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ABSTRACT 
 

Clustering is a well-known solution to deal with complex database features as an unsupervised 

machine learning technique. One of its practical applications is the selection of non-similar 

earthquakes for consequent analysis of structural models. In the present work, appropriate 

clustering of seismic data is searched via optimization. Silhouette value is penalized and used 

to define the performance objective. A stochastic search algorithm is combined with a greedy 

search to solve the problem for distinct sets of near–field and far-field ground motion records. 

The concept of coherency is borrowed from optics to propose a coherency metric for 

earthquake signals before and after being filtered by structural models. It is then evaluated for 

various cases of structural response-to-record and response-to-response comparisons. 

According to the results the proposed coherency detection procedure performs well; 

confirmed by distinguished structural response spectra between different clusters. 
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1. INTRODUCTION 
 

As an interdisciplinary field, data mining brings together the techniques from machine 

learning, pattern recognition, statistics, databases and visualization to address the issue of 

information extraction from large data bases. Some major tasks that data mining is usually 

called upon to accomplish, are: description, estimation, prediction, classification, clustering 

and association [1].  

Clustering is the task of partitioning the database into some groups (clusters) such that the 

entities are very similar within every cluster, but as dissimilar as possible to those of the others. 
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Depending on the data and desired cluster characteristics, there are different types of 

clustering paradigms such as representative-based, hierarchical, density-based, graph-based, 

and spectral clustering [2]. Representative-based clustering aims at finding a set of K 

representatives that best characterize a dataset [3]. It includes the well-known K-means as a 

greedy algorithm that minimizes the error on entity distances from their respective cluster 

centers. A good clustering leads to the best value of a desired measure; therefore, it can be 

considered as an optimization task [4].  

In the seismic design that employs time-history analysis, it is crucial to obtain an 

appropriate set of ground motion records for an accurate estimation of the dynamic structural 

responses under the given hazard level at the construction site.  Availability of online digital 

databases of earthquakes has increased accessibility to real-world ground motions; however, 

depending on the recording station, earthquake magnitude, faulting type, soil condition, strong 

pulse duration and source-to-site distance; the ground motion records can have very different 

spectral characteristics. In order to take the seismic hazard of the site into account, one has to 

obtain ground motions that best comply with a specific hazard scenario for that region as 

specified by the design code.   

A number of investigators have addressed optimal selection or scaling of ground motion 

records so that their mean spectrum best matches a given design target within a period range 

of interest [5–7]. In practice, the aforementioned attempts do not offer more than a record set. 

The matter is concerned here via optimal clustering of the records; resulting in more than one 

option in selecting earthquakes from each of the clusters. 

The present work utilizes a hybrid optimizer framework for clustering on two distinct sets 

of data. First, the earthquake records with geotechnical and seismic attributes and second the 

structural responses generated via nonlinear analyses under such records. Furthermore, a 

coherency measure is offered and applied for the optimal clusters in distinct cases of structural 

response-to-record and response-to-response comparisons. The proposed method is evaluated 

on a number of moment frame examples; followed by the discussion of the results.  

 

 

2. PROBLEM DEFINITION 

 

One of the most popular indices for clustering desirability is the silhouette value. It is a 

measure of how similar an object is to its own cluster in comparison with the other clusters. 

The silhouette value ranges from -1 to 1, where higher values show better matching of the 

entity to its own cluster rather and -1 counts vice versa. It is defined for any ith entity by 

Eq. (1). 

 

( )
1 ( ) ( )

( )

( )
( ) 1 ( ) ( )

( )

0

a i
if a i b i

b i

b i
s i if a i b i

a i

otherwise


− 




= − 





 (1) 



A COHERENCY METRIC TO COMPARE OPTIMALLY CLUSTERED … 

 

41 

 

For each datum 𝑖, 𝑎 (𝑖), is the average dissimilarity of 𝑖 with all other data within the same 

cluster. The smaller value of 𝑎 (𝑖), the better the assignment is. Furthermore, 𝑏 (𝑖) is the lowest 

average dissimilarity of 𝑖  to any other cluster, of which the ith entity is not a member.  

In order to seek the best clustering; a fitness function is defined based on sum of mean 

silhouette values over all clusters of the database. The optimization problem is formulated as: 
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in which, 𝑁𝑖  is the number of objects in the 𝑖𝑡ℎ  cluster. Total number of entities; i.e. 

number of rows in the data matrix is denoted by 𝑁𝑒. An integer number between 1 and K 

can be assigned to each component of the design vector X; where K stands for the 

prescribed number of clusters [8]. 

 

 

3. THE CLUSTERING FRAMEWORK 

 

Several clustering solutions have already been introduced by investigators [2,9,10]. They 

can be categories into hard computing or soft computing approaches. The former can 

locally reveal a specific solution depending on its starting point while the latter includes 

some fuzzy or stochastic operators for better global search [11–13]. Consequently, a 

hybrid solution will be of interest to integrate the aforementioned approaches and get 

merits of both in the efficiency and the effectiveness. 

A hybrid framework is introduced here including a meta-heuristic algorithm in the class 

of soft computing and a greedy algorithm as a local search engine. It is further employed 

to derive optimal clusters not only for the seismic-excitation signals but also for 

consequent structural responses to observe the effect of such a filtering. Details of the 

algorithms are briefed as follows.  

 
3.1 Deterministic solution for local search  

As a deterministic solution; the K-Means algorithm, KM, is concerned here. KM assigns 

entities in the given data to K clusters provided that each cluster is identified by location of 

its centroid and radius. It performs hard clustering as each point is assigned to only one cluster. 

In addition, KM can generate convex-shaped clusters. 

KM procedure is initiated with K randomly positioned centers. Then, every jth entity: 𝑥𝑗 is 

associated with the nearest centroid 𝜇𝑖∗ . 
2
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Such a subroutine is repeated until no entity remains outside the K clusters; provided that no 
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cluster is empty at the same time. The next step is updating the centroid positions by averaging 

new positions of the entities within each cluster. 

1
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
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The clustering assignment and centroid updating steps are repeated alternately until 

convergence criterion is met; i.e. no further significant change (more than a given error: 𝜖′) in 

center locations is observed. Such an iterative procedure aims to minimize the following SSE 

score: 
2
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Figure 1: Pseudo-code for the employed KM subroutine 

 

3.2 Stochastic solution and the hybrid framework 

Colliding Bodies Optimization, CBO, is a popular meta-heuristic algorithm with several 

engineering applications [14–18]. According to CBO analogy, a body is a candidate solution 

or a design vector. Such bodies are subdivided into stationary and moving ones based on their 

fitness. Moving bodies collide with the stationary ones and their velocities are updated using 

mechanical laws of momentum conservation and energy absorption. A hybrid Enhanced 

Colliding Bodies Optimization [19] and K-means [8] has been introduced that uses an auxiliary 

memory of the elite bodies during its search and takes benefit of KM via a re-initiation 

subroutine. Such a hybrid framework (ECBO-KM) is utilized for the current optimal 

clustering using the following steps.  

1) Initiation: Randomly generate a population of n colliding bodies within the design variable 

range. In the present clustering problem, each variable is an integer number between 1 

and 𝐾. The function rand generates a random floating-point value between 0 and 1. 
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( )( )1 1  ijx round rand K= +  −  (6) 

2) Mass calculation: For every 𝑖𝑡ℎ colliding body,  CBk  calculate its mass after fitness 

evaluation of the entire population: 
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3) Collision: Half of the population members are denoted as moving CB’s. They move 

toward stationary ones that have zero velocities (the fitter half CB’s after sorting the 

population). 
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In this stage, velocity of every moving CB is determined by: 
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4) Update the coefficient of restitution by 
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In which 𝜀 stands for the coefficient of restitution, COR. It determines the ratio of relative 

velocity between CB’s after collision to such a relative velocity, before collision. 

5) Velocity update: After collision, new velocities of colliding bodies are updated due to the 

Eq. (11)-(12): 
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6) Update position of CB’s after collision: 

( )( )( )'max 1,min ,  .   ,     1, ,    new

i i ix K round x rand v i n= + =   (13) 
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7) Update the Colliding Memory: This auxiliary memory is updated by sorting and saving 

CMS number of best-so-far solutions that are already found, up to the current iteration. 

They are then replaced by the worst CB’s in the current population. 

8) Mutation: Each 𝑗th design variable is regenerated by Eq.6. as soon as a random number 

falls below the prescribed threshold 𝑃𝑚. 

9) Repeat the steps 2~8 for the iteration numbers:1 to 𝑁𝐾𝑀𝑆. 

10) Re-initiate the population by calling the KM algorithm as the subroutine. KM takes the 

current population as input and gives its best resulted clustering as the updated population 

11) Repeat the steps 2~8 for the iteration numbers: 𝑁𝐾𝑀𝑆 + 1 to 𝑁𝑚𝑎𝑥𝐼𝑡𝑒𝑟 . 

Note that according to the problem formulation, each component of the design vector in Eq.13 

should be rounded to a cluster number between 1 and K. 

 

 

4. NUMERICAL SIMULATION 
 

4.1 Optimal clustering of earthquakes due to ground motion characteristics 

Entities of the data matrix for clustering are distinguished by differences in their attributes. 

The number of columns in the data matrix depends on the considered attributes while its rows 

are limited to 𝑁𝑒; i.e. the number of available earthquake records. Cardinality of the entire 

search space is dominated by various ways of assigning entities into the specified number of 

clusters; K. 

There are several ground shaking characteristics to reflect source, path, and site effects. 

Some important attributes are selected here including:  earthquake magnitude, mean shear 

wave velocity in the uppermost 30 meters depth of the soil, epicenter-to-site distance, Peak 

Ground Displacement, PGD and Peak Ground Velocity, PGV, Housner Spectral Intensity, 

Arias Intensity, fault mechanism and effective time duration of the record. The significant 

method is used for determining effective duration of earthquakes [20]. In addition, Arias 

Intensity and Housner Intensity measures are considered as the attributes related to the energy 

of the records. All the accelerograms are scaled to PGA of 0.35g prior to further spectral 

analysis.  

In the present study, 100 earthquakes with magnitude of at least 5 Richter are employed; 

half of which being Near-Field (NF) records with epicentral distances not exceeding 20 

kilometers. The other 50 earthquakes are labeled as Far-Field (FF) records to form the second 

record matrix. Every such Earthquake Record Matrix, ERM, is distinctly clustered by KM 

and ECBO-KM algorithms.  
 

Table 1: Control parameters of the hybrid clustering framework 

N CMS Pm NKMS NMaxIter 

20 7 0.25
 

1000 1500 

 



A COHERENCY METRIC TO COMPARE OPTIMALLY CLUSTERED … 

 

45 

 
Figure 2: Silhouette plots for partitioning the NF earthquakes into 10 clusters 

 

Clustering is performed for different cases of K=4 to K=11. ECBO-KM is run several 

times; for which Table 1 gives the successive control parameters. In each case, KM algorithm 

is run with the same population size as ECBO-KM  to have a fair comparison [21,22]. 

The best results of KM and ECBO-KM are compared for different number of clusters in 

Table 2. For both NF and FF data groups, the best fitness and silhouette-sum by KM is 

generally less than ECBO-KM. The matter is highlighted for larger K values.  

It is evident in the sample plots of Fig.2 and Fig.3 that KM has not been successful in 

avoiding negative silhouette values while ECBO-KM has resulted in considerably more 

desirable results. Note that, a proper clustering corresponds to higher silhouette values (closer 

to +1) and vice versa. Best achieved fitness results of Table 2 shows that such a non-

deterministic search has been more successful than deterministic KM in overpassing local 

optima toward global optimum. In another word, the global search capability has been 

enhanced by hybridizing KM within ECBO.   
 

Table 2: The best achieved fitness in clustering of earthquakes 

K 
Earthquake 

Field 
KM ECBO-KM  

4 
NF 0.6296 0.7457 

FF 0.5013 0.5268 

5 
NF 0.6546 0.6923 

FF 0.4968 0.5816 

6 
NF 0.6651 0.6549 

FF 0.5419 0.5449 

7 
NF 0.6331 0.6902 

FF 0.5772 0.6018 

8 
NF 0.6513 0.6908 

FF 0.5821 0.6245 

9 
NF 0.6133 0.6662 

FF 0.5932 0.6208 

10 
NF 0.6315 0.6898 

FF 0.5816 0.6244 

11 
NF 0.6154 0.6941 

FF 0.6149 0.6159 
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Table 3: Properties of the 3-bay 3-story moment frame (3ST model) 

Story Beam Sections Column Sections 

1 to 3 HEB240 IPE300 

 

Table 4: Properties of the 3-bay 9-story moment frame (9ST model) 

Story Beam Sections Column Sections 

1 HEB340 IPE360 

2 to 5 HEB340 IPE400 

6, 7 HEB320 IPE360 

8, 9 HEB300 IPE330 

 

 

 
Figure 3: Silhouette plots for partitioning the FF earthquakes into 10 clusters 

 

Table 5: Properties of the 3-bay 15-story moment frame (15ST model) 

Story Beam Sections Column Sections 

1 HEB500 IPE300 

2, 3 HEB500 IPE400 

4, 5 HEB500 IPE450 

6, 7 HEB450 IPE400 

8 to 12 HEB400 IPE400 

13, 14 HEB400 IPE360 

15 HEB400 IPE330 

 

4.2 Optimal clustering of earthquakes due to structural responses 

Another way of clustering earthquakes is to distinguish their similarities or differences after 

they are filtered by structural models; that is clustering of consequent responses. In the present 

study, NF and FF group of acceleration records are first normalized to 0.35g and then 
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distinctly applied to a number of literature examples. These are moment frames designed for 

PGA=0.35g and soil class B at the construction site according to EC8 [23]. The structural 

profiles of the 3 story, 9 story and 15 story frames are reported in Tables 3 to 5, respectively. 

Each of the frames has 3 bays. They are here-in-after denoted by 3ST, 9ST and 15ST models, 

respectively. Material property is fixed to the constructional steel with the yield stress of 

235MPa. Identical uniform load of 27.5kN/m is applied on every frame beams. 

Columns are rigidly connected to beams. Taking into account that the structure is inelastic, 

the damping matrix changes with the stiffness variation during the time history analysis.  In 

this regard, a Rayleigh damping of 5% is utilized for the first and the last modes of vibration. 

Dynamic nonlinear time-history analyses are applied by distributed plasticity element in 

OpenSees software using the constant acceleration method for the numerical integration [24]. 

For each case of clustering, a data matrix called Structural Response Matrix, SRM, is 

provided that reflects seismic characteristics of the treated frames. It includes the following 

attributes: 

I) Weighted average of the maximal story drift, story displacement and column stress 

responses over time-points of the non-linear analysis when story masses are taken the 

averaging weights: 
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 𝑁 indicates the number of stories while 𝑀𝑖 and 𝐶𝑟𝑖  denote the mass and the maximum 

column stress ratios in the  𝑖𝑡ℎ story, respectively. 𝐷𝑆𝑖  and 𝐷𝐹𝑖 are the corresponding maximal 

displacement and drift ratios.  

 

II) Simple mean of the maximal story drift, displacement and column stresses during the 

nonlinear analysis: 
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III) Maximum structural responses among all stories over time, derived by time-history 

analysis: 

 max  III
t

D Roof Displacement=  (20) 

ΙΙI max
t

r rD D=  (21) 

ΙΙI max   i
t

R Cr=  (22) 

Maximum resulted base shear during nonlinear dynamic analysis is considered as the last 

attribute in the SRM. Therefore, in each case of near-field or far-field earthquakes, for each 

frame model, such a matrix is constructed by 𝑁𝑒 = 50 rows and 10 columns.  

After performing non-linear dynamic analyses, the corresponding SRM’s are generated for 

further clustering.  

Table 6 gives the results of all 48 cases of clustering by KM and ECBO-KM.  The results 

of optimal clustering on several SRM’s, confirm superior performance of ECBO-KM over 

KM algorithm. 

 

 

5. COHERENCY MEASUREMENT  
 

Time-history records of strong ground motion have the role of input signals to the structural 

system and carry special information of the corresponding earthquake. Such seismic signals 

are filtered by the structure to derive consequent responses. Analogous to light rays in optics, 

the earthquake signals may be coherent or incoherent to each other. Clustering provides a 

mathematical tool to derive coherency between such seismic signals, before or after being 

filtered by the structural model.  

Once earthquake records and consequent structural responses are clustered, some further 

issues arise to be investigated. For example: how much coherency of clusters is preserved 

before and after structural analysis and which degree of similarity remains between the seismic 

clusters filtered by different structures under similar earthquake excitations. The matter 

necessitates deriving a metric for record-to-response and response-to-response coherency 

measurements. The present work attempts to derive such a metric, via the following steps: 
- Determine two case of clustering A and B for which the coherency is to be measured. For 

example, B may indicate the clustering of FF records where A can be clustering of the 

corresponding seismic responses in the specific model. Run the proposed hybrid 

framework to obtain K clusters of each case as: 

   1 1, , ,... .. ,.,A A B B

K KA C C B C C= =  (23) 

- Form the matrix T so that every its component 𝑇𝑖𝑗 is defined as the number of identical 

entities (earthquakes) between 𝐶𝑖
𝐴 and 𝐶𝑗

𝐵.  

- Re-arrange T so that for every its column the maximum-value component falls on the 

diagonal. 
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Table 6: The best fitness in clustering of the structural responses under NF and FF seismic excitations 

ECBO-KM  KM 

Structural  

Model 

Earthquake’s 
field 

Number of clusters  

Fitness 

 

Fitness 

0.7649 0.7635 3ST 

NF 

4 

0.7965 0.7307 9ST 

0.7482 0.7310 15ST 

0.803 0.7854 3ST 

FF 0.7967 0.7967 9ST 

0.7526 0.7197 15ST 

0.8043 0.7028 3ST 

NF 

5 

0.7628 0.7653 9ST 

0.7375 0.7375 15ST 

0.7960 0.7673 3ST 

FF 0.7753 0.7714 9ST 

0.7332 0.7332 15ST 

0.7688 0.7052 3ST 

NF 

6 

0.7606 0.7389 9ST 

0.7691 0.7691 15ST 

0.8052 0.7602 3ST 

FF 0.7602 0.7265 9ST 

0.7507 0.6761 15ST 

0.7928 0.6761 3ST 

NF 

7 

0.7596 0.7476 9ST 

0.7458 0.7746 15ST 

0.7945 0.7705 3ST 

FF 0.7454 0.7361 9ST 

0.7406 0.6984 15ST 

0.7785 0.6879 3ST 

NF 

8 

0.7727 0.7048 9ST 

0.7689 0.7232 15ST 

0.8251 0.7803 3ST 

FF 0.7682 0.7441 9ST 

0.7707 0.6687 15ST 

0.692 0.6745 3ST 

NF 

9 

0.7785 0.729 9ST 

0.7788 0.7595 15ST 

0.8264 0.8003 3ST 

FF 0.7474 0.7306 9ST 

0.7606 0.7377 15ST 

0.7072 0.6709 3ST 

NF 

10 

0.7663 0.6874 9ST 

0.7591 0.7547 15ST 

0.8362 0.7718 3ST 

FF 0.7539 0.7567 9ST 

0.7773 0.765 15ST 

0.7117 0.6990 3ST 

NF 

11 

0.7416 0.6702 9ST 

0.819 0.8010 15ST 

0.8413 0.8043 3ST 

FF 0.7538 0.7649 9ST 

0.7843 0.7734 15ST 
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- If 𝑇𝑖𝑗  is not the greatest value among its row and column, it is inevitably be substituted with 

zero. Eliminate off-diagonal components of such a Coherency Matrix, CM. 

- Calculate the Coherency Index between A and B as: 

1

K

ii

i

e

CM

CI
N

==


 
(24) 

 

Tables 7 and 8 report structural responses-to-record CI for near-field and far-field ERM’s, 

respectively. These constitute 48 independent comparison cases; for which the corresponding 

CI has fallen below 50%.  

Among all 48 cases, one is sampled for illustrative purposes; that is the case of K=7 when 

A denotes seismic-response clustering of the 15ST model and B corresponds to the NF set of 

excitations. The resulted pattern of CM is like Fig.4 while the corresponding clusters with 

similar earthquakes, are reported in Table 9. It is evident that there are some 𝐶𝑖
𝐴 and 𝐶𝑗

𝐵  that 

do not have any identical earthquake; i.e. they are completely incoherent to each other. 
 

Table 7: Response-to-record CI by ECBO-KM clustering between structural responses and NF records 

 
 

 A  

K 3ST 9ST 15ST 

4 

 

40% 50% 44% 

5 48% 38% 38% 

6 44% 40% 38% 

7 B  36% 38% 46% 

8  36% 40% 42% 

9  34% 40% 36% 

10  34% 34% 38% 

11  32% 40% 40% 

 

Table 8: Response-to-record CI by ECBO-KM clustering between structural responses and FF records 

 
 

 A  

K 3ST 9ST 15ST 

4 

 

50% 40% 40% 

5 36% 30% 38% 

6 36% 36% 46% 

7 B  32% 38% 42% 

8  34% 42% 44% 

9  38% 40% 42% 

10  36% 42% 42% 

11  28% 38% 44% 



A COHERENCY METRIC TO COMPARE OPTIMALLY CLUSTERED … 

 

51 

 
Figure 4: Sample pattern of CM  

 

It can be realized that CI not only depends on the structural model and the field of 

earthquake records but also is affected by the number of clusters. For example, the 3ST model 

has its maximal response-to-record CI at K=5 in NF and K=4 in FF excitations. However, it 

is not the case for taller frame models; e.g. 15ST has its greatest CI at K of 6 and 7 under NF 

and FF seismic excitations, respectively. 

It can be noticed in Fig.5 that the spectral responses of different clusters are diffracted from 

each other. In another word, the entities in each cluster are coherent to each other but 

incoherent to the other entities in view of spectral responses. Such a phenomenon is 

highlighted for medium-to-high periods; especially in the velocity spectrum which is related 

to the input energy of the record. The matter confirms that records in different clusters appear 

in incoherent spectral levels after being filtered via non-linear structural analyses. Moreover, 

such a diffraction agrees with the proposed A-to-B coherency pattern. In practical point of 

view, such a coherency picture acts as a guide for selecting one of the coherent earthquake 

records as representative of that cluster when providing the input set of records. It is a need 

for further seismic analysis and design. 

Fig. 6 reveals comparison of CI metric for 24 structural response-to-record cases under 

near-field records. It can be noticed that response-to-response CI values have generally been 

higher than response-to-record ones for each structural model. For the case of far-filed (FF) 

excitation, CI values are given in Fig.7. Comparison of results in Fig.6 with those in Fig.7 

declares that response-to-response CI has generally experienced greater variation under FF 

excitation than NF for a fixed K. In the case of 9 clusters under NF excitation; e.g. CI has been 

obtained 44%, 34% and 38% for 3ST-to-9ST, 3ST-to-15ST and 9ST-to-15ST pairs, 

respectively. For FF excitation; however, the corresponding CI values have been changed to 

32%, 28% and 60%. The maximum CI of 62% has occurred between response clusters of the 

3ST and 9ST models under FF excitation when K is 4. Range of CI variation is 34~40% for 

NF excitation; that is considerably lower than 24~62% for FF set of records. 

It is also declared that of 3ST-to-15ST is generally lower than the other two cases. 

However, for FF excitation and K=5 there is an exception with minor difference in CI of 3ST-

to-15ST with respect to 9ST-to-15ST. It is also noticeable that the number of K cases that CI 

of the 9ST-to-15ST considerably overrides the other two, has increased under the FF 

excitation with respect to NF.   
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Table 9: Sample A-to-B similar clustered earthquakes in deriving CM for K=7, 15ST frame  

Cluster 

ID 
Earthquake ID 

A B 

Silhouette 

A
v

er
ag

e 

Silhouette 

A
v

er
ag

e 

1 

San Fernando-Lake Hughes #12 0.2586 

0
.6

1
3
 

 

0.2586 

0
.6

6
7
 

 

San Francisco-Golden Gate 

Park 
1 1 

Norcia, Italy- Spoleto 0.8501 0.8501 

HelenaMontana-01-Carroll 

College 
0.4537 0.4537 

Chi-ChiTaiwan-03-TCU073 0.5478 0.5478 

Dursunbey, Turkey-Dursunbey 0.5782 0.5782 

Mammoth Lakes01-Mammoth 

Lakes 
0.6233 0.6233 

Tottori Japan-OKY004 0.5906 0.5906 

2 

Imperial Valley-06-El Centro 

Array #1 
0.8657 

0
.6

9
4
 

0.8657 

0
.6

5
6
 

Imperial Valley-04-El Centro 

Array #9 
0.8848 0.8848 

ManaguaNicaragua-02-

ManaguaESSO 
0.3813 0.3813 

ManaguaNicaragua-01-

ManaguaESSO 
0.307 0.307 

Hollister-01-Hollister City Hall 0.87 0.87 

Imperial Valley-06-Chihuahua 0.8582 0.8582 

3 

DarfieldNew Zealand-DFHS) 0.7045 

0
.7

5
1
 

0.7045 
0

.8
1
7
 

Umbria Marche Italy-Bevagna 0.8065 0.8065 

Mammoth Lakes-02-Convict 

Creek 
0.8606 0.8606 

N. Palm Springs-Cabazon 0.7768 0.7768 

Chuetsu-oki Japan-Ojiya City 0.506 0.506 

Chuetsu-oki Japan_NIG019 0.8517 0.8517 

4 

San Simeon CA-San Antonio 

Dam - Toe 
0.9046 

0
.8

6
0
 

0.9046 

0
.9

2
5
 

Loma Prieta-Anderson Dam (L 
Abut) 

0.8453 0.8453 

Chuetsu-oki Japan-Tani 

Kozima Nagaoka 
0.8312 0.8312 

5 Lytle Creek-Devil's Canyon 0.472 

0
.4

7
2
 

0.939 

0
.9

3
9
 

6 - -  -  

7 - -  -  
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(a) (b) 

 
(c) 

Figure 5: Spectral responses of 15ST model in the 1st and 2nd clusters including (a) Sd , (b) Sv and (c) Sa. 

Incoherent entities are distinguished in different inks. 

 
 

 
Number of clusters (K) 

Figure 6: Response-to-response CI results for NF excitations after optimal clustering   
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Number of clusters (K) 

Figure 7: Response-to-response CI results for FF excitations after optimal clustering   

  

 

6. CONCLUSION 

 
The present work proposed a novel metric to take into account both the structural response 

and input excitation coherency. Two types of optimal clustering were studied: the first 

concerns earthquake attributes which address geotechnical and seismic data, while the second 

focuses on clustering of the resulting structural responses.  

Optimization was employed to provide uniqueness in clustering for better conclusion on 

coherency measurements. Since premature convergence to local optima was detected in 

application of KM algorithm, it was hybridized as a local search with a variant of CBO to 

maintain better search, within an optimal clustering framework. Numerical results show that 

the proposed hybrid method can provide proper search refinement toward global optima in 

both types of clustering on the earthquake records or on the seismic-responses, under either 

near-field or far-field excitations.  

CI for record-to-response cases, was generally obtained lower than for the case of response-

to-response coherency. In addition, structural height was found to have considerable effect on 

the latter case. The more difference in the height of the frame model, the more variation in CI 

was observed. 

As another issue, CI variation between far-filed and near-field earthquake records were 

studied. It was found that the second case generally causes more CI variation between various 

models and especially different K values. According to the present study, far-field records can 

lead to higher response-to-response coherency; compared with the corresponding cases for 

near-field excitation. Greater sensitivity of CI to the structural height and the number of 

clusters was observed for the far-field case. The proposed procedure was confirmed by 

observing incoherency of different clusters in spectral seismic responses. Such a difference 

was more in the velocity response spectra than the acceleration spectra. As a future scope of 

work, the proposed index can be evaluated on more structural systems in various types and 

richer database of seismic excitation. 
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