems. The algorithm addresses the parameter 

tuning challenge by automatically optimizing algorithm parameters for each specific 

problem, eliminating the need for manual tuning and enhancing the algorithm's adaptive 

capabilities. 

The proposed SA-EVPS algorithm was applied to two challenging benchmark problems 

from the International Student Competition in Structural Optimization (ISCSO): the 314-

member truss structure (ISCSO_2018) and the 345-member dome truss structure 

(ISCSO_2021). Its performance was compared with three variants of the Exponential Big 

Bang-Big Crunch (EBB-BC) algorithm. 

 

The main findings and contributions of this study can be summarized as follows: 

 

1. The SA-EVPS algorithm achieved significant improvements in solution quality 

compared to the EBB-BC variants, with weight reductions of 7.75% for 

ISCSO_2018 and 2.42% for ISCSO_2021. 

2. The algorithm demonstrated superior consistency across multiple independent runs, 

with coefficients of variation of 3.13% and 1.21% for ISCSO_2018 and 

ISCSO_2021, respectively, compared to 11.8-12.7% and 2.4-4.2% for the EBB-BC 

variants. 

3. The convergence behavior of SA-EVPS was faster and more efficient than that of 

the EBB-BC variants, highlighting the effectiveness of the self-adaptive parameter 

tuning mechanism. 

4. The normalized solution quality of SA-EVPS was higher than all EBB-BC variants 

for both benchmark problems, indicating its superior overall performance. 

These results demonstrate that the self-adaptive approach to parameter tuning can 

significantly enhance the performance of metaheuristic algorithms for structural 

optimization. By automatically adapting algorithm parameters to the specific characteristics 

of each problem, SA-EVPS achieves better solution quality, faster convergence, and 

improved consistency compared to algorithms with fixed parameters. 
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Future research directions include: 

1. Extending the SA-EVPS algorithm to handle multi-objective optimization problems, 

where multiple competing objectives must be optimized simultaneously. 

2. Incorporating additional adaptation mechanisms to further enhance the algorithm's 

performance for different problem types. 

3. Hybridizing SA-EVPS with other metaheuristic algorithms or local search 

techniques to combine their respective strengths. 

4. Applying SA-EVPS to other challenging structural optimization problems, including 

those with dynamic loads, nonlinear behavior, or discrete design variables. 

5. Investigating the algorithm's performance on larger-scale problems with thousands 

of design variables, which are increasingly common in practical engineering 

applications. 

The proposed SA-EVPS algorithm represents a significant step forward in the 

development of efficient and effective metaheuristic algorithms for structural optimization. 

Its self-adaptive nature makes it a promising tool for solving complex engineering design 

problems without the need for extensive parameter tuning or expert knowledge. 

 

 

REFERENCES 
 

1. Lagaros N. D. The environmental and economic impact of structural optimization. Struct 

Multidiscip Optim. 2018; 58:1751–68.  

2. Stolpe M. Truss optimization with discrete design variables: a critical review. Struct 

Multidiscip Optim. 2016; 53:349–74.  

3. Kicinger R., Arciszewski T., De Jong K. Evolutionary computation and structural 

design: A survey of the state-of-the-art. Comput Struct. 2005; 83(23-24):1943–78.  

4. Lamberti L., Pappalettere C. Metaheuristic design optimization of skeletal structures: A 

review. Comput Technol Rev. 2011; 4:1–32.  

5. Kashani A. R., Camp C. V., Rostamian M., Azizi K., Gandomi A. H. Population-based 

optimization in structural engineering: a review. Artif Intell Rev. 2022; 55:345–452.  

6. Lee K. S., Geem Z. W. A new structural optimization method based on the harmony 

search algorithm. Comput Struct. 2004; 82(9-10):781–98.  

7. Camp C. V. Design of space trusses using Big Bang-Big Crunch optimization. J Struct 

Eng ASCE. 2007; 133:999–1008.  

8. Perez R. E., Behdinan K. Particle swarm approach for structural design optimization. 

Comput Struct. 2007; 85(19-20):1579–88.  

9. Li L. J., Huang Z. B., Liu F. A heuristic particle swarm optimization method for truss 

structures with discrete variables. Comput Struct. 2009; 87:435–43.  

10. Kaveh A., Talatahari S. A charged system search with a fly to boundary method for 

discrete optimum design of truss structures. Asian J Civ Eng. 2010; 11:277–93.  

11. Kaveh A., Mahdavi V. R. Colliding bodies optimization: a novel meta-heuristic method. 

Comput Struct. 2014; 139:18–27.  



A SELF-ADAPTIVE ENHANCED VIBRATING PARTICLE SYSTEM … 

 
129 

12. Kaveh A., Rahami H. Analysis, design and optimization of structures using force 

method and genetic algorithm. Int J Numer Methods Eng. 2006; 65(10):1570–84.  

13. Garcia S., Molina D., Lozano M., Herrera F. A study on the use of non-parametric tests 

for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 

Special Session on Real Parameter Optimization. J Heuristics. 2009; 15:617–44.  

14. Kaveh A., Talatahari S. A charged system search with a fly to boundary method for 

discrete optimum design of truss structures. Asian J Civ Eng. 2010; 11:277–93.  

15. Kaveh A., Mahdavi V. R. Colliding bodies optimization: a novel meta-heuristic method. 

Comput Struct. 2014; 139:18–27.  

16. Erol O. K., Eksin I. A new optimization method: big bang-big crunch. Adv Eng Softw. 

2006; 37:106–11.  

17. Rao R. V., Savsani V. J., Vakharia D. Teaching-learning-based optimization: a novel 

method for constrained mechanical design optimization problems. Comput Aided Des. 

2011; 43(3):303–15.  

18. Kaur A., Kumar Y. A new metaheuristic algorithm based on water wave optimization 

for data clustering. Evol Intell. 2022; 15(1):759–83.  

19. Mirjalili S. SCA: A sine cosine algorithm for solving optimization problems. Knowl 

Based Syst. 2016; 96:120–33.  

20. Jalili S., Kashan A. H., Hosseinzadeh Y. League championship algorithms for optimum 

design of pin-jointed structures. J Comput Civ Eng. 2016; 31(2):04016048.  

21. Bechikh S., Chaabani A., Said L. B. An efficient chemical reaction optimization 

algorithm for multiobjective optimization. IEEE Trans Cybern. 2014; 45(10):2051–64.  

22. Kaveh A., Zolghadr A. A novel meta-heuristic algorithm: tug of war optimization. Int J 

Optim Civ Eng. 2016; 6(4):469–92.  

23. Kaveh A., Bakhshpoori T. An accelerated water evaporation optimization formulation 

for discrete optimization of skeletal structures. Comput Struct. 2016; 177:218–28.  

24. Shabani A., Asgarian B., Salido M., Gharebaghi S. A. Search and rescue optimization 

algorithm: A new optimization method for solving constrained engineering optimization 

problems. Expert Syst Appl. 2020; 161:113698.  

25. Alimoradi A., Foley C. M., Pezeshk S. Benchmark problems in structural design and 

performance optimization: Past, present, and future-Part I. Struct Congr ASCE. 2010; 

455–66.  

26. Molina D., LaTorre A., Herrera F. An insight into bio-inspired and evolutionary 

algorithms for global optimization: review, analysis, and lessons learnt over a decade of 

competitions. Cogn Comput. 2018; 10:517–44.  

27. Lagaros N. D., Plevris V., Kallioras N. A. The mosaic of metaheuristic algorithms in 

structural optimization. Arch Comput Methods Eng. 2022; 29:5457–92.  

28. Cohn M. Z., Dinovitzer A. S. Application of structural optimization. J Struct Eng ASCE. 

1994; 120(2):617–50.  

29. Cohn M. Z. Theory and practice of structural optimization. In: Rozvany G. I. N., ed. 

Optim Large Struct Syst. NATO ASI Ser. 1993; 231.  

30. Kazemzadeh Azad S., Kazemzadeh Azad S., Hasançebi O. Structural optimization 

problems of the ISCSO 2011-2015: A test set. Int J Optim Civ Eng. 2016; 6(4):629–38.  

31. Kazemzadeh Azad S., Kazemzadeh Azad S. A standard benchmarking suite for 

structural optimization algorithms: ISCSO 2016-2022. Structures. 2023; 58:105409.  



M. Paknahd, P. Hosseini, A. Kaveh, and S.J.S. Hakim 

 
130 

32. Albert B. A., Zhang A. Q. SpartaPlex: A deterministic algorithm with linear scalability 

for massively parallel global optimization of very large-scale problems. Adv Eng Softw. 

2022; 166:103090.  

33. Etaati B., Dehkordi A. A., Sadollah A., El-Abd M., Neshat M. A comparative state-of-

the-art constrained metaheuristics framework for truss optimisation on shape and sizing. 

Math Probl Eng. 2022; 2022:6078986.  

34. Dehkordi A. A., Etaati B., Neshat M., Mirjalili S. Adaptive chaotic marine predators hill 

climbing algorithm for large-scale design optimizations. IEEE Access. 2023; 11:39269–

94.  

35. Kaveh A., Biabani Hamedani K. Improved arithmetic optimization algorithm and its 

application to discrete structural optimization. Structures. 2022; 35:748–64. 

36. Kaveh A., Ilchi Ghazaan M. Vibrating particles system algorithm for truss optimization 

with multiple natural frequency constraints. Acta Mech. 2017; 228(1):307–22.  

37. Kaveh A., Hoseini Vaez S. R., Hosseini P. MATLAB code for an enhanced vibrating 

particles system algorithm. Int J Optim Civ Eng. 2018; 8(3):401–14.  

38. Kaveh A., Hoseini Vaez S. R., Hosseini P., Fathali M. A. A new two-phase method for 

damage detection in skeletal structures. Iran J Sci Technol Trans Civ Eng. 2019; 

43(1):49–65.  

39. Hoseini Vaez S. R., Mehanpour H., Fathali M. A. Reliability assessment of truss 

structures with natural frequency constraints using metaheuristic algorithms. J Build 

Eng. 2020; 28:101065.  

40. Kaveh A., Hoseini Vaez S. R., Hosseini P., Bakhtiari M. Optimal design of steel curved 

roof frames by enhanced vibrating particles system algorithm. Period Polytech Civ Eng. 

2019; 63(4):947–60.  

41. Paknahad M., Hosseini P., Hakim S. J. S. SA-EVPS algorithm for discrete size 

optimization of the 582-bar spatial truss structure. Int J Optim Civ Eng. 2023; 

13(2):207–17.  

42. Paknahad M., Hosseini P., Kaveh A. A self-adaptive enhanced vibrating particle system 

algorithm for continuous optimization problems. Int J Optim Civ Eng. 2023; 13(1):127–

42.  

43. Hosseini P., Kaveh A., Fathali M. A., Hoseini Vaez S. R. A two-loop RBDO approach 

for steel frame structures using EVPS, GWO, and Monte Carlo simulation. Mech Adv 

Mater Struct. 2024; 32(4):605–24.  

44. Hosseini P., Kaveh A., Hoseini Vaez S. R. The optimization of large-scale dome trusses 

on the basis of the probability of failure. Int J Optim Civ Eng. 2022; 12(3):457–75.  

45. Hasançebi O., Kazemzadeh Azad S. An exponential big bang-big crunch algorithm for 

discrete design optimization of steel frames. Comput Struct. 2012. 110–111:167–79.  

46. American Institute of Steel Construction (AISC). Manual of Steel Construction, Load & 

Resistance Factor Design. 2nd ed. Chicago; 1994. 


	ABSTRACT
	1. Introduction
	2. Self-Adaptive Enhanced Vibrating Particle System Algorithm
	2.1 Enhanced Vibrating Particle System (EVPS) Algorithm
	2.2 Self-Adaptive Mechanism
	3. Problem Formulation and ISCSO Benchmark Problems

	3.1 General Structural Optimization Problem Formulation
	3.2 ISCSO_2018 Benchmark Problem
	3.3 ISCSO_2021 Benchmark Problem
	4. Results and Discussion

	4.1 Implementation Details
	4.2 Results for ISCSO_2018
	4.3 Results for ISCSO_2021
	4.4 Comparison and Discussion
	5. Conclusion
	References


