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ABSTRACT 
 

Earthquakes are random phenomena and there has been no report of similar earthquakes 

occurring worldwide. Therefore, traditional methods of designing buildings based on past 

earthquakes with inappropriate discontinuity joints are sometimes ineffective for vital 

structures. This may lead to collision and destruction of adjacent structures during a severe 

earthquake. As in the Iranian Standard No. 2800-4, this distance should be at least five-

thousandths of the building height from the base level to the adjacent ground boundary for 

buildings up to eight stories to prevent or reduce this damage. Also, for important or/with 

more than eight-story buildings, this value is determined using the maximum nonlinear 

lateral displacement of the structures by considering the effects of the P-delta. Also, if the 

properties of the adjacent building are not known, this distance should be considered at least 

equal to 70% of the maximum nonlinear lateral displacement of the structures. The main 

objective of this study is to investigate the adequacy of the discontinuity joint introduced in 

the Iranian Standard No. 2800-4 based on the critical excitation method. This method 

calculates critical earthquakes for three buildings (e.g., three-, seven- and eleven-story 

moment frames) by considering some constraints on the energy, peak ground acceleration, 

Fourier amplitude, and strong ground motion duration. The results indicate that the minimum 

gap between two adjacent buildings derived from the existing codes is lower than those 

calculated using the critical excitation method. Therefore, oscillation might occur if a structure is 

designed according to the seismic codes and subjected to a critical earthquake. 
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1. INTRODUCTION 
 

Seismic pounding between neighboring buildings is a significant concern in structural 

engineering, especially in earthquake-prone areas [1]. This issue happens when two 

buildings, which may react differently during seismic events, collide because they do not 

have enough space or separation. The consequences of seismic pounding can be severe, 

leading to structural damage, higher repair costs, and even catastrophic failures [1, 2]. 

Recent research has been dedicated to understanding how seismic pounding works, creating 

design guidelines, and finding ways to reduce its impact [1, 2]. Various studies have used 

advanced numerical simulations to analyze how adjacent buildings behave during 

earthquakes to delve deeper into this phenomenon. For example, using finite element 

analysis, Khatami et al. [2] utilized the rubber bumper to reduce the pounding effect 

between two adjacent isolated buildings. In essence, addressing the issue of seismic 

pounding is crucial for ensuring the safety and resilience of buildings in earthquake-prone 

regions. Ongoing research efforts are vital for improving design practices and developing 

innovative solutions that can effectively minimize the risks associated with this 

phenomenon. Santos et al. [3] studied a comparative analysis of various international 

seismic codes regarding their treatment of structural irregularities in elevation. They 

represented that these irregularities could enhance the seismic resilience of both new and 

existing buildings. Noman et al. [4] investigate the pounding effect for buildings with 

different heights in Pakistan, where these types of buildings are common. Therefore, 

pounding between these structures can lead to significant structural damage during 

earthquakes. From the above-mentioned sentences, the discontinuity joint is one of the most 

important aspects of building design to prevent damage and destruction caused by 

earthquakes. This distance between two adjacent buildings prevents them from colliding 

during an earthquake. Given the recent advances in earthquake engineering, new methods 

have been proposed to determine the discontinuity joint, which are more accurate and 

efficient than traditional methods [5].  

Optimization is a mathematical discipline that focuses on finding the best solution from a 

set of feasible solutions, often subject to various constraints [6-8]. It is crucial in numerous 

fields, including engineering, economics, logistics, and operations research. The primary 

goal of optimization is to maximize or minimize a particular objective function [6-8], which 

can represent costs, profits, efficiency, or other measurable factors. There are different 

optimization methods to solve the problems [9-11]. Metaheuristic algorithms are a class of 

optimization techniques that provide approximate solutions to complex optimization 

problems, especially for nonlinear problems with linear or nonlinear constraints. They are 

particularly useful when traditional optimization methods are impractical due to the 

problem's size or complexity [6-8]. 

The critical excitation method is a significant approach in earthquake engineering. This 

method is particularly focused on enhancing structures' seismic resistance by identifying the 

most severe earthquake scenarios that a structure might face. Therefore, it can help 

engineers design buildings that can effectively withstand such conditions [12].  

Takewaki et al. [13] focused on the unique characteristics of pulse-like ground motions that 

occur in near-field seismic events and their significant impacts on structural responses. They 

also investigated the effects of critical ground motion on the performance of inelastic single-
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degree-of-freedom structures during seismic events [13]. Recently, Kamgar and Rahgozar 

[14] utilized the critical excitation method to find the optimum location of the belt truss 

system in a tall building with a linear behavior. Khatibinia et al. [15] have also determined 

the optimal parameters of the tuned mass damper for a structure subjected to critical 

earthquakes. 

This paper studies the minimum required gap for a concrete moment frame with 

nonlinear behavior subjected to a critical earthquake. For this purpose, three concrete 

moment frames with three, seven, and eleven stories have been selected here. These 

structures are modeled utilizing the OpenSees software. Then, the critical earthquake for 

each building is computed. Since the critical earthquake depends on the dynamic 

characteristics of the structures, the considered constraints, and ..., therefore, one critical 

earthquake is computed for each structure. Finally, the minimum seismic gap is determined 

for the structures, and this value is also computed based on different codes and compared 

together.  

 

 

2. CRITICAL EARTHQUAKE FOR THE NONLINEAR FRAME 

STRUCTURES 
 

This section studies the required information to compute the critical earthquake for multiple 

degrees of freedom nonlinear structures. It is assumed that the ground motion can be shown 

by a product of the Fourier series and an envelope function as follows [14, 16]: 

 

 

where the 0 ,  iB R , 1 2  (,  ),  ,  and i i fi = 1,2,...,N     represent a scaling constant, 

unknown amplitudes, unknown phase angles, some different frequencies between 0.1 to 25 

Hz, which are selected to cover the frequency range in the ground acceleration, and two 

known parameters to apply the transient tendency seen in the ground motion, respectively. It 

was shown that it is better to select some frequencies similar to the natural frequencies of the 

structures [16]. Determination of iR and i  parameters so that the maximum roof 

displacement occurs during the earthquake is the main aim of computing the critical 

earthquake in this paper. The total duration of the structure is considered to be 30 sec. The 

constants 0 1 2,  , , and fB N   are also considered to be 2.17, 0.13, 0.5, and 60 respectively. 

This procedure has been handled here utilizing a metaheuristic optimization algorithm (i.e., 

Grey Wolf  Optimization algorithm [17]). For this process, some earthquakes that had 

occurred before were selected first. For these earthquakes, some initial information should 

be computed as follows (see Table 1): 
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Table 1: The required information obtained from the occurred ground-motion records to 

compute the critical earthquake 

Earthquake date Comp. 
PGA 

(m/s2) 

Energy* 

(m / s1.5) 
Site 

Coalinga 

(05.02.1983) 

360 2.82 2.69 
Cantua Greek 

270 2.19 2.16 

Imperial Valley 
(10.15.1979) 

S45W 2.68 2.31 
Calexico fire 

N45W 1.98 2.16 

Mammoth Lakes 
(05.25.1980) 

90 4.02 3.73 
Convict Greek 

180 3.92 4.02 

Morgan Hill 
(04.24.1984) 

240 3.06 2.33 
Halls Valley 

150 1.53 1.65 

Parkfield 
(12.20.1994) 

90 2.89 1.33 
Parkfield fault 

360 3.80 1.74 

San Fernando 

(02.09.1971) 

N21E 3.09 2.08 
Castaic Old Ridge 

N69W 2.65 2.48 

Sar Pole Zahab 
90 5.54 5.23 

Sar Pole Zahab 
0 6.84 4.51 

Manjil 
L 3.22 1.26 

Manjil 
T 3.51 1.17 

Naghan 
L 8.08 4.02 

Naghan 
T 5.73 3.26 

Ahar Varzaghan 
 L 1.65 1.38 

Khaje 
T 2.30 2.00 

*E= 
2

0

( ) dtgv t


 (similar to Arias 1970). 

 

Based on Table 1, the maximum values of PGA (M1), energy (E), and Fourier amplitude 

spectra for available accelerations are computed to obtain the constraints in the optimization 

process. In addition, based on the Iranian Standard No. 2800-4 [18], the strong ground 

motion duration of the critical earthquake T* (computed based on Trifunac and Brady [19]) 

has been considered to be more than 10 sec. 
 

 

In Eq. (2), the quantities E , and 1M are computed as follows. It is assumed that we have 

selected a set of N earthquake records represented by ( );  1,2,..., rgiv t i = N . For the two 

parameters of E and 1M , the largest values of energy and peak ground acceleration are 

*

*

          

 ;                 

T
2

g
0

g 1

u (t)dt E,          

max u (t) M    T 10 (sec).  



 

 (2) 
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selected from Table 1 [16]: 

The objective function is to maximize the roof displacement value. For this purpose, 

three concrete frames with three, seven, and eleven stories have been studied here. All 

structures are modeled nonlinearly with a concentrated plasticity model as two-dimensional 

frame buildings. A nonlinear time history analysis is performed utilizing the OpenSees 

software. Therefore, the critical excitation can be computed based on the above-assumed 

constraints on the ground motion. 

 

 

3. OPTIMIZATION PROBLEM FOR COMPUTING CRITICAL 

EXCITATION 
 

This paper aims to find the optimal unknown parameters of Eq. (1) to compute the critical 

excitation so that the maximum roof displacement occurs. This procedure can help the 

designer select an adequate seismic gap to avoid the pounding force between two adjacent 

buildings. This section states the objective function and constraint used in the optimization 

problem. 

min max

min max

F
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*             g 1 T 10 (sec)  max u (t) M   

 (3) 

where min
iR , max

iR , min
i and max

i are the lower and upper bounds of the two unknown 

parameters, respectively.   

 
 

4. GREY WOLF OPTIMIZATION (GWO) ALGORITHM 

 
GWO algorithm is categorized as a metaheuristic optimization algorithm inspired by grey 

wolf hunting. This method consists of three main hunting steps (i.e., search, siege, and 

attack) done by four wolf grey entitled α, β, δ, and ω [17]. This paper considers this 

algorithm to find the optimum parameters of two unknown parameters to compute the 

critical excitation. Detailed information about this algorithm can be found in Refs. [17]. 

 

 

5. CONCRETE MOMENT FRAME BUILDINGS 
 

5.1. Properties of the studied models 

In this section, the properties of the concrete moment frames are reported. These buildings 

are two-dimensional. All stories have 500 (kg/m2) dead load except for the roof. This value 
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is 300 (kg/m2) for the roof. Also, the live load value is 200 (kg/m2) for all stories except for 

the roof. This value is 150 (kg/m2) for the roof. Three concrete moment frames with three, 

seven, and eleven stories are considered here. Three frames have three spans and different 

stories. All buildings have similar story height (3 meters) and length span (5 meters). The 

specific weight of the concrete is 2500 (kg/m3). The concrete's specific compressive strength 

and young modulus are 25 (MPa) and 23500 (MPa), respectively. All beams and column 

sections for the three-story buildings are the same, and the rectangular sections for the 

beams and column elements are 400×400 mm2 (with 5 20 ) and 450×450 mm2 (with 12 20

), respectively.  

The seven-story concrete moment frame consists of twelve columns (500×500 mm2 with 

16 20 ) and nine beams (500×500 mm2 with 5 20 ) for the first, second, and third stories. 

For the other stories, it has twelve beams (450×450 mm2 with 5 20 ) and sixteen columns 

(450×450 mm2 with 16 20 ). 

The eleven-story concrete moment frame consists of sixteen columns (550×550 mm2 with 

16 20 ) and twelve beams (550×550 mm2 with 6 20 ) for the first four stories. For stories 5-

8, the eleven concrete moment frame has twelve beams (500×500 mm2 with 6 20 ) and 

sixteen columns (500×500 mm2 with 12 20 ). For the other stories, the eleven concrete 

moment frame has nine beams (450×450 mm2 with 5 20 ) and twelve columns (450×450 

mm2 with 12 20 ). All rebars are assumed to be S400. The cover for the rebars is considered 

to be 50 (mm). It should be noted that the damping matrix has been constructed based on the 

Rayleigh damping method for a damping ratio ( ) of 0.05 as follows [20]: 

 

     

1 2

1 2

1 2

2

2

C M K 

 
 

 

 
 

= +

=
+

=
+

 
(4) 

 

where [M], [K], [C], 1  and 2  are the mass matrix, the stiffness matrix, the damping 

matrix, the first natural frequency, and the second natural frequency of the building, 

respectively. The first two natural periods of the studied buildings are shown in Table 2. 

 
Table 2: The first two natural periods of the studied moment frames 

Number of 

Stories 
The first two natural period of the structure (sec) 

Three 
0.7064 

0.2255 

Seven 
1.3846 

0.4925 

Eleven 
1.9131 

0.7000 
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6. RESULTS AND DISCUSSION 
 

This section describes the critical excitation computed for three concrete moment frames and 

their properties. Table 3 shows the properties of computed critical excitation, such as PGA, 

Arias intensity, duration of strong ground motion, and the maximum value of roof 

displacement. Also, Fig. 1 depicts the acceleration time history as well as the Fourier spectra 

for the computed critical accelerations. 

 
Table 3: The properties of critical excitations 

Number 

of stories 

PGA 

(m/sec2) 

Arias 

Intensity 

(m/sec1.5) 

Duration 

of strong 

ground 

motion 

(sec) 

Housner 

Intensity 

(m) 

Predominant 

Period 

(sec) 

Max. roof 

Disp. 

(m) 

Three 5.15 4.21 13.52 1.51 0.04 0.1239 

Seven 4.05 3.71 12.985 1.41 0.10 0.1979 

Eleven 4.42 4.015 13.46 1.42 0.06 0.4870 

 

 

 

Seven story frame 

Three story frame 
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Figure 1: The acceleration time history for critical excitations for different concrete moment 

frames 

 

Many codes propose the minimum required distance between two adjacent buildings to 

avoid the pounding effect during severe earthquakes (e.g., [21-26]). ASCE 2007 [21] and 

IBC [23] propose the following equation for computing the minimum required distance 

between two adjacent buildings ( M ) to avoid the pounding effects: 

 

maxd
M

C

I


 =  (5) 

 

In Eq. (5), dC , max  and I depict the deflection amplification factor, the maximum elastic 

story displacement and the important factor, respectively. NBC Peru E030 [25] proposes that 

the minimum gap between adjacent buildings ( M ) should be more than (2/3) of the sum of 

the maximum story displacement of adjacent buildings. This value should be more than
3 0.004( 500)h+ − , in which, in this equation, h is the structure's height in unit cm. 

The minimum sufficient gap between two adjacent buildings in Australi when the 

structure height is more than 15 (m) is 1% of the structure’s height [27]. In Canada, adjacent 

buildings must be built within sufficient gap from each other based on the summation of the 

maximum elastic story displacement of the structure [28]. In Greece, the gap between 

adjacent buildings is determined as follows based on the number of stories with potential 

contact above the ground motion [29]: 

1- 4 (cm) for the first three stories 

2- 8 (cm) for four to eight stories 

3- 10 (cm) for more than eight stories 

In India, when the adjacent buildings have floors at different elevations, the required 

minimum gap is more significant to accommodate the relative movements during an 

earthquake. This gap is given by [30]: 

( )       Minimum gap R Summationof Story Displacement=   (6) 

Eleven story frame 
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However, when the story levels of two adjacent buildings are the same in elevation, the 

relative movement is reduced, and the value of R is halved. Thus, the formula becomes [30]: 

( )       
2

R
Minimum gap Summationof Story Displacement=   (7) 

In Serbia, building regulations specify that the minimum separation gap between two 

adjacent structures should be 3 (cm). This base gap must be increased by 1 (cm) for every 3 

meters high above 5 meters. This guideline helps ensure that taller buildings have adequate 

separation to accommodate movements and prevent damage during seismic events [31]. In 

Turkey, regulations mandate that the minimum separation gap between two adjacent 

buildings is 3 (cm) for structures up to 6 (m) in height. For every additional 3 (m) in height, 

this gap must be increased by 1 (cm) [32].  

The three concrete moment frames described in section 5 are considered here. It is 

assumed that they are special moment frames. These structures are excited by the earthquake 

reported in Table 1 and the computed critical excitations. Therefore, the maximum 

displacement of stories was computed based on the different earthquakes. After that, the 

minimum required gap for the structures from the building boundary is determined to show 

the ability of the critical excitation method.  

Table 4 shows the maximum roof displacement values of concrete special moment 

frames subjected to the different earthquake loads. Also, Table 5 compares different codes in 

calculating the minimum required gap between two adjacent buildings for different 

structures subjected to different earthquakes. It is assumed that the buildings are residential 

and their coefficient of behavior against the earthquake equals 7.5. Therefore, the 

magnification factor of the lateral displacement of the building is equal to 5.5. It is also 

assumed that the characteristics of the adjacent building are unknown; therefore, the values 

obtained for the known building are also used for the adjacent building. Finally, it is 

assumed that the maximum value of roof displacement for all of the studied earthquakes is 

considered when the structure's maximum linear or nonlinear displacement is required. 

 

Table 4: The maximum roof displacement values  

Earthquake 

(component) 

Maximum roof displacement (m) 

Three story building Seven story building Eleven story building 

Coalinga (360, 270) 0.1053, 0.0697 0.0880, 0.1572 0.1231, 0.1670 

Imperial Valley (S45W, 

N45W) 
0.0712, 0.0379 0.0765, 0.1473 0.1108, 0.1374 

Mammoth Lakes (180, 

90) 
0.0626, 0.0910 0.1139, 0.1489 0.2108, 0.1949 

Morgan Hill (240, 150) 0.1026, 0.0654 0.1719, 0.0754 0.1892, 0.0712 

Parkfield (90, 360) 0.0224, 0.0284 0.0253, 0.0240 0.0233, 0.0269 

San Fernando (N21E, 

N69W) 
0.0416, 0.0757 0.0704, 0.1027 0.0817, 0.1161 

Sar Pole Zahab (90, 

360) 
0.1018, 0.0749 0.1501, 0.1916 0.2185, 0.3138 

Manjil (L, T) 0.0439, 0.0357 0.0719, 0.0626 0.1613, 0.1483 
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Naghan 0.0890, 0.0866 0.1422, 0.1159 0.2755, 0.1279 

Ahar Varzaghan (L, T) 0.0232, 0.0331 0.0533, 0.0657 0.0626, 0.1204 

Critical Excitation 1 0.1239 - - 

Critical Excitation 2 - 0.1979 - 

Critical Excitation 3 - - 0.4870 

 

Table 5: The minimum required gap between two adjacent buildings 

Codes 

 

Minimum required seismic gap between two adjacent buildings (cm) 

Three story building Seven story building Eleven story building 

Standard No. 

2800-4 
9 21 43.932  

NBC Peru E03 4.6  9.4  14.2  

Australia - 21 33 

Canada 3.83  6.25  11.41 

Greece 4 8 10 

Serbia 4.33 8.33 12.33 

Turkey 4 8 12 

Critical excitation 1 24.78 - - 

Critical excitation 2 - 39.58 - 

Critical excitation 3 - - 97.4 

 

It should be noted that the minimum required gap between two adjacent buildings based on 

the critical excitation method is computed from the dynamic properties of the structures. 

Therefore, the minimum required gap between two adjacent buildings is computed for the worst 

excitation load applied to the structure. Therefore, the minimum distance calculated by the 

critical excitation method will be more reliable. Based on Tables 4-5, it can be concluded that the 

calculated values based on the existing codes are less than the calculated value by the critical 

excitation method. Therefore, if the studied structure is subjected to a critical earthquake, the 

pounding effect will be experienced if the seismic gap distance is selected based on the seismic 

code. Therefore, the critical excitation method can determine the minimum required gap from 

the building boundary to eliminate the pounding effects in regions where severe earthquakes 

occur. 

The following observation has been made based on the numerical results: This method can 

determine the minimum required gap between two adjacent buildings to prevent pounding 

effects in regions prone to severe earthquakes. The sum of the maximum story displacements for 

both buildings at each level indicates the minimum required separation distance. The adjacent 

buildings are assumed to have different properties and may oscillate in different phases. 

Consequently, the minimum required gap between two buildings can be estimated by summing 

the maximum story displacements for both structures at each story level during critical 

earthquakes. It has been demonstrated that the values calculated using existing codes are less 

than those derived from the critical excitation method. As a result, if a structure is designed 

according to existing codes and experiences a critical earthquake, pounding may occur. This 

method can be applied to any structure from a practical point of view. For structures with 

different dynamic properties, the minimum required distance can be determined at any desired 
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height by summing the maximum story displacements of adjacent buildings at the same level. It 

is important to note that the critical excitation method cannot provide a unique formula for all 

situations and structures. Although this method is time-consuming, it is highly effective and 

should be considered for important structures. 

 

 

7. CONCLUSION 
 

This study employed the critical excitation method to determine the minimum necessary gap 

between two adjacent buildings. For this purpose, critical earthquakes were calculated using a 

metaheuristic optimization algorithm, such as GWO, based on available data. Three concrete 

moment frames were analyzed and modelled using OpenSees software. The critical excitations 

were then calculated by setting constraints on the ground motion to maximize roof displacement. 

Furthermore, the characteristics of the earthquake and the structure play crucial roles in 

determining the minimum gap needed to prevent pounding effects between adjacent buildings. 

Consequently, this gap may vary depending on the specific earthquake. The critical earthquake 

method effectively generates a critical earthquake tailored to the structure's properties and 

constraints. Thus, this study uses the critical excitation method to compute the minimum gap 

required between adjacent buildings. The numerical results indicate that the values derived from 

the existing codes are lower than those calculated using the critical excitation method. Therefore, 

oscillation might occur if a structure is designed according to the seismic codes and subjected to 

a critical earthquake. 
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