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ABSTRACT 
 

This paper presents the chaotic variants of the particle swarm optimization-statistical 

regeneration mechanism (PSO-SRM). The nine chaotic maps named Chebyshev, Circle, 

Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent are used to increase the 

performance of the PSO-SRM. These maps are utilized instead of the random number, 

which defines the solution generation method. The robustness and performance of these 

methods are tested in the three steel frame design problems, including the 1-bay 10-story 

steel frame, 3-bay 15-story steel frame, and 3-bay 24-story steel frame. The optimization 

results reveal that the applied chaotic maps improve the performance of the PSO-SRM. 
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1. INTRODUCTION 
 

Due to resource limitations, the optimum design of the structure has been the most popular 

research item in the last four decades [1, 2]. Gradient-based methods and metaheuristic 

algorithms are two well-known optimization methods. Metaheuristic algorithms are easily 

coded and do not need gradient information [3, 4]. Hence, metaheuristic algorithms are 

popular optimization methods for optimizers. Therefore, metaheuristic algorithms are used 

by the structural optimizer in the different optimization problems. 

A single optimization method cannot solve all kinds of optimization problems efficiently. 

Hence, researchers have invented different optimization methods [5]. Some of the new of 
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them can refer to, Across Neighbourhood Search (ANS) introduced by Wu [6], Andean 

Condor Algorithm presented by Almonacid and Soto [7], Artificial Electric Field Algorithm 

(AEEA) developed by Anita and Yadav [8], Cheetah Based Algorithm (CBA) introduced by 

Klein et al [9], Coyote optimization algorithm (COA) developed by Pierezan and Coelho 

[10], Emperor Penguins Colony (EPC) presented by Harifi et al. [11], Flow Regime 

Algorithm (FRA) presented by Tahani and Babayan [12], Hunger Games Search (HGS) 

developed by Yang et al. [13], Monarch Butterfly Optimization (MBO) introduced by Wang 

et al. [14], Newton Metaheuristic Algorithm (NMA) developed by Gholizadeh et al. [15], 

Lion algorithm (LA) is introduced by Rajakumar [16],  Pity Beetle Algorithm (PBA) 

developed by Kallioras et al. [17], Shuffled shepherd optimization algorithm (SSOA) 

presented by Kaveh and Zaerreza [18], Squirrel Search Algorithm (SSA) developed by Jain 

et al. [19], Team Game Algorithm (TGA) presented by Mahmoodabadi et al. [20], and 

Queuing search algorithm (QSA) developed by Zhang et al. [21]. 

In the field of structural optimization, metaheuristic algorithms are used by different 

researchers for their optimization problems, such as Kaveh and Talatahari [22] applied the 

enhanced charged system search in the configuration optimization problem. Mohebian et al. 

[23] utilized differential evolution (DE) in the structural damage detection problem. Al 

Thobiani et al. [24] applied the hybrid version of the PSO and gray wolf optimization 

method to the crack detection problem. Kaveh and Rahami [25] utilized the genetic 

algorithm for the optimum design of the structures. Kazemzadeh Azad et al. [26] developed 

the upper-bound strategy framework for the optimum design of structures using meta-

heuristic algorithms. Alkayem et al. [27] presented a new enhanced version of the PSO for 

the structural damage detection problem.  

One of the efficient ways to improve the performance of meta-heuristic algorithms is by 

applying chaotic maps [28]. In the metaheuristic algorithms, chaotic maps are used instead 

of the random number in the main cycle of the optimization methods. Some of the recent 

applications of chaotic maps in improving the metaheuristic algorithms are listed as follows. 

Talatahari et al. [29] applied chaotic maps to improve the performance of the charged 

system search algorithms. Kaveh and Yousefpoor [30] developed enhanced metaheuristic 

algorithms using chaotic maps for the optimum design of the truss. Gharehchopogh et al. 

[31] developed the chaotic vortex search for future selection. Das and Saha [32] applied 

chaotic maps to structural health monitoring problems. Talatahari et al. [33] presented the 

chaotic imperialist competitive algorithm for the optimum design of the structure. Kaveh 

and Javadi [34] developed the chaotic firefly algorithms for the optimum design of large-

scale structures.  

This paper presents the chaotic variant of the particle swarm optimization-statistical 

regeneration mechanism (PSO-SRM). For this purpose, nine chaotic maps are considered, 

including the Chebyshev, Circle, Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and 

Tent. These maps are used instead of the random number, which defines the solution 

generation method. The efficiency of the chaotic variants of the PSO-SRM is tested in the 

three steel frames. In these examples, the efficiency of the force method is previously 

approved by Kaveh and Zaerreza [35]. Therefore, the force method is utilized as the 

analyzing method. More information about the force method is available in ref [2]. The 

optimization problem results show that the chaotic maps improve the performance of the 

PSO-SRM algorithm. 
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2. PARTICLE SWARM OPTIMIZATION-STATISTICAL REGENERATION 

MECHANISM (PSO-SRM) 
 

The improved version of the particle swarm optimization algorithms utilizing the statistical 

regeneration mechanism (SRM) is presented in this section, which is developed by Kaveh 

and Zaerreza [35]. In the PSO-SRM, the statistical regeneration mechanism is utilized. This 

mechanism improves the performance of the different optimization methods, such as Rao 

algorithms[36]. In the PSO-SRM, fifty percent of the solution is generated utilizing the basic 

particle swarm optimization algorithm, and the remaining solution is generated using the 

statistical regeneration mechanism (SRM). In order to add the SRM, in the first fifty percent 

of the optimization cycles, twenty percent variable of the considered solution is regenerated 

using the SRM. In the remaining iterations, only one variable of the solution is regenerated 

utilizing the SRM. The steps of the PSO-SRM are provided as follows. 

Step 1: Initialization  

In the initialization step, the solutions are generated randomly in the search space using 

Eq (1). 

 

𝑃𝑖
0 = 𝑃𝑚𝑖𝑛 + 𝑟𝑑 × (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛)    𝑖 =  1, 2, 3, … , 𝑛 (1) 

 

in which 𝑃𝑖
0 is the initial value of the ith particle in the search space. 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 are 

the lower and upper bound of the search space. 𝑟𝑑 is the random vector generated between 0 

and 1. n is the number of the particle, which is defined by the user.  

Step 2: Define the new solution generation method 

In order to find which solution generation method is utilized, a random number is 

generated. If the value of the random number is less than α, then the solution is generated 

using the basic PSO solution generation method, so the algorithm goes to step 3. Otherwise, 

the statistical regeneration mechanism (SRM) is utilized to generate the new solution, and 

the algorithms go to step 4. 

Step 3: Generate the new solution based on the PSO 

The solution generation based on the PSO consists of three components, including the 

step size of the solution in the previous iteration, moving toward the best solution obtained 

by the entire population, and moving toward the best solution obtained by the considered 

solution. Therefore, the new solution is generated utilizing the following equation. 

 

𝑃𝑖
𝑡+1 = 𝑤 × (𝑃𝑖

𝑡 − 𝑃𝑖
𝑡−1) + 𝑐1 × 𝑟𝑎𝑛𝑑1  ×  (𝑃𝑖

𝑏 − 𝑃𝑖
𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑2  

×  (𝑃𝑖
𝐺𝑏 − 𝑃𝑖

𝑡) 
(2) 

 

where 𝑃𝑖
𝑡+1 is the new position of the ith particle in the t+1th iteration. 𝑃𝑖

𝑡 and 𝑃𝑖
𝑡−1 are the 

positions of the ith particle in the tth and t-1th iteration. 𝑃𝑖
𝑏 is the best solution obtained by 

the considered particle. 𝑃𝑖
𝐺𝑏 is the best solution obtained by the whole of the particles. 𝑤 is 

the parameter which is the value of it is set to 1 and decreased by 0.01 percent in each 
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iteration. 𝑐1 and 𝑐2 are user-defined parameters. 

Step 4: Generate the new solution using the SRM 

In order to generate the new solution using the SRM, the considered solution is replaced 

with the 𝑃𝑖
𝑏. Then, in the first fifty percent of the iteration, twenty percent variable of the 

considered solution is selected and regenerated utilizing Eq (3). Otherwise, one variable of 

the considered solution is selected randomly and regenerated using Eq (3). 

 

𝑃𝑖
𝑡+1 =  𝑈(𝑀𝑒𝑎𝑛 − 𝑆𝑡𝑑 − 𝑆𝑖𝑔𝑚𝑎,𝑀𝑒𝑎𝑛 + 𝑆𝑡𝑑 + 𝑆𝑖𝑔𝑚𝑎) (3) 

 

where 𝑈   is the operator that returns a random number generated from the continuous 

uniform distribution with lower and upper endpoints specified by 𝑀𝑒𝑎𝑛 − 𝑆𝑡𝑑 − 𝑆𝑖𝑔𝑚𝑎 

and 𝑀𝑒𝑎𝑛 + 𝑆𝑡𝑑 + 𝑆𝑖𝑔𝑚𝑎. 𝑀𝑒𝑎𝑛 and Std are the average and standard deviation of the best 

solutions found by the particles. 𝑆𝑖𝑔𝑚𝑎 is a parameter that helps the statistically regenerated 

mechanism to work efficiently when the entire population converges to the specified value 

and is defined as follows. 

 

𝑆𝑖𝑔𝑚𝑎 = {
3        𝐼𝑓 𝑆𝑡𝑑 <  0.01 × (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) 

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
 (4) 

 

The value of the 3 is considered for the 𝑆𝑖𝑔𝑚𝑎 by testing the different functions and 

values. Due to using the rounding function to connect the discrete optimization problem to 

continuous optimization methods, using the constant value of the 3 it means that in Eq (3) at 

least 3 bigger or smaller sections than 𝑀𝑒𝑎𝑛 are selected.  

Step 5: Check the termination condition 

The maximum number of iterations is considered as the termination condition of the 

algorithm. If the termination condition is satisfied, the optimization process is stopped, and 

the 𝑃𝑖
𝐺𝑏  is reported. Otherwise, the algorithm goes to Step 2 for the next cycle of 

optimization. 

 

 

3. CHAOTIC PARTICLE SWARM OPTIMIZATION-STATISTICAL 

REGENERATION MECHANISM 
 

In this study, nine chaotic maps are considered, and the performance of PSO-SRM is 

investigated using these maps. These maps include the Chebyshev [37], Circle [38], 

Iterative[39], Logistic[39], Piecewise[40], Sine[41], Singer [42], Sinusoidal [43], Tent[44]. 

These maps are used in step 2 of the PSO-SRM. In step 2, the chaotic maps are utilized 

instead of the random number. Therefore, there are nine different variants of the PSO-SRM 

provided in this study. The name of the algorithms using these maps and the mathematical 

formulation of the chaotic maps are provided in Table (1), and visualization of them is 

provided in Figure 1. 
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Table 1. Formulation of the chaotic maps 

Name of 

map 

Name of the 

algorithm using 

the map 

Chaotic map 

Chebyshev ChPSO-SRM 𝑥𝑖+1 = cos(𝑖 cos
−1(𝑥𝑖)) 

Circle CiPSO-SRM 𝑥𝑖+1 = 𝑚𝑜𝑑 (𝑥𝑖 + 0.2 − (
0.5

2𝜋
) sin(2𝜋𝑥𝑘) , 1) 

Iterative IPSO-SRM 𝑥𝑖+1 = sin (
0.7𝜋

𝑥𝑖
) 

Logistic LPSO-SRM 𝑥𝑖+1 = 4𝑥𝑖(1 − 𝑥𝑖) 

Piecewise PiPSO-SRM 𝑥𝑖+1 = 

{
 
 
 

 
 
 

𝑥𝑖
𝑃
                     0 ≤  𝑥𝑖  < 𝑃

𝑥𝑖 − 𝑃

0.5 − 𝑃
                    𝑃 ≤  𝑥𝑖  < 0.5

1 − 𝑃 − 𝑥𝑖
0.5 − 𝑃

                         0.5 ≤  𝑥𝑖  < 1 − 𝑃

1 − 𝑥𝑖
𝑃                                 1 − 𝑃 ≤  𝑥𝑖  < 1

 , 𝑃 = 0.4 

Sine SinePSO-SRM 𝑥𝑖+1 = 
𝑎

4
sin(𝜋𝑥𝑖) ,   𝑎 = 4 

Singer SingPSO-SRM 
𝑥𝑖+1 = 𝜇(7.86𝑥𝑖 − 23.31𝑥𝑖

2 + 28.75 𝑥𝑖
3 − 13.302875𝑥𝑖

4),
𝜇 = 1.07 

Sinusoidal SinuPSO-SRM 𝑥𝑖+1 = 𝑎𝑥𝑖
2 sin(𝜋𝑥𝑖) ,   𝑎 = 2.3 

Tent TPSO-SRM 𝑥𝑖+1 = {

𝑥𝑖
0.7

                        𝑥𝑖 < 0.7

10

3
(1 − 𝑥𝑖)        𝑥𝑖 ≥ 0.7

 

 

 

  

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
3.

13
.4

.5
67

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 e

da
ri

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             5 / 19

http://dx.doi.org/10.22068/ijoce.2023.13.4.567
https://edari.iust.ac.ir/ijoce/article-1-567-fa.html


A. Kaveh and A. Zaerreza 

 

482 

  

  

  

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
3.

13
.4

.5
67

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 e

da
ri

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             6 / 19

http://dx.doi.org/10.22068/ijoce.2023.13.4.567
https://edari.iust.ac.ir/ijoce/article-1-567-fa.html


CHAOTIC VARIANTS OF THE PSO-SRM FOR OPTIMUM DESIGN OF … 

 

483 

 
Figure 1. Behaviour of the chaotic maps 

 

 

4. NUMERICAL EXAMPLES 
 

Three 2D steel frame is considered in this study to investigate the performance of the chaotic 

variants of the PSO-SRM. These examples are 1-bay 10-story steel frame, 3-bay 15-story 

steel frame, and 3-bay 24-story steel frame. In these examples, AISC-LRFD requirements 

are fulfilled for the stress and displacement limitation. The population size is 20, and the 

maximum number of function evaluations is 20000. 𝑐1  and 𝑐2  are set to 2 in all of the 

variants of the PSO-SRM. α is set to 0.8 in the chaotic variants of the PSO-SRM, and α is set 

to 0.5 in the basic PSO-SRM algorithms. 

 

 

4.1 The 1-bay 10-story steel frame 

The 1-bay 10-story is the first skeletal example considered in this study to examine the 

performance of the chaotic algorithms, as shown in Figure 2. The members of this structure 

are divided into the 9 element groups. The section for the beam members is selected from 

the 267 W-section, and the section for the column elements is selected from W 12 and W 14 

sections. The elasticity modulus and yield stress of the members are set to 29000 ksi and 36 

ksi, respectively.  

 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
3.

13
.4

.5
67

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 e

da
ri

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             7 / 19

http://dx.doi.org/10.22068/ijoce.2023.13.4.567
https://edari.iust.ac.ir/ijoce/article-1-567-fa.html


A. Kaveh and A. Zaerreza 

 

484 

 
Figure 2. The schematic of the 1-bay 10-story steel frame. 
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The results obtained by the basic algorithms and chaotic variants of the PSO-SRM are 

provided in Table 2. According to this Table, all chaotic variants of the PSO-SRM can find 

the optimum result same as the basic algorithms. The worst weight of the 30 independents 

run of the ChPSO-SRM, CiPSO-SRM, LPSO-SRM, SinuPSO-SRM and TPSO-SRM is 

better than the basic algorithms. In term of the average weight, only the results of the Ci-

PSO-SRM is worse than basic PSO-SRM. The other chaotic algorithms have better average 

weights than basic PSO-SRM algorithms. Convergence history for the best and average run 

of the PSO-SRM and chaotic variants of it is provided in figures 3 and 4. 

 
Table 2. Comparison results of the chaotic variants of PSO-SRM in the 1-bay 10-story steel 

frame 

Eleme

nt 

group 

PSO-

SRM 

[35] 

ChPSO

-SRM 

CiPSO-

SRM 

IPSO-

SRM 

LPSO-

SRM 

PiPSO-

SRM 

SinePS

O-SRM 

SingPS

O-SRM 

SinuPS

O-SRM 

TPSO-

SRM 

1 
W14×2

33 

W14×2

33 

W14×2

33 

W14×2

33 

W14×2

33 

W14×2

33 

W14×2

33 

W14×2

33 

W14×2

33 

W14×2

33 

2 
W14×1

76 

W14×1

76 

W14×1

76 

W14×1

76 

W14×1

76 

W14×1

76 

W14×1

76 

W14×1

76 

W14×1

76 

W14×1

76 

3 
W14×1

59 

W14×1

59 

W14×1

59 

W14×1

59 

W14×1

59 

W14×1

59 

W14×1

59 

W14×1

59 

W14×1

59 

W14×1

59 

4 
W14×9

9 

W14×9

9 

W14×9

9 

W14×9

9 

W14×9

9 

W14×9

9 

W14×9

9 

W14×9

9 

W14×9

9 

W14×9

9 

5 
W14×6

1 

W14×6

1 

W14×6

1 

W14×6

1 

W14×6

1 

W14×6

1 

W14×6

1 

W14×6

1 

W14×6

1 

W14×6

1 

6 
W33×1

18 

W33×1

18 

W33×1

18 

W33×1

18 

W33×1

18 

W33×1

18 

W33×1

18 

W33×1

18 

W33×1

18 

W33×1

18 

7 
W30×9

0 

W30×9

0 

W30×9

0 

W30×9

0 

W30×9

0 

W30×9

0 

W30×9

0 

W30×9

0 

W30×9

0 

W30×9

0 

8 
W27×8

4 

W27×8

4 

W27×8

4 

W27×8

4 

W27×8

4 

W27×8

4 

W27×8

4 

W27×8

4 

W27×8

4 

W27×8

4 

9 
W18×4

6 

W18×4

6 

W18×4

6 

W18×4

6 

W18×4

6 

W18×4

6 

W18×4

6 

W18×4

6 

W18×4

6 

W18×4

6 

Best 

(lb) 

64001.9

8 

64001.9

8 

64001.9

8 

64001.9

8 

64001.9

8 

64001.9

8 

64001.9

8 

64001.9

8 

64001.9

8 

64001.9

8 

Worst 

(lb) 

66150.0

2 

65203.8

2 

66017.2

4 

66987.8

3 

66013.6

3 

66668.6

2 

66551.9

8 

66635.9

6 

66027.0

9 

66138.1

1 

Mean 

(lb) 

64607.0

8 

64328.4

1 

64672.6

1 

64561.3

1 

64473.6

1 

64389.7

0 

64558.4

5 

64545.8

8 

64541.8

4 

64319.3

4 

SD 

(lb) 
640.86 330.76 646.30 696.24 504.76 580.12 710.44 729.71 572.65 439.74 
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Figure 3. Convergence histories for the best run of the PSO-SRM and chaotic algorithms for the 

1-bay 10-story steel frame 

 

 
Figure 4. Convergence histories for the average run of the PSO-SRM and chaotic algorithms for 

the 1-bay 10-story steel frame 

 

4.2 The 3-bay 15-story steel frame 

The second example investigated in this study is the 3-bay 15-story steel frame. The 

structural members of this example are divided into 10 groups for the column member and 

one group for the beam members, as shown in Figure 5. The section for the beam and 

column members are picked from the 267 W-section. The elasticity modulus and yield stress 

of the members are set to 29000 ksi and 36 ksi, respectively. In addition to the AISC-LRFD 
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requirements, the maximum last story sway is limited to 9.25 in. 

 

 
Figure 5. The schematic of the 3-bay 15-story steel frame 

 

The optimization result is summarized in Table 3. According to this Table, SinePSO-

SRM obtained a better weight (86916.97 lb) than other considered methods. In addition, the 

chaotic methods named ChPSO-SRM, CiPSO-SRM, PiPSO-SRM, SinePSO-SRM, 

SingPSO-SRM, and TPSO-SRM obtained the better result than PSO-SRM. The statistical 

result obtained by the ChPSO-SRM is better than the basic algorithm. The improvement in 
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the optimum result and statistical results shows that the chaotic maps considered in this 

study perfectly enhance the performance of the PSO-SRM. Convergence history for the best 

and average run of the PSO-SRM and chaotic variants of it is provided in Figs 6 and 7. 

 
Table 3. Comparison results of the chaotic variants of PSO-SRM in the 3-bay 15-story steel 

frame 

Elemen

t group  

PSO-

SRM 

[35] 

ChPSO-

SRM 

CiPSO-

SRM 

IPSO-

SRM 

LPSO-

SRM 

PiPSO-

SRM 

SinePSO

-SRM 

SingPSO

-SRM 

SinuPSO

-SRM 

TPSO-

SRM 

1 W12×96 W16×89 W16×89 W16×89 W14×99 W16×89 W14×90 W14×99 W24×94 W14×99 
2 W27×16

1 

W36×17

0 

W36×17

0 

W36×17

0 

W27×16

1 

W36×17

0 

W36×17

0 

W27×16

1 

W30×17

3 

W27×16

1 

3 W27×84 W27×84 W14×82 W27×84 W27×84 W14×82 W27×84 W27×84 W18×76 W27×84 
4 W21×11

1 

W24×10

4 

W24×10

4 

W24×10

4 

W24×10

4 

W24×10

4 

W24×10

4 

W24×10

4 

W24×11

7 

W24×10

4 

5 W14×61 W14×61 W21×68 W21×68 W21×68 W21×68 W14×61 W14×61 W12×58 W14×61 
6 W30×90 W30×90 W18×86 W18×86 W18×86 W18×86 W30×90 W30×90 W30×90 W30×90 

7 W8×48 W8×48 W14×48 W12×45 W8×48 W14×48 W8×48 W14×48 W10×45 W8×48 

8 W12×65 W12×65 W12×65 W21×68 W12×65 W12×65 W12×65 W21×68 W14×68 W12×65 
9 W6×25 W8×28 W8×28 W8×28 W8×28 W8×28 W6×25 W6×25 W8×24 W8×28 

10 W8×40 W10×39 W10×39 W10×39 W10×39 W10×39 W8×40 W8×40 W16×40 W10×39 

11 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 

Best 

(lb) 

87183.3

9 

87054.9

7 

87123.9

5 

87261.9

6 

87261.9

5 

87123.9

5 

86916.9

7 

87123.9

6 

87202.5

8 

87054.9

7 

Worst 
(lb) 

88861.7
7 

88218.3
6 

91956.4
3 

88306.5
4 

88046.5
5 

88604.9
3 

88099.5
2 

91873.2
1 

90775.5
8 

91611.4
4 

Mean 

(lb) 

87606.5

4 

87591.3

9 

88199.9

9 

87709.0

4 

87610.6

4 

87767.1

9 

87572.4

0 

87661.3

5 

87748.0

9 

88102.6

6 
SD (lb) 318.36 291.51 1094.61 268.92 241.13 400.05 308.66 821.26 810.33 1246.65 

 

 
Figure 6. Convergence histories for the best run of the PSO-SRM and chaotic algorithms for the 

3-bay 15-story steel frame 
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Figure 7. Convergence histories for the average run of the PSO-SRM and chaotic algorithms for 

the 3-bay 15-story steel frame 

 

4.3 The 3-bay 24-story steel frame 

The last example considered in this study to examine the performance of the methods is the 

3-bay 15-story steel frame. This frame is made up of 168 members, which are divided into 

20 groups, as shown in Figure 8. The section of the column member is selected from W 14 

sections, and the beam elements are picked from 267 W sections. The elasticity modulus and 

yield stress of the members are set to 29732 ksi and 33.4 ksi, respectively. 
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Figure 8. The schematic of the 3-bay 24-story steel frame. 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
3.

13
.4

.5
67

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 e

da
ri

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                            14 / 19

http://dx.doi.org/10.22068/ijoce.2023.13.4.567
https://edari.iust.ac.ir/ijoce/article-1-567-fa.html


CHAOTIC VARIANTS OF THE PSO-SRM FOR OPTIMUM DESIGN OF … 

 

491 

The results of the considered algorithms are provided in Table 4. According to this Table, 

IPSO-SRM and SingPSO-SRM found the optimum result same as the basic PSO-SRM. 

However, in terms of the statistical result for the 30 independent runs, IPSO-SRM and 

SingPSO-SRM acquired better results than PSO-SRM. Convergence history for the best and 

average run of the PSO-SRM and chaotic variants of it is provided in Figures 9 and 10. 

 
Table 4. Comparison results of the chaotic variants of PSO-SRM in the 3-bay 24-story steel 

frame 

Eleme
nt 

group 

PSO-

SRM 

ChPSO-

SRM 

CiPSO-

SRM 

IPSO-

SRM 

LPSO-

SRM 

PiPSO-

SRM 

SinePSO

-SRM 

SingPSO

-SRM 

SinuPSO

-SRM 

TPSO-

SRM 

1 
W14×15

9 

W14×15

9 

W14×15

9 

W14×15

9 

W14×14

5 

W14×15

9 

W14×15

9 

W14×15

9 

W14×13

2 

W14×14

5 

2 
W14×13

2 

W14×10

9 

W14×13

2 

W14×13

2 

W14×14

5 

W14×12

0 

W14×13

2 

W14×10

9 
W14×99 

W14×13

2 

3 
W14×10

9 
W14×99 W14×99 

W14×10
9 

W14×10
9 

W14×10
9 

W14×99 W14×99 
W14×10

9 
W14×12

0 

4 W14×74 W14×82 W14×74 W14×74 W14×74 W14×74 W14×74 W14×82 W14×90 W14×74 

5 W14×82 W14×74 W14×82 W14×68 W14×61 W14×68 W14×61 W14×74 W14×74 W14×61 
6 W14×48 W14×53 W14×38 W14×38 W14×43 W14×43 W14×43 W14×43 W14×38 W14×43 

7 W14×30 W14×34 W14×48 W14×38 W14×38 W14×34 W14×38 W14×38 W14×34 W14×34 

8 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 
9 W14×90 W14×90 W14×90 W14×90 W14×99 W14×99 W14×90 W14×90 W14×99 W14×99 

10 W14×99 
W14×10

9 
W14×99 W14×99 W14×99 

W14×10

9 
W14×99 

W14×10

9 

W14×12

0 
W14×99 

11 W14×90 W14×99 W14×99 W14×90 W14×90 W14×99 W14×99 W14×99 W14×99 W14×90 

12 W14×90 W14×90 W14×90 W14×90 W14×90 W14×99 W14×90 W14×90 W14×90 W14×90 

13 W14×61 W14×68 W14×61 W14×68 W14×74 W14×74 W14×74 W14×68 W14×74 W14×74 
14 W14×53 W14×53 W14×61 W14×61 W14×61 W14×61 W14×61 W14×61 W14×68 W14×61 

15 W14×34 W14×34 W14×26 W14×30 W14×30 W14×34 W14×30 W14×30 W14×34 W14×34 

16 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 
17 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 

18 W6×15 W6×15 W6×15 W6×15 W6×15 W8×18 W6×15 W6×15 W6×15 W8×18 

19 W24×55 W24×55 W24×55 W24×55 W24×55 W14×48 W24×55 W24×55 W24×55 W24×55 
20 W6×8.5 W6×8.5 W6×8.5 W6×8.5 W6×8.5 W6×8.5 W6×8.5 W6×8.5 W6×8.5 W6×8.5 

Best 

(lb) 

201402.

05 

201546.

04 

201906.

03 

201402.

04 

201906.

05 

201846.

02 

201583.

04 

201402.

04 

202050.

03 

201906.

04 
Worst 

(lb) 

207372.

11 

207793.

50 

225029.

82 

206886.

01 

209981.

93 

216229.

13 

222941.

79 

207158.

12 

215175.

79 

210197.

93 

Mean 
(lb) 

203400.
11 

203507.
01 

205918.
02 

203406.
27 

204019.
56 

204760.
95 

204456.
12 

203259.
69 

204462.
09 

204325.
57 

SD 

(lb) 
1539.31 1512.02 4501.81 1322.98 2143.71 2891.80 4085.43 1242.53 2965.53 2160.70 
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Figure 9. Convergence histories for the best run of the PSO-SRM and chaotic algorithms for the 

3-bay 24-story steel frame 

 

 
Figure 10. Convergence histories for the average run of the PSO-SRM and chaotic algorithms 

for the 3-bay 24-story steel frame 

 

 

5. CONCLUSION 
 

The chaotic variants of the particle swarm optimization-statistical regeneration mechanism 

(PSO-SRM) are presented in this paper. In these methods, chaotic maps are utilized to define 

the solution generation method. Nine chaotic maps, including the Chebyshev, Circle, 

Iterative, Logistic, Piecewise, Sine, Singer, Sinusoidal, and Tent, are applied in this study. 
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The performance of the chaotic variants of the PSO-SRM is tested in the three steel frame 

design problems. In the first example, the chaotic methods can find optimum results like the 

PSO-SRM. However, the statistical results of the chaotic algorithms are better than PSO-

SRM. SinePSO-SRM is acquired as the optimum solution in the second example, which is 

better than other chaotic methods. In addition, the statistical results of the ChPSO-SRM are 

better than other methods. In the last example, IPSO-SRM and SingPSO-SRM can find 

better results than other chaotic algorithms. This result shows that the chaotic maps perfectly 

improve the performance of the PSO-SRM algorithms. 
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