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ABSTRACT 
 

In this study, the Improved Material Generation Algorithm (IMGA) is proposed to optimize 

the shape and size of structures. The original Material Generation Algorithm (MGA) 

introduced an optimization model inspired by the high-level and fundamental characteristics 

of material chemistry, particularly the configuration of compounds and chemical reactions 

for generating new materials. MGA uses a Gaussian normal distribution to produce new 

combinations. To enhance MGA for adapting truss structures, a new technique called 

Random Chaotic (RC) is proposed. RC increases the speed of convergence and helps escape 

local optima. To validate the proposed method, several truss structures, including a 37-bar 

truss bridge, a 52-bar dome, a 72-bar truss, a 120-bar dome, and a 200-bar planar structure, 

are optimized under natural frequency constraints. Optimizing the shape and size of 

structures under natural frequency constraints is a significant challenge due to its 

complexity. Choosing the frequency as a constraint prevents resonance in the structure, 

which can lead to large deformations and structural failure. Reducing the vibration 

amplitude of the structure decreases tension and deflection. Consequently, the weight of the 

structure can be minimized while keeping the frequencies within the permissible range. To 

demonstrate the superiority of IMGA, its results are compared with those of other state-of-

the-art metaheuristic methods. The results show that IMGA significantly improves both 

exploitation and exploration. 
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1. INTRODUCTION 
 

Due to the physical nature of structural problems, the constraints of these problems are 

classified as behavior constraints and lateral constraints. These constraints limit the search 

space and add complexity to the convergence of the response vector towards the global 

optimum. Behavior constraints include stress, displacement, and frequency. Typically, the 

cross-sectional area of the members is also used as a lateral constraint, which defines the 

domain of the feasible search space. Therefore, the weight of truss structures can be 

minimized without compromising their stability. The following sections describe the 

optimization of structures using metaheuristic algorithms. 

Metaheuristic algorithms are popular tools for optimizing constrained problems due to 

their simplicity, flexibility, and lack of need for derivative information. These algorithms 

can efficiently find the optimal solution through an iterative process. Some of the most 

important methods are highlighted: Pulluri et al. (2016) [1] presented a new Colliding 

Bodies Optimization (CBO) based on energy laws for optimizing engineering and numerical 

problems. Mirjalili et al. (2016) [2] proposed a Multi-Verse Optimizer (MVO), inspired by 

cosmological concepts of white holes, black holes, and wormholes, to find optimal solutions 

for engineering and numerical problems. Abualigah et al. (2021) [3] introduced the 

Arithmetic Optimization Algorithm (AOA), which uses arithmetic operators to solve both 

constrained and unconstrained problems. Faramarzi et al. (2019) [4] developed the 

Equilibrium Optimizer (EO), inspired by control volume mass balance models, for solving 

numerical problems. Goodarzimehr et al. (2022) [5] introduced the Special Relativity Search 

(SRS) algorithm for optimizing a wide range of feasible spaces. Bayzidi et al. (2021) [6] 

developed Social Network Search (SNS) for solving optimization problems with both 

continuous and discrete variables. Yang et al. (2021) [7] developed Hunger Games Search 

(HGS) for optimizing both constrained and unconstrained problems. Wang (2018) [8] 

introduced the Moth Search (MS) algorithm for optimizing numerical and engineering 

problems. Heidari et al. (2019) [9] proposed the Harris Hawks Optimizer (HHO), inspired 

by Harris’ hawks behavior, for solving real-world and numerical problems. Heidari et al. 

(2019) [9] proposed the Harris Hawks Optimizer (HHO), inspired by Harris’ hawks 

behavior, for solving real-world and numerical problems. Li et al. (2020) [11] introduced the 

Slime Mould Algorithm (SMA) for optimal design in engineering problems. Chen et al. 

(2021) [12] utilized Particle Swarm Optimization (PSO) for designing non-trivial flat-

foldable origami tessellations. Abualigah et al. (2022) [13] proposed the Reptile Search 

Algorithm (RSA), mimicking crocodile hunting behavior, for optimal design in numerical 

and engineering problems. Tu et al. (2021) [14] developed the Colony Predation Algorithm 

(CPA), inspired by animal corporate behavior. Azizi et al. (2022) [15] introduced a new 

metaheuristic algorithm inspired by the behavior of three bird species: whistling kites, black 

kites, and brown falcons, for optimizing numerical problems. Talatahari et al. (2021a) [16] 
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proposed the Crystal Structure Algorithm (CryStAl) based on crystal formation. All these 

methods are single-objective and population-based, widely used to solve various problems.  

Structural optimization under behavior constraints of stress and displacement ensures that 

the stress on any member and the displacement at any node do not exceed allowed values. 

This maintains the structure's stability and resistance against forces while minimizing 

weight. Key methods for optimizing truss structures under these constraints include: Javidi 

et al. (2019) [17] introduced the Enhanced Crow Search Algorithm (ECSA) for truss 

optimization under stress and displacement constraints. Jafari et al. (2019) [18] developed a 

hybrid method for optimizing truss structures with these constraints. Cao et al. (2017) [19] 

enhanced Particle Swarm Optimization (EPSO) for structural design. Kaveh and Zakian 

(2018) [20] improved the Grey Wolf Optimizer for space structure design. Degertekin et al. 

(2017) [21] adapted Heat Transfer Search (HTS) for truss weight minimization. Kaveh et al. 

(2020) [22] used Advanced Charged System Search (ACSS) for optimizing large structures. 

Lee and Geem (2004) [23] introduced Harmony Search for structural optimization. 

Degertekin et al. (2020) [24] used School-Based Optimization (SBO) to optimize structures 

under earthquake forces. Goodarzimehr et al. (2022) [25] presented a hybrid metaheuristic 

for optimizing space and planar trusses. Goodarzimehr et al. (2025) [26] used a hybrid 

method for frequency optimization. Topal et al. (2022) [27] introduced a hybrid method for 

optimizing laminated structures. Talatahari et al. (2021b) [28] hybridized Symbiotic 

Organism Search and Harmony Search for optimal design with discrete variables. 

Goodarzimehr et al. (2024) [29] used SRS for optimization of composite plates with 

continuous variables. Most metaheuristic methods have successfully found optimal solutions 

for structural optimization problems.  

Optimization under frequency constraints, due to non-linearity, non-convexity, and 

vibration control, remains complex and costly. Thus, developing an efficient, accurate 

method with low computational cost is still an open issue. Notable contributions in this area 

include: Wang et al. (2004) [30] introduced the Optimality Criterion (OC) for optimizing 

structures under frequency, displacement, and stress constraints. Wei et al. (2005) [31] 

increased population diversity to address non-linear, frequency-sensitive optimization. 

Gomes (2011) [32] modified Particle Swarm Optimization (PSO) for truss optimization with 

natural frequency constraints. Miguel (2012) [33] adapted Harmony Search (HS) and Firefly 

Algorithm (FA) for frequency-constrained structural optimization. Kaveh and Mahdavi 

(2014) [34] developed Colliding Bodies Optimization (CBO) for frequency constraint 

problems. Kaveh and Zolghadr (2014) [35] introduced Democratic PSO (DPSO) to improve 

PSO for frequency-constrained structural optimization. Farshchin et al. (2016) [36] 

developed Multi-class Teaching-Learning Based Optimization (MCTLBO) for truss 

optimization with natural frequency constraints. Tejani et al. (2016) [37] improved 

Symbiotic Organisms Search (SOS) for frequency-constrained optimization. Lin et al. 

(1982) [38] used the Kuhn-Tucker method for frequency-constrained structural optimization. 

Kaveh and Zolghadr (2012) [39] complemented the CSS algorithm with BB-BC for faster 

convergence in frequency-constrained optimization. Khatibinia and Naseralavi (2014) [40] 

introduced the Multi-Gravitational Search Algorithm (OMGSA) for optimal design with 

frequency constraints. Kaveh and Mahdavi (2015) [41] modified the colliding bodies 

algorithm for two-dimensional optimization. Mortazavi (2021) [42] utilized an interactive 
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fuzzy search algorithm for dynamic constraint optimization. Goodarzimehr et al. (2022) [43] 

developed hybrid PSOGA for optimizing geometrically nonlinear space structures. Kaveh 

and Talatahari [44, 45] have developed a CSS based on new strategies for structural 

optimization, specifically for truss structures. Due to the complexity and presence of 

multiple local optima, efficient metaheuristic methods are still needed for these problems. 

This study proposes the Improved Material Generation Algorithm (IMGA) for optimizing 

truss structures with natural frequency constraints. The Material Generation Algorithm 

(MGA) [46], a recent metaheuristic, is based on material combination for new composition 

creation. However, MGA's limitation to existing compounds causes local optima traps and 

slow convergence. The Random Chaotic (RC) technique is introduced to enhance diversity 

in new material production. Problems with multiple frequency constraints, including a 37-

bar truss bridge, a 52-bar dome, a 72-bar structure, a 120-bar dome, and a 200-bar planar 

structure, are used to demonstrate IMGA's capabilities. Comparative results show that 

IMGA improves convergence speed and avoids local optima more effectively than other 

metaheuristic methods. 

 

 

2. IMPROVED MATERIAL GENERATION ALGORITHM 
 

The Material Generation Algorithm (MGA) is a single-objective, population-based 

metaheuristic inspired by the science of combining materials to create new ones with 

improved characteristics. In reality, different materials are combined to meet specific needs, 

resulting in new materials with enhanced properties and performance. While the 

fundamental structure of materials cannot be altered, they can be improved at atomic, nano, 

micro, or macro scales for engineering purposes. These improvements are guided by 

chemical reactions, making material chemistry a crucial field for producing materials with 

superior characteristics. By replacing or transferring electrons between atoms, new 

substances can be generated. The MGA utilizes this concept to develop a metaheuristic 

algorithm for optimizing single-objective problems through three phases: Chemical 

Compound, Chemical Reaction, and Chemical Stability. 

Before detailing the three main phases of the MGA, it is important to explain the 

mathematical modeling of the proposed algorithm. Similar to other population-based 

methods, MGA begins the optimization process by generating an initial random population. 

As described by Eq. (1), MGA creates a population of different materials (Mat), each 

containing various decision variables ( ). Like other metaheuristic methods, MGA uses 

specific operators and randomly selects a number of decision variables within the feasible 

space. 
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where n is the number of different material compounds generated randomly, d is the 

number of variables, which depends on the problem. 

The initial vector of possible optimal answers PTE is calculated using Eq. (2). Like 

other metaheuristic methods, the MGA is randomly selecting the candidates between lower 

and upper bound for all different Mats. 

 

where  indicates the initial value of the jth variable in the ith Mat; unif(0,1) is a 

random value selected in the range (0,1),  and  , are the minimum and 

maximum allowable values for the jth variable of the ith optimum candidate, respectively. 

Phase 1; Chemical Compound: In the proposed model for chemical composition, it is 

assumed that, similar to a magnetic field, energy absorption and ion interactions occur with 

one another. Depending on the stability of different elements, electrons tend to be shared or 

transferred between elements, forming covalent bonds. Eq. (3) is defined to model these 

covalent compounds. Probabilistic theory is used to model the loss or sharing of ions. 

 

where 
k

newPTE  is a newly generated material, 2

1

r

rPTE  is a selected material with r1 and r2 

uniformly distributed random integers in the range [1,n] and [1,d], respectively. e is the 

probabilistic value for modeling the process of losing, gaining or sharing electrons. 

Phase 2; Chemical Reaction: A chemical reaction is a process where the structure of the 

constituent elements of raw materials changes, converting one or more chemicals into 

different chemicals. Unlike physical changes, where only the physical state of the substance 

changes without altering its elemental structure, chemical reactions alter the actual 

composition. In the proposed mathematical model for chemical reactions, an integer random 

number (l) is used to determine participation in the reaction, depending on the type of initial 

material (Mat). A new random number is chosen to locate the material, forming a linear 

combination of other solutions. The participation coefficient (p) is used to model the 

involvement of materials with different values. Eq. (4) describes the chemical reaction 

phase. 
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material's stability, denoted as Mat. The level of material stability corresponds to the worst 

and best values among the optimal solutions, as defined by Eq. (5). 

 

2.1. Proposed formula for IMGA 

In this section, a novel formula is proposed to enhance the performance of the Material 

Generation Algorithm (MGA). Previously, MGA was introduced as an optimization model 

based on the combination of different materials at various scales—atomic, nano, micro, or 

macro—to address optimization problems. While MGA is effective at converging to the 

global optimum in solving unconstrained problems with relatively few iterations, it struggles 

with frequency-constrained engineering problems that are highly nonlinear and feature many 

local optima. This shortcoming arises because MGA's structure limits the production of new 

materials, resulting in a lack of diversity in responses examined during each iteration. 

Consequently, MGA often gets trapped in local optima due to repetitive solutions. 

Despite offering a novel approach to optimization by mimicking material combination 

and chemical reaction processes, MGA has several weaknesses. A primary limitation is its 

propensity to become trapped in local optima, stemming from its reliance on existing 

material compounds for generating new solutions. This constraint hampers its ability to 

thoroughly explore the solution space and reduces its effectiveness in finding the global 

optimum. Additionally, MGA's performance is highly dependent on the initial random 

population and the probabilistic nature of electron sharing or transferring, which can lead to 

inconsistencies and variability in results. The computational complexity involved in 

simulating chemical reactions and stability phases can also be significant, making the 

algorithm less efficient for larger, more complex problems. Furthermore, MGA's 

requirement for fine-tuning various parameters, such as the participation coefficient and 

random number generation, adds to its complexity and can make implementation 

challenging without extensive domain knowledge. Lastly, although MGA draws inspiration 

from real-world chemical processes, the simplifications and assumptions in its mathematical 

modeling may not always accurately represent the true nature of material interactions, 

potentially limiting its applicability to certain types of optimization problems. 

A novel technique known as Random Chaotic (RC) has been employed to enhance 

convergence speed and strike a balance between exploration and exploitation. Initially, Eq. 

(6) was applied to regulate ion distribution among various materials, thereby fostering 

diversity in the subsequent phase where different materials are amalgamated to form new 

compounds. However, this approach alone does not consistently yield superior outcomes 

and can sometimes become stuck in local optima. To address this challenge, Eq. (7) is 
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introduced to generate novel combinations, thereby expanding the pool of potential optimal 

solutions in each iteration and facilitating exploration across the entire search space to 

identify global optima. 

 

where .Chaos PTE  is a new chaotic generated material,   is constant which set to 0.2, 

randn is a random operator.  

Developing a Material Generation Algorithm based on Random Chaotic (RC) marks a 

significant leap in addressing dynamically constrained optimization problems. This approach 

boasts several advantages that set it apart in the realm of algorithmic optimization. 

Primarily, by harnessing RC, the algorithm accelerates convergence speed while maintaining 

a delicate equilibrium between exploration and exploitation. This capability proves 

indispensable for dynamically constrained problems where conditions and constraints may 

fluctuate over time. RC's ability to dynamically adjust and generate diverse material 

compositions using Eq. (6) ensures that the algorithm can effectively adapt to evolving 

constraints and environmental factors. Additionally, the algorithm's capacity to tackle local 

optima, as exemplified by Eq. (7), offers a pivotal edge. Through the generation of fresh 

combinations and expansion of the solution space in each iteration, RC diminishes the risk 

of becoming ensnared in suboptimal solutions. This proactive approach not only fortifies the 

algorithm's resilience against local optima but also augments its aptitude for exploration and 

potential convergence toward global optima. 

Moreover, RC's inherent flexibility ensures strong performance across diverse 

applications, spanning from materials science to engineering and beyond. Its capability to 

adapt to various problem domains highlights its versatility and relevance in real-world 

situations characterized by dynamic and evolving constraints. Essentially, the development 

of a Material Generation Algorithm based on RC represents a notable advancement in 

optimization techniques. Its proficiency in addressing dynamically constrained problems, 

alleviating issues with local optima, and consistently delivering robust performance across a 

wide array of applications positions it as a promising approach for enhancing optimization 

capabilities across different fields of study and industry applications. 

 

 

3. DEFINITION OF THE OPTIMIZATION PROBLEM 
 

In a typical optimization problem, an objective function serves as the criterion to identify the 

optimal solutions among all possible candidates, often expressed in terms of one or more 

design variables. Essentially, the optimal design is achieved by minimizing this objective 

function. In this context, cost reduction is the primary goal, influenced by numerous factors 

that interact in complex ways. While the relationships among these factors are intricate, a 

reasonable assumption holds that minimizing the weight of the structure correlates with 

reduced construction costs. Hence, we have selected the total weight of the structure, 

excluding lumped masses, as our objective function. The design variables encompass nodal 

1
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coordinates and the cross-sectional areas of structural members. The objective function, 

along with design variables, constraints, and penalty functions, are defined through the 

following equations to formalize this optimization process. 

 

where Ai, ρi, and Li are the cross-sectional area, density, and length of the ith bar 

respectively. Nj represents the nodal coordinates (in the directions xj, yj, and zj) of the jth 

node; and fq and fr are respectively the qth and rth natural frequencies. Superscripts max and 

min denote the upper and lower allowable limits, respectively. A penalty condition is 

defined as follows: if there is no violation, the objective function will not be penalized; 

otherwise, it will be penalized using a penalty function defined as:  

 

where parameters ε1 and ε2 are constraint integers determined based on experience. In this 

study, it is assumed ε1 = ε2 = 3. 

 

 

4. STRUCTURAL DESIGN PROBLEMS AND DISCUSSIONS 
 

Numerical examples demonstrating the effectiveness of the proposed algorithms in 

optimizing truss structures are presented. Specifically, the study includes five different truss 

configurations: a 37-bar, a 52-bar, a 72-bar, a 120-bar, and a 200-bar truss. These structures 

serve as test cases to evaluate the performance of the proposed algorithm against traditional 

methods found in existing literature. Additionally, to provide a comprehensive analysis of 

the results, two key metrics—Standard Deviation (SD) and Number of Function Evaluations 

(NFE)—are employed. SD assesses the stability of the obtained solutions, while NFE 

quantifies the computational efficiency of the algorithms. Importantly, each optimization 

problem is repeated 30 times to ensure robustness and reliability of the findings. 
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4.1. The 37-bar bridge truss structure 

The first numerical example is a 37-bar truss the geometry of which is illustrated in Fig. 

1. The design variables include 14 cross-sectional and 5 nodal variables. Thus, this truss 

considered size and shape optimization simultaneously. The lower and upper allowable 

cross-sectional areas are 1 and 10 cm2, respectively, while the lower and upper allowable 

node variables are 0.1 and 3 m, respectively. The coefficient of elasticity is E = 2:1e11Pa 

and the mass density is ρ = 7800 kg /m3. Also, the constraints on natural frequencies f1, f2, 

and f3 are as follows: 1 20f   , 2 40f   , and 3 60f   Hz. The lumped mass which is 

neglected in the calculation of the objective function is m = 10 kg, which is applied to the 

lower nodes of the bridge.  

 

Figure 1: The 37-bar bridge truss structure with additional masses 

 

The optimal results of IMGA and OC [30], GA [31], PSO [32], HS [33], DPSO [35], and 

SOS [37] are shown in Table 1. The best optimal weight among comparative algorithms 

360.024 belongs to IMGA. Also, IMGA with 7,000 has the worst weight and average weight 

of 363.324 and 360.862 with a standard deviation of 8.17106. In solving this example, 

IMGA has obtained good answers, but the dispersion of answers around the optimal point is 

worse than SOS, DPSO, HS, and PSO. The worst optimal response is obtained by GA with a 

value of 368.84. This shows that the performance of the new generation of metaheuristic 

algorithms has improved compared to the earlier methods. The frequency results of the first 

to third modes are presented in Table 2. The convergence history results of IMGA and other 

methods for the best weight, worst weight, and average weight are plotted in Fig. 6a. 

 
Table 1: Results of IMGA, and other methods for solving the 37-bar truss problem 

Design 

variables 

Wang et al. 

2004 (OC) 

[30] 

Wei et al. 

2005 (GA) 

[31] 

Gomes 

2011 

(PSO) 

[32] 

Miguel 

2012 (HS) 

[33]  

Kaveh and 

Zolghadr 

2014 

(DPSO) [35] 

Tejani et al. 

2016 

(SOS) [37] 

This study 

IMGA 

Y3, Y19  1.2086 1.1998 0.9637 0.8415 0.9482 0.9598 1.0000 

Y5, Y17  1.5788 1.6553 1.3978 1.2409 1.3439 1.3867 1.3569 

Y7, Y15  1.6719 1.9652 1.5929 1.4464 1.5043 1.5698 1.5498 

Y9, Y13 1.7703 2.0737 1.8812 1.5334 1.6350 1.6687 1.6866 

Y11 1.8502 2.3050 2.0856 1.5971 1.7182 1.7203 1.7430 

A1, A27  3.2508 2.8932 2.6797 3.2031 2.6208 2.9038 2.9291 
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A2, A26  1.2364 1.1201 1.1568 1.1107 1.0397 1.0163 1.0000 

A3, A24  1.0000 1.0000 2.3476 1.1871 1.0464 1.0033 1.0071 

A4, A 25  2.5386 1.3655 1.7182 3.3281 2.7163 3.1940 2.7055 

A5, A23  1.3714 1.5962 1.2751 1.4057 1.0252 1.0109 1.0468 

A6, A21  1.3681 1.2642 1.4819 1.0883 1.5081 1.5877 1.2957 

A7, A22  2.4290 1.8254 4.6850 2.1881 2.3750 2.4104 2.5756 

A8, A20  1.6522 2.0009 1.1246 1.2223 1.4498 1.3864 1.3644 

A9, A18  1.8257 1.9526 2.1214 1.7033 1.4499 1.6276 1.5315 

A10, A19  2.3022 1.9705 3.8600 3.1885 2.5327 2.3594 2.4859 

A11, A17  1.3103 1.8294 2.9817 1.0100 1.2358 1.0293 1.1896 

A12, A15  1.4067 1.2358 1.2021 1.4074 1.3528 1.3721 1.3368 

A13, A16  2.1896 1.4049 1.2563 2.8499 2.9144 2.0673 2.1529 

A14  1.0000 1.0000 3.3276 1.0269 1.0085 1.0000 1.0170 

Best (kg) 366.50 368.84 377.20 361.50 360.40 360.865 360.024 

Worst - - - - - - 363.324 

Mean NA NA 381.20 362.04 362.21 364.852 360.862 

SD NA 9.0325 4.26 0.52 1.68 2.9650 8.7106 

NFEs NA NA 12,500 20,000 6,000 4,000 7,000 

 

4.2. The 52-bar space truss structure 

The52-bar truss’sthe top and front views of which are shown in Figure  and is considered 

an optimization problem to examine the relative performance of IMGA. The design 

variables of this problem include 8 cross-sectional and 5 nodal variables. Therefore, this 

problem also considered size and shape optimization simultaneously. The minimum and 

maximum allowable cross-sectional areas are 0.0001 and 0.001 m2, respectively. The 

allowable displacement of each node is 2m along the vertical axis. The coefficient of 

elasticity is  and the mass density is 
37800(kg/m ) = . Also, the 

constraints on natural frequencies f1 and f2 are as follows: 1 15.916 Hzf   and 

2 28.649 Hzf  . The lumped mass which is neglected in the calculation of the objective 

function is m = 50 kg; this load is applied to the truss at all the free nodes of the dome. As 

can be seen from Figure b, the truss structure is symmetric about the vertical axis. 

The Results of IMGA and Bi-factor [38], NGHA [31], PSO [32], HS [33], FA [33], CSS-

BBBC [39] DPSO [35], TLBO [36], and SOS [37] are presented in Table 3. The best 

optimal weight of IMGA is equal to 193.20, which is placed after TLBO [36] with a very 

Table 2: Natural frequencies (Hz) of the 37-bar bridge truss structure 

Natural 

frequency 

Wang et al. 

2004 (OC) 

[30] 

Wei et al. 

2005 (GA) 

[31] 

Gomes 

2011 

(PSO) 

[32]  

Miguel 

2012 (HS) 

[33]  

Kaveh and 

Zolghadr 

2014 

(DPSO) 

[35] 

Tejani et al. 

2016 

(SOS) [37] 

This study 

IMGA 

f1 20.0850 20.0013 20.0001 20.0037 20.0194 20.0366 20.0010 

f2 42.0743 40.0305 40.0003 40.0050 40.0113 40.0007 40.0010 

f3 62.9383 60.0000 60.0001 60.0082 60.0082 60.0138 60.0000 
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small difference. IMGA has reached the best optimal answer with 8,000 analyses. As long as 

TLBO [36] 15,000 analyzes have reached the optimal answer, which is almost spent twice 

the computational cost. The best optimal weight for Bi-factor [38], NGHA [31], PSO [32], 

HS [33], FA [33], CSS-BBBC [39] DPSO [35], and SOS [37] respectively 298.00, 236.04, 

228.38, 214.94, 197.53, 197.30, 195.35, and 195.49. The Bi-factor does not report any 

information about the Mean, Standard Deviation, and number of analyses. The frequencies 

of the first two modes are presented in Table 4. The convergence diagram of IMGA is drawn 

in Fig. 6b IMGA has converged to the global optimal answer at high speed and after 20 

iterations. 

 
Table 3: Comparative results of IMGA and other methods for solving the 52-bar dome truss problem 

Design 

variables 

Lin et al. 
1982 (Bi-

factor) [38] 

 

Wei et al. 

2005 

(NGHA) [31] 

Gomes 

2011 

(PSO) 

[32]  

Miguel 

2012 

(HS) 

[33]  

Miguel 

2012 

(FA) 

[33]  

Kaveh and 

Zolghadr 

2012 (CSS-

BBBC) 

[39]  

Kaveh and 
Zolghadr 

2014 (DPSO) 

[35] 

Farshchin et 

al. 2016 

(TLBO) [36] 

Tejani et al. 

2016 (SOS) 

[37]  

This study 

IMGA 

ZA  4.3201 5.8851 5.5344 4.7374 6.4332 5.3310 6.1123 6.0026 5.7624 5.9659 

XB  1.3153 1.7623 2.0885 1.5643 2.2208 2.1340 2.2343 2.2626 2.3239 2.233 

ZB  4.1740 4.4091 3.9283 3.7413 3.9202 3.7190 3.8321 3.7452 3.7379 3.7301 

XF  2.9169 3.4406 4.0255 3.4882 4.0296 3.9350 4.0316 3.9854 3.9842 3.9511 

ZF  3.2676 3.1874 2.4575 2.6274 2.5200 2.5000 2.5036 2.5000 2.5121 2.5014 

A1 – A4  1.00 1.0000 0.3696 1.0085 1.0050 1.0000 1.0001 1.0000 1.0988 1.0000 

A5 – A8  1.33 2.1417 4.1912 1.4999 1.3823 1.3056 1.1397 1.1210 1.0031 1.1307 

A9 – A16 1.58 1.4858 1.5123 1.3948 1.2295 1.4230 1.2263 1.2113 1.1956 1.2205 

A17 – A20  1.00 1.4018 1.5620 1.3462 1.2662 1.3851 1.3335 1.4486 1.4563 1.4691 

A21 – A28  1.71 1.9110 1.9154 1.6776 1.4478 1.4226 1.4161 1.4156 1.3773 1.4117 

A29 – A36  1.54 1.0109 1.1315 1.3704 1.0000 1.0000 1.0001 1.0000 1.0055 1.0000 

A37 – A44  2.65 1.4693 1.8233 1.4137 1.5728 1.5562 1.5750 1.5434 1.7397 1.6243 

A45 – A52  2.87 2.1411 1.0904 1.9378 1.4153 1.4485 1.4357 1.4034 1.3084 1.3304 

Best (kg) 298.00 236.04 228.38 214.94 197.53 197.30 195.35 193.18 195.49 193.20 

Worst - - - - - - - - - 202.04 

Mean NA NA 234.30 205.61 212.80 NA 198.71 200.30 214.66 197.59 

SD NA 37.462 5.22 12.44 17.98 NA 13.85 15.48 14.14 45.55 

NFEs NA NA 11,270 20,000 10,000 4,000 6,000 15,000 4,000 8,000 

 

 

 

Table 4: Natural frequencies (Hz) of the 52-bar dome truss structure 

Natural 

frequency 

Lin et al. 

1982 (Bi-

factor) [38] 

 

Wei et al. 

2005 

(NGHA) 

[31] 

Gomes 

2011 

(PSO) 

[32]  

Miguel 

2012 

(HS) 

[33]  

Miguel 

2012 

(FA) 

[33]  

Kaveh and 

Zolghadr 
2012 (CSS-

BBBC) 

[39]  

Kaveh and 

Zolghadr 
2014 

(DPSO) 

[35] 

Farshchin et 

al. 2016 

(TLBO) [36] 

Tejani et 

al. 2016 

(SOS) 

[37]  

This study 

IMGA 

f1 15.22 12.81 12.75 12.22 11.31 12.98 11.31 11.46 12.71 11.294 

f2 29.28 28.65 28.64 28.65 28.65 28.64 28.64 28.64 28.65 28.648 
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Figure 2: The 52-bar space truss structure with additional masses: (a) top view; (b) side view 

 

 4.3. The 72-bar space truss structure  

As the third problem, a 72-bar truss is taken as illustrated in Figure . The design variables 

are cross-sectional areas, which is divided into 16 sets . The minimum and maximum 

allowable cross-sectional areas are 0.645 and 30 cm2, respectively. The coefficient of 

elasticity is  and the mass density is 
32770 (kg/m ) = . Also, the 

constraints on natural frequencies f1 and f2 are as follows: 1 4 Hzf   and 2 6 Hzf  . A 

lumped mass m = 2770 kg, which is neglected in the calculation of the objective function, is 

added to the truss at nodes 1 to 4. 

The results of IMGA and other metaheuristic methods for optimizing the 72-bar structure 

under frequency constraints are presented in Table 5. The best optimal weights for IMGA, 

CSS-BBBC [39], CBO [34], TLBO [36], FA [33], PSO [35], and SOS [37] are 324.562, 

327.507, 324.7552, 327.568,  327.575, 327.691, 328.81, and 325.558,  respectively.The best 

weight belongs to IMGA and the worst weight belongs to PSO [35]. One of the good 

features of IMGA is that it can reach the optimal answer with the lowest computational cost. 

In this example, it has converged to the optimal point with only 6000 analyses. The 

convergence diagram of IMGA is drawn in Fig. 6c. The frequencies of the first two modes 

are presented in Table 6. 
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Figure 3: The 72-bar space truss structure with additional masses 

  
Table 5: Comparative results of IMGA, and other methods for solving the 72-bar space truss problem 

Design variables 

Kaveh and 

Zolghadr 2012  

(CSS-BBBC) 

[39]  

Kaveh and 

Mahdavi 2014 

(CBO) [34] 

Farshchin et 

al. 2016 

(TLBO) 

[36]  

Farshchin et al. 

2016 

(TLBO) 

[36]  

Miguel 2012 

(FA)  

[33] 

Kaveh and 
Zolghadr 

2014 (PSO) 

[35]  

Tejani et al. 

2016 (SOS) 

[37]  

This study 

IMGA 

A1 – A4 (cm2) 2.854 3.3699 3.5491 3.4188 3.3411 2.9870 3.6957 3.63411 

A5 – A12 (cm2) 8.301 7.3428 7.9676 7.9263 7.7587 7.8490 7.1779 7.94525 

A13 – A16 (cm2) 0.645 0.6468 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450 

A17 – A18 (cm2) 0.645 0.6457 0.6450 0.6450 0.6450 0.6450 0.6569 0.64718 

A19 – A22 (cm2) 8.202 8.0056 8.1532 8.0143 9.0202 8.7650 7.7017 7.48083 

A23 – A30 (cm2) 7.043 8.0185 7.9667 7.9603 8.2567 8.1530 7.9509 7.83967 

A31 – A34 (cm2) 0.645 0.6458 0.6450 0.6450 0.6450 0.6450 0.6450 0.64517 

A35 – A36 (cm2) 0.645 0.6457 0.6450 0.6450 0.6450 0.6450 0.6450 0.64521 

A37 – A40 (cm2) 16.328 12.4585 12.9272 12.7903 12.045 13.450 12.3994 13.2464 

A41 – A48 (cm2) 8.299 8.1211 8.1226 8.1013 8.0401 8.0730 8.6121 8.01889 

A49 – A52 (cm2) 0.645 0.6460 0.6452 0.6450 0.6450 0.6450 0.6450 0.67388 

A53 – A54 (cm2) 0.645 0.6459 0.6450 0.6473 0.6450 0.6450 0.6450 0.64723 

A55 – A58 (cm2) 15.048 17.3636 17.0524 17.4615 17.380 16.684 17.4827 16.9046 

A59 – A66 (cm2) 8.268 8.3371 8.0618 8.1304 8.0561 8.0561 8.1502 7.95071 

A67 – A70 (cm2) 0.645 0.6460 0.6450 0.6450 0.6450 0.6450 0.6740 0.66917 

A71 – A72 (cm2) 0.645 0.6476 0.6450 0.6451 0.6450 0.6450 0.6550 0.65286 

Best (kg) 327.507 324.7552 327.568 327.575 327.691 328.81 325.558 324.562 

Worst - - - - - - - 328.182 

Mean NA 330.4154 328.684 327.693 329.890 332.24 331.122 325.705 

SD NA 7.7063 0.73 0.1250 2.59 4.23 4.227 11.933 

NFEs 4,000 6,000 15,000 15,000 10,000 42,840 4,000 6,000 
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Table 6: Natural frequencies (Hz) of the 72-bar space truss problem 

Natural 

frequency 

Kaveh and Zolghadr 

2012 (CSS-BBBC) 

[39]  

Kaveh and 

Mahdavi 2014 

(CBO) [34] 

Farshchin et al. 

2016 

(TLBO) 

[36]  

Farshchin et 

al. 2016 

(TLBO) 

[36]  

Miguel 

2012 

(FA)  

[33] 

Kaveh and 

Zolghadr 

2014 (PSO) 

[35]  

Tejani et 

al. 2016 

(SOS) 

[37]  

This study 

IMGA 

f1 4.000 4.000 4.000 4.000 4.000 3.9999 4.0023 4.0000 

f2 6.004 6.000 6.000 6.000 6.000 3.9999 4.0020 4.0000 

 
4.4.  The 120-bar dome structure 

In this section, a 120-bar truss, depicted in Fig. 4, is considered an optimization problem 

to test the relative capability of IMGA. The truss bars are grouped into 7 by seeing 

symmetry on the z-axis. Thus, the design variables of this problem include 7 cross-sectional 

variables. The minimum and maximum allowable cross-sectional areas are 0.0001 and 

0.01293 m2, respectively. The coefficient of elasticity is and the 

mass density is ρ=7,971.81 (kg m3). Also, the constraints on natural frequencies f1 and f2 

aref_1≤9 "Hz"  and f_2≥11 "Hz". The lumped masses which are neglected in the calculation 

of the objective function are 3000 kg at node-1500 kg at nodes-2 to nodes-13, and 100 kg at 

the rest of the free nodes.  

Results of optimal design of 120-bar structure with frequency constraints for IMGA, PSO 

[35], DPSO [35], CSS [39], CSS-BBBC [39], CBO [34], SOS [37], and SOS-ABFI [37] ] is 

presented in Table 7. IMGA has performed best in solving this 3D structure. IMGA has 

obtained the best results with 10000 analyses, Best=8708.80, Worst=8756.36, 

Mean=8721.07, and SD=1.42. The convergence diagram of IMGA is drawn in Figure 6d. 

The proposed algorithm has converged to the optimal answer with high speed after 20 

iterations. The frequencies of the first five modes are presented in Table 8. 

 
Table 7: Comparative results of IMGA and other methods for solving the 120-bar dome truss problem 

Design variables 

Kaveh and 

Zolghadr 

2014 (PSO)  

[35] 

Kaveh and 

Zolghadr 

2014 (DPSO)  

[35] 

Kaveh and 

Zolghadr 

2012 (CSS) 

[39] 

Kaveh and 

Zolghadr 2012  

(CSS-BBBC) 

[39] 

Kaveh and 

Mahdavi 2014 

(CBO) 

[34]  

Tejani et al. 

2016 (SOS)   

[37] 

Tejani et al. 2016  

(SOS-ABF1)  

[37] 

This study 

IMGA 

G1 (cm2) 23.494 19.607 21.710 17.478 19.691 19.520 19.544 19.5265 

G2 (cm2) 32.976 41.290 40.862 49.076 41.142 40.848 40.948 40.446 

G3 (cm2) 11.492 11.136 9.048 12.365 11.155 10.322 10.448 10.8192 

G4 (cm2) 24.839 21.025 19.673 21.979 21.320 20.927 21.046 21.0474 

G5 (cm2) 9.964 10.060 8.336 11.190 9.833 9.655 9.504 9.68791 

G6 (cm2) 12.039 12.758 16.120 12.590 12.852 12.112 11.936 11.4599 

G7 (cm2) 14.249 15.414 18.976 13.585 15.160 15.0313 14.942 14.9898 

Best (kg) 9171.93 8890.48 9204.51 9046.34 8889.13 8713.30 8712.11 8708.80 

Worst - - - - - - - 8756.36 

Mean 9251.84 8895.99 - - 8891.25 8735.34 8727.42 8721.07 

SD 89.38 4.26 - - 1.79 17.90 16.55 1.42 

NFEs 6,000 6,000 4,000 4,000 6,000 4,000 4,000 10,000 
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Table 8: Natural frequencies (Hz) of the 120-bar dome truss problem 

Natural 

frequency 

Kaveh and 

Zolghadr 2014 

(PSO)  

[35] 

Kaveh and 

Zolghadr 2014 

(DPSO)  

[35] 

Kaveh and 

Zolghadr 

2012 (CSS) 

[39] 

Kaveh and 

Zolghadr 2012  

(CSS-BBBC) 

[39] 

Kaveh and 

Mahdavi 2014 

(CBO) 

[34]  

Tejani et al. 

2016 (SOS)   

[37] 

Tejani et al. 

2016  (SOS-

ABF1)  

[37] 

This study 

IMGA 

f1  9.000 9.000 9.002 9.000 9.000 9.000 9.001 9.0000 

f2 11.000 11.000 11.002 11.007 11.000 11.000 11.000 11.000 

f3 11.005 11.005 11.006 11.018 11.000 11.000 11.000 11.000 

f4 11.013 11.012 11.015 11.026 11.009 11.004 11.001 11.000 

f5 11.042 11.047 11.045 11.048 11.049 11.071 11.067 11.066 

 

 

 

Figure 4: The 120-bar dome structure with additional masses 

 

4.5. The 200-bar planar truss structure 

This problem presented in this study to examine the capabilities of IMPA deals with a 

200-bar truss as depicted in Figure . The design variables are cross-sectional areas, classified 

into 29 sets as listed in Table 9, where the minimum and maximum allowable cross-

sectional areas are 0.1 and 30 cm2, respectively. The coefficient of elasticity is 
11 22.1 10 (N/m )E =   and the mass density is

37860 (kg/m ) = . The constraints on 

natural frequencies f1, f2, and f3 are as follows: 1 5f  , 2 10f  , and 3 15Hzf  . The 

lumped mass m = 100 kg, which is neglected in the calculation of the objective function, is 

added to the top of the truss at nodes 1 to 5. 

The results of IMGA and other metaheuristic methods for solving the structure of 200 

members are presented in Table 10. IMGA has obtained optimal results with 25,000 analysis 

including Best=2166.91, Worst=2210.74, Mean=2180.81, and SD=1.267. The 29 optimal 

cross-sections designed by IMGA are shown in Table 10 respectively. In this example, 

TLBO [36] and OM-GSA [40] were ranked first and second, respectively, and IMGA was 
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ranked third. Investigations show that the optimal results of IMGA have a suitable level of 

confidence. The convergence diagram of IMGA for iteration is shown in Fig. 6e. Based on 

the IMGA convergence diagram, it has converged with a high speed to the optimal response. 

The results of the first, second, and third frequencies are presented in Table 11. 
 

 

Figure 5: The 200-bar planar truss structure with additional masses 
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Table 9: Element grouping for the 200-bar truss structure 

Group Element's number Group Element's number 

G1 A1, A2, A3,A 4 G16 
A82, A83, A85, A86, A88,A89, A91, A92, A103, A104, A106, A107, 

A109, A110, A112, A113 

G2 A5, A8, A11, A14,A 17 G17 A115, A116, A117, A118 

G3 A19, A20, A21, A22, A23,A 24 G18 A119, A122, A125, A128, A131 

G4 A18, A25, A56, A63, A94, A101, A132, A139, A170, A177 G19 A133, A134, A135, A136, A137, A138 

G5 A26, A29, A32, A35, A38 G20 A140, A143, A146, A149, A152 

G6 
A6, A7, A9,A10, A12, A13, A15, A16, A27, A28, A30, A31, A33, 

A34, A36,A 37 
G21 

A120, A121, A123, A124, A126, A127, A129,A130, A141, A142, 

A44, A145, A147, A148, A150, A151 

G7 A39, A40, A41, A42 G22 A153, A154, A155, A156 

G8 A43, A46, A49, A52, A55 G23 A157, A160, A163, A166, A169 

G9 A57, A58, A59, A60,A61, A62 G24 A171, A172, A173, A174, A175, A176 

G10 A64, A67, A70, A73, A76 G25 A178, A181, A184, A187, A190 

G11 
A44, A45, A47, A48, A50, A51, A53, A54, A65, A66, A68, A69, 

A71, A72, A74, A75 
G26 

A158, A159, A161,A162, A164, A165, A167, A168, A179, A180, A182, 

A183, A185, A186, A188, A189 

G12 A77,A78, A79, A80 G27 A191, A192, A193, A194 

G13 A81, A84, A87, A90, A93 G28 A195, A197, A198, A200 

G14 A95,A96, A97, A98, A99, A100 
G29 A196, A199 

G15 A102, A105, A108, A111, A114 

 
Table 10 Comparative results of IMGA,  and other methods for solving the 200-bar planar truss structure problem 

Design 

variables 

 Khatibinia and 

Naseralavi 

2014  

(OM-GSA) 

[40] 

  Kaveh and 

Mahdavi  

2015 

(CBO)  

[41]     

 Kaveh and 

Mahdavi  

2015 

(2D-CBO) 

[41] 

Farshchin et 

al. 2016 

(TLBO) 

[36]  

Farshchin et 

al. 2016a 

 (MC-TLBO)  

[36] 

Mortazavi 

2021 

(CSS) 

[42]  

Kaveh and 

Zolghadr 

2014 (PSO)  

[35] 

Tejani et al. 

2016 (SOS)  

[37] 

This study 

IMGA 

G1 (cm2) 0.289 0.3268 0.4460 0.3030 0.3067 1.2439 2.4662 0.4781 0.259844 

G2 (cm2) 0.486 0.4502 0.4556 0.4479 0.4450 1.1438 0.1000 0.4481 0.500074 

G3 (cm2) 0.100 0.1000 0.1519 0.1001 0.1000 0.3769 0.1000 0.1049 0.100391 
G4 (cm2) 0.100 0.1000 0.1000 0.1000 0.1001 0.1494 0.1000 0.1045 0.100026 

G5 (cm2) 0.499 0.7125 0.4723 0.5124 0.5077 0.4835 0.1000 0.4875 0.614989 

G6 (cm2) 0.804 0.8029 0.7543 0.8205 0.8241 0.8103 2.8260 0.9353 0.798391 
G7 (cm2) 0.103 0.1028 0.1024 0.1000 0.1001 0.4364 0.1000 0.1200 0.102102 

G8 (cm2) 1.377 1.4877 1.4924 1.4499 1.4367 1.4554 4.6937 1.3236 1.47936 

G9 (cm2) 0.100 0.1000 0.1000 0.1001 0.1000 1.0103 0.1000 0.1015 0.100215 
G10 (cm2) 1.554 1.0998 1.6060 1.5955 1.5787 2.1382 1.7291 1.4827 1.4310 

G11 (cm2) 1.151 0.8766 1.2098 1.1556 1.1587 0.8583 1.8842 1.1384 1.18667 

G12 (cm2) 0.131 0.1229 0.1061 0.1242 0.1000 1.2718 0.1000 0.1020 0.100153 
G13 (cm2) 3.028 2.9058 3.0909 2.9753 2.9573 3.0807 3.7185 2.9943 3.07946 

G14 (cm2) 0.101 0.1000 0.7916 0.1000 0.1000 0.2677 0.1000 0.1562 0.103418 

G15 (cm2) 3.261 3.9952 3.6095 3.2553 3.2569 4.2403 2.3450 3.4330 3.1657 
G16 (cm2) 1.612 1.7175 1.4999 1.5762 1.5733 2.0098 0.9164 1.6816 1.55462 

G17 (cm2) 0.209 0.1000 0.1000 0.2680 0.2675 1.5956 0.1000 0.1026 0.170547 

G18 (cm2) 5.020 5.9423 5.2951 5.0692 5.0867 6.2338 7.1603 5.0739 5.13813 
G19 (cm2) 0.133 0.1102 0.1000 0.1000 0.1004 2.5793 30.000 0.1068 0.148292 

G20 (cm2) 5.453 5.8959 4.5288 5.4281 5.4551 3.0520 6.1670 6.0176 5.25655 
G21 (cm2) 2.113 2.1858 2.2178 2.0942 2.0998 1.8121 3.1906 2.0340 2.13664 

G22 (cm2) 0.723 0.5249 0.7571 0.6985 0.7156 1.2986 0.2150 0.6595 0.751744 

G23 (cm2) 7.724 7.2676 7.7999 7.6663 7.6425 5.8810 18.1871 6.9003 8.11257 
G24 (cm2) 0.182 0.1278 0.3506 0.1008 0.1049 0.2324 0.1000 0.2020 0.172092 

G25 (cm2) 7.971 7.8865 7.8943 7.9899 7.9352 7.7536 30.000 6.8356 8.06052 

G26 (cm2) 2.996 2.8407 2.8097 2.8084 2.8262 2.6871 2.0233 2.6644 2.85462 
G27 (cm2) 10.206 11.7849 10.4220 10.4661 10.4388 12.5094 16.061 12.1430 9.83976 

G28 (cm2) 20.699 22.7014 21.2576 21.2466 21.2125 29.5704 30.000 22.2484 20.6425 

G29 (cm2) 11.555 7.8840 11.9061 10.7340 10.8347 8.2910 30.000 8.9378 12.9205 
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Best (kg) 2158.64 2203.21 2189.08 2156.54 2156.63 2259.86 3987.61 2180.32 2166.91 

Worst - - - - - - - - 2210.74 

Mean 2189.58 2481.49 2308.44 2157.54 2157.44 NA 5027.78 2303.30 2180.81 
SD 1.586 250.825 132.514 1.545 0.528 NA 708.95 83.589 1.267 

NFEs 15,000 10,000 10,000 23,000 23,000 10,000 20,000 10,000 25,000 

 

Table 11: Comparative results of IMGA and other methods for solving the 200-bar planar truss structure 

problem 

No. 

frequency 

 Khatibinia 

and 

Naseralavi 

2014  

(OM-GSA) 

[40] 

  Kaveh and 

Mahdavi  

2015 

(CBO)  

[41]     

 Kaveh and 

Mahdavi  

2015 

(2D-CBO) 

[41] 

Farshchin et 

al. 2016 

(TLBO) 

[36]  

Farshchin et 

al. 2016a 

 (MC-

TLBO)  

[36] 

Mortazavi 

2021 

(CSS)  

[42] 

Kaveh and 

Zolghadr 

2014 (PSO)  

[35] 

Tejani et al. 

2016 (SOS)  

[37] 

This study 

IMGA 

f1 NA 5.0010 5.0016 5.0000 5.0000 5.0000 5.0650 5.0001 5.000 

f2 NA 12.5247 13.3868 12.2171 12.2306 15.9610 13.1800 13.4306 11.971 

f3 NA 15.1845 15.1981 15.0380 15.0259 16.4070 16.0970 15.2645 15.101 
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Fig. 6. Convergence history: (a) 37-bar bridge, (b)  52-bar bridge, (c) 72-bar space truss, (d) The 120-

bar dome, (e) 200-bar planar truss 

 

 

5. CONCLUSION 
 

In this study, we introduced the Improved Material Generation Algorithm (IMGA), a 

metaheuristic approach tailored for addressing engineering problems characterized by 

dynamic constraints. IMGA draws inspiration from chemical processes wherein materials 

are combined to create new compounds with enhanced stability and energy levels. The 

fundamental unit in this algorithm, akin to a chemical element, represents a structure that 

remains unchanged throughout the optimization process. However, IMGA leverages 

properties at atomic, nano, and macro scales to refine performance or effect changes, 

classifying materials based on their distinct attributes. Chemical properties are modified 

through electron transfers or sharing among atoms, forming the basis for IMGA's 

optimization strategy, integrating concepts of compounds, reactions, and stability. 

This paper extends IMGA by incorporating a novel technique known as Random Chaotic 

(RC), aimed at accelerating convergence and achieving a balanced approach between 

exploration and exploitation. RC injects variability into the algorithm's search process, 

fostering exploration of diverse solutions while exploiting promising paths towards 

optimization. To assess IMGA's efficacy, we applied it to optimize various complex 

structures including a 37-bar truss bridge, a 52-bar dome, and 72-bar, 120-bar, and 200-bar 

planar configurations under frequency constraints. Comparative analysis with other 

metaheuristic methods demonstrates IMGA's superior performance, particularly in solving 

nonlinear problems effectively. The findings illustrate IMGA's robustness and versatility in 

handling challenging optimization tasks, suggesting its potential for applications requiring 

high computational precision and flexibility. IMGA not only excels in optimizing structures 

under dynamic constraints but also showcases adaptability to increasingly complex problem 
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domains. This adaptability is crucial in real-world scenarios where engineering solutions 

must evolve in response to changing conditions and constraints. 

Furthermore, the integration of RC into IMGA significantly enhances its practical utility by 

improving convergence speed and ensuring a more comprehensive exploration of the 

solution space. By balancing exploration and exploitation, RC enables IMGA to efficiently 

navigate complex optimization landscapes, thereby achieving competitive solutions that 

outperform conventional methods in terms of accuracy and computational efficiency. In 

conclusion, the development and refinement of IMGA, augmented by the introduction of 

RC, represent substantial advancements in the realm of metaheuristic optimization. This 

study not only validates IMGA's effectiveness through empirical testing on diverse structural 

optimization problems but also underscores its potential for broader applications across 

engineering disciplines. As computational capabilities continue to evolve, IMGA stands 

poised to contribute significantly to advancing optimization techniques, offering a promising 

avenue for future research and practical implementation in complex engineering scenarios. 
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