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ABSTRACT 
 

Shape optimization of a double-curved dam is formulated using control points for 

interpolation functions. Every design vector is decoded into the integrated water-dam-

foundation rock model. An enhanced algorithm is proposed by hybridizing particle swarm 

algorithm with ant colony optimization and simulated annealing. The best experiences of the 

search agents are indirectly shared via pheromone trail deposited on a bi-partite 

characteristic graph. Such a stochastic search is further tuned by Boltzmann functions in 

simulated annealing. The proposed method earned the first rank in comparison with six well-

known meta-heuristic algorithms in solving benchmark test functions. It captured the 

optimal shape design of Morrow Point dam, as a widely addressed case-study, by 21% 

reduced concrete volume with respect to the common USBR design practice and 16% better 

than the particle swarm optimizer. Such an optimal design was also superior to the others in 

stress redistribution for better performance of the dam system. 
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1. INTRODUCTION 
 

Design of a concrete dam is one of the real-world problems that bring about high economic 

impact. Concrete volume as the main construction material plays a major role in the total 

                                                   
*Corresponding author: Civil Engineering Department, Faculty of Engineering, Kharazmi University, 

Tehran & Karaj, Iran 
†E-mail address: shahruzi@khu.ac.ir (Mohsen Shahrouzi) 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
3.

13
.4

.5
64

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 e

da
ri

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
19

 ]
 

                             1 / 26

http://dx.doi.org/10.22068/ijoce.2023.13.4.564
https://edari.iust.ac.ir/ijoce/article-1-564-fa.html


M. Shahrouzi, S.-Sh. Emamzadeh and Y. Naserifar 

 

414 

cost of such an infrastructure. Therefore, its minimization has been already addressed as a 

rewarding task by several investigators [1–3]. The optimization methods seek for the best 

design to find the optimal shape of the dam provided that it can successfully withstand 

natural loads. 

Sharma [4] utilizes the theory of plates and shells to seek for the best design of dam with 

a repetitive trial and error method. Sharpe [5] treated shape and geometry optimization of a 

concrete dam by Sequential Linear Programming (SQP) as a branch of MP. Wassermann [6] 

used a mathematical formulation utilizing some shape functions and consequently employed 

SQP to solve the optimization problem. Yao and Choi [1] applied higher-order elements for 

the structural analysis in the design of dams. Some research works between 1987 and 1992 

introduced a practical continuous geometrical model for shape optimization of the double-

curved dams [7].  

An alternative solution is to apply zero-order stochastic methods that do not require any 

gradient calculations (despite traditional MP) for optimal design. These methods include 

meta-heuristic algorithms as a branch of stochastic search with the capability of escaping 

from local optima toward global optimum. Some methods in this category can be referred to 

as Ant Colony Optimization (ACO) [8], Simulated Annealing (SA)[9], Harmony Search 

(HS) [10], Genetic Algorithm (GA) [11], Particle Swarm Optimization (PSO) [12], Water 

Evaporation Optimization (WEO) [13], Falcon Optimization Algorithm (FOA) [14], Atom 

Search Optimization (ASO) [15], Aquila Optimizer (AO) [16], Escaping Bird Search (EBS) 
[17] and Artificial Hummingbird Algorithm (AHA) [18], among several others.  

PSO is a pioneer method of swarm intelligence with simple moving strategies that makes 

it a scalable easy-to-use and general-purpose algorithm [19]. It has already been hybridized 

with some other methods for performance improvement. Liu et al. [20] hybridized PSO with 

Differential Evolution (DE) [21]. Hadidi et al. [22] utilized a strategy for search refinement 

about the global best of PSO regarding normal distribution and simulated annealing. Hassani 

et al. [23] employed a hybrid PSO with Ant Lion Optimizer (ALO) [24] for optimization of 

various test functions and 7 real-world benchmarks. 

In addition to such attempts for optimization of trusses and other engineering 

benchmarks, a number of studies have addressed optimal design of dams. They include the 

application of GA in shape optimization of dams [25, 26]. Kaveh and Ghaffarian [27] 

utilized a back propagation neural network to bypass high cost of frequency computations 

and solved such a constrained problem with enhanced colliding bodies optimization. Some 

studies concerned gravity dams for optimization [28]. Alimollaie and Shojaee [29] combined 

group method of data handling as an approximate analysis method with PSO for optimal 

design of a concrete arch dam under seismic excitation [29]. 

Although PSO is a widely used meta-heuristic for several engineering fields, it has some 

weak points in its standard form. Alimollaie and Shojaee [29] stated slow convergence in 

final iterations and capability of being trapped in local optima as deficiencies of PSO. 

Shahrouzi and Salehi [30] compared 8 meta-heuristic algorithms revealing that standard 

PSO was not as good as some others in 13 benchmark functions; however, it showed 

superior quality in a few test functions. 

A common way to enhance searching capabilities of PSO, is to hybridize it with some 

other meta-heuristics [31]. In this regard, the present work develops a hybrid method  [
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combining SA, ACO and PSO to achieve better performance in optimal design of dams. 

Shape optimization of Morrow point dam is then treated as a practical large-scale case study 

to evaluate enhancement of such a swarm intelligent algorithm. Full finite element analyses 

are employed to obtain accurate results and ensure feasibility of the optimal designs. 

 

 

2. CONCEPTS AND DEVELOPMENT OF THE PROPOSED ALGORITHM  
 

Before introducing our enhanced swarm intelligent algorithm, a basic methods are briefed 

here to provide the theoretical support. A vast number of optimization algorithms fall in the 

category of directional search [32, 33] as they apply vector-sum operations to generate new 

solutions from previous ones; e.g. by the following common relation: 

 
1t t t

i i iX X V   (1) 

 

where Xi
t t

X i
stands for the design vector of the ith individual at the iteration t. The velocity 

vector Vi
t is the corresponding difference vector of that individual in moving from the 

position Xi
t-1 to Xi

t. Different algorithms of this category have different details to calculate 

and update such a velocity vector. 

 

2.1 Particle Swarm Optimizer 

Particle Swarm Optimization, PSO is a very popular meta-heuristic algorithm in the 

category of directional search. As first introduced by [12], PSO is an attempt to simulate 

some actions in natural bird flocks when flying together in a swarm. The simulated flights 

are introduced via three terms in the following velocity vector; i.e. the inertial, the cognitive 

and the social terms: 

 
1 1 1 1 1

1 2 3( ) ( )t t t t t t

i i i i iV cV rand c B X rand c G X            (2) 

 

The inertial term in such a vector-sum formula, denotes a vector in the direction of previous 

velocity vector; scaled by the factor 1c . The vector 1 1( )t tB X
i i
   is directed from the 

position Xi
t-1  toward the ith individual’s best-experience denoted by the vector Bi

t-1. Such a 

cognitive term is further scaled by the constant factor c2 and the function rand that generates 

random numbers between 0 and 1. Applying such a random operator improves the 

explorative feature of the algorithm. The third term is called social because it applies the 

global best experience over the whole swarm the target toward which the vector from the 

position Xi
t-1 is directed. Such a vector is further scaled by the social factor c3 and the 

random value rand. Such a vector-sum formula with random scaling is directly applicable to 

continuous optimization problems.  

 

2.2 Ant Colony Optimization 

Ant Colony Optimization, ACO, stands for a class of meta-heuristic algorithms inspired by 
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stigmergy between natural ants and their environment [34]. The term stigmergy refers to the 

indirect interaction of natural creatures with each other by changing their environment. 

When a natural ant walks between two stations; similarly the artificial ant goes through an 

edge of the corresponding graph in the computer simulation. The process continues for each 

ant until it completes a tour (a path graph) that represents a complete design vector; for 

which the objective function is evaluated.   

Natural ants smell the remained amount of a chemical instance called pheromone in the 

forward path, to select their best way. Such a process is simulated in ACO to provide  

indirect sharing of experienced information between artificial search agents. An ACO 

algorithm may use two guiding parameters; namely attractiveness and pheromone trail. 

Attractiveness is a problem-specific local guide while the pheromone trail is crucial for an 

ACO algorithm. Its use can be generalized in the population-based algorithms provided that 

the characteristic graph and related paths be adequately defined. Because of applying 

pheromone on the edges of the graph; ACO methods are basically suited for discrete 

problems. 

 

2.3 Pseudo-random Directional Search 

PSO and ACO apply different strategies to solve an optimization problem. Some 

investigators have already utilized hybrid approaches to take merit of both [32,35]. Pseudo-

random Directional Search, PDS [35] is one of them that offers a particular selection process 

using a bi-partite characteristic graph [36] to solve either a discrete or continuous 

optimization problem. 

Like PSO, PDS also employs directional search via Eq. (1); however, by a different way 

of generating the velocity vector. It is given by: 

 
1( )t t

i j j j iV S rand c T X      (3) 

 

Where Tj stands for the jth one among a prescribed set of state-targets; Sj denotes that state 

and cj is the corresponding scale factor. Each state-target introduces a formula generating a 

target position; toward which the new velocity vector is oriented (form the position xi
t-1). At 

every ith iteration, selection of the index j is analogous to connecting an edge between the 

vertex i in the first part to the vertex j in the second part of the characteristic graph. Hence, 

such a bi-partite graph has the ID number of particles in its first part and the ID number of 

state-targets in the second; provided that each edge is limited to be drawn from the first part 

to the second. 

Selecting a state by a particle is performed by the pheromone trail strategy. Once a 

state-target k is selected by the particle i an amount of pheromone (denoted by ) is 

updated on the edge i-k. The remained pheromone trail on these edges acts as a guide for 

future selection of the state. A probability value pik is calculated based on the remained 

pheromone on the edges i-l by: 
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



 
(4) 

 

Applying a roulette-wheel lemma on pik (such as in genetic algorithms); a state index is 

determined as P
j among the total Ns states. At any iteration in PDS, final selection of the 

state j by a particle i is performed by: 

 

0

1

arg max ik
k

R

P

p if r q

j j if r q

j otherwise





 



 (5) 

 

where q0 and q1 are two prescribed thresholds and r is a random value between 0 and 1. The 

index jP is generated as a random integer between 1 and Ns. This way, the previous 

experiences of state selection are indirectly shared via pheromone trails and applied either 

by the arg max(.)
k

function (deterministic) or via roulette wheel (stochastic) or purely random. 

arg maxqk
k

stands for the index that corresponds to the maximum value of q over various k’s. 

Further details about pheromone update in PDS can be found in [35]. 

PSO applies the velocity of each particle by summation of inertial, cognitive and social 

terms in every iteration. It is while the movement of a particle in PDS, can include different 

states in different iterations; each one selected using indirect share of previous experiences. 

 

2.4 Simulated Annealing  

In 1980’s a natural phenomenon was simulated for numerical optimization that mimics 

annealing process in materials; particularly some kinds of metals. The governing rule; called 

Boltzman machine, introduces how probable is that molecules (or atoms) of the annealed 

metal be re-positioned into their crystal form with the minimum state of energy during the 

annealing process. The probability of jumping to a higher energy state is given by: 

 

.
( , )

E

b T
P E T e




   (6) 

 

in which E denotes the energy difference at the temperature T , while b stands for the 

Boltzman coefficient. It is also called a metropolis strategy that is employed in the 

Simulated Annealing, SA by [9] as an optimization algorithm. Such a relation results in a 

higher probability of jumping in lower temperatures; that is commonly provided with the 

iterations of the algorithm. In perturbing a current design vector to a new candidate position, 

the Boltzman formula allows hill-climbing jumps even in case of increasing the cost 

function. Hence, it provides SA the capability of escaping from local optima toward global 

optimum [37]. The application of this Boltzman formula is not merely limited to such an 
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optimization algorithm; but several attempts address its hybrid applications or its use in the 

dynamic tuning of control parameters in another main algorithm [38–40]. 

 

2.5 The proposed hybrid optimization algorithm  

PSO is a popular mete-heuristic with a high exploration feature; however, it may suffer from 

lack of search refinement in some cases. In this regard, one solution is parameter tuning 

which is case dependent and may not be easy for large-scale real world problems. Another 

way to improve performance of PSO is offered here by hybridizing some features from ant 

colony optimization and simulated annealing.   

The framework of PDS is extended here for such a purpose. It not only takes merit of 

pheromone-based information sharing like ACO but also applies vector oriented movements 

such as PSO; however, the vector-sum forms during iterations of PDS. It also employs a 

roulette-wheel selection strategy that is widely applied in evolutionary and genetic 

algorithms. Consider the following relation: 

 
' 1 1 1 1 1 1 1

1 2 3 4( ) ( ) ( )t t t t t t R t

i i i i i i iV cV rand c B X rand c G X rand c X X                  (7) 

 

It has an extra term with respect to the velocity update relation of PSO; that is moving 

toward a random position within its allowable limits denoted by [ , ]
R L U

X X Xi  . The lower 

and the upper bounds on the design variables are denoted by the vectors
L

X  and
U

X  , 

respectively. The fourth term is inserted to improve explorative feature of the algorithm. In 

addition, the inertial factor is geometrically decreased by the term 
1t




where  is a positive 

constant of less than one. Such a modification provides more exploration as the iteration 

number t increases. Every state Sj is then generated by vanishing all factors ck except cj in 

the above velocity relation to obtain:  

 
1

1 1
t

S c Vi



 (8) 

 
1 1

( )2 2
t t

S rand c B Xi i
 

  
 (9) 

 
1 1

( )3 3
t t

S rand c G X i
 

  
 (10) 

 
1

( )4 4
R t

S rand c X Xi i


  
 (11) 

 

The proposed method selects each state from the set of {S1,S2,S3,S4} using selection rule 

of Eq. (5). Fig. 1 demonstrates a schematic of the corresponding bi-partite graph form Np 

particles to Ns states. In this regard, all the pheromone trails  are initiated with unity and 

then updated using the following relation. 

 
1

[1 (1 )]
t t t

ik ik    


     (12)  [
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where  and  are constant factors. The term t
  modifies the amount of pheromone 

deposition when the iteration t increases from 1 to tmax. This term is controlled by a relation 

similar to Boltzman machine for the probability of particles’ jumping as the annealing 

energy changes. Here, t
  is calculated at each iteration t as follows using the Boltzman 

coefficient: b. Fig. 2 shows variation of t
  with iteration t for sample values of b and tmax.  

 
( 1)

. max

t

b tt
e




  
(13) 

 

The aforementioned operators are hybridized, here, in a Modified Particle Swarm 

Optimizer, MPSO. It is introduced via the following steps:  

Step 1. Initiate a population of 
P

N particles within variable’s limits. Such a vector for 

every 
thi  individual can be obtained by: 

 

( )
L U L

X X R X Xi      (14) 

 

The sign   stands for component-wise product while R is generated as a vector of 

random numbers between 0 and 1. Start the particle best matrix of [Bi
1] by the initial 

population.  

 

Step 2. Initiate the matrix of pheromone trails [ ] by 1 with NP rows and Ns columns 

(Ns=4). Set the iteration number as t=1.  

 

Step 3. Evaluate the cost function for all individuals  

 

Step 4. While maxt t do Steps 5, 6 and 7. 

 

Step 5. Update the global best vector as Gt and increase the iteration number t by 1. 

 

Step 6. If maxt t  for every ith particle do: 

Generate the candidate position Xi
Candid by:  

 
1 1 1 1 1 1 1

( ) ( )1 2 3
Candid t t t t t t t

X X c V rand c B X rand c G Xi i i i i i
      

         (15) 

 

 

Evaluate the candidate position and replace it with the corresponding particle in case the 

candidate is fitter than it.  

Update the particle-best experience (cognitive position) 
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Step 7. If maxt t  for every ith particle do: 

Select j and the consequent state Sj by: 

 

0arg max ik
k

P

p if r q

j

j otherwise





 



 
(16) 

 

Generate the candidate position by the following formula with a perturbation factor  :  

 
1Candid t

X X S Si i j k
k j




  


 (17) 

 

Evaluate the candidate position and replace it with the corresponding particle in case the 

candidate is fitter than it. 

Update the particle-best experience (cognitive position) 

 

Step 8. Announce Gt as the optimum solution.  

 

Note that the first . maxt iterations are similar to PSO with geometric decay in the inertial 

term while the remainder hybridizes the prescribed operators from PSO, ACO and SA. It can 

also be considered an extension of PDS that applies S Sj k
k j

 


in its velocity update.   

Part 1:
Particle ID's

Part 2:
State ID's

1

i

Np

.

.

.

1

k

Ns

.

.

.

.

.

.

.

.

.

 
Figure 1. The characteristic bi-partite graph for state selection and pheromone deposit 
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Figure 2. Sample variation of the proposed annealing function for different Boltzman’s factor vs. 

iteration (t) 

 

 

3. UNCONSTRAINED OPTIMIZATION 
 

Performance of a new optimization algorithm can be evaluated in solving standard test 

functions. Such a task deals with just simple bounds on variables; practically satisfied by a 

fly-to-boundary technique [41,42]. For a more rigorous evaluation, the test functions of 

CEC2005 competition are treated. These functions; i.e. CF1 to CF6 are plotted in Fig. 3 with 

the definitions given in Table 1 [43]. They are solved by the proposed MPSO and PSO in 

comparison with a number of other meta-heuristics including LAPO [44], FOA [14], 

ASO [15], BES [45] and AO [16].  

Table 2 gives specific control parameters of each algorithm while 20 population members 

and 2000 function calls are identically set for all of them.  The selected algorithms cover a 

variety of control parameters from LAPO (with no specific parameter) to FOA with 7 and 

MPSO with 10 specific parameters. Each problem is solved via 30 independent trial runs 

preserving fair comparison conditions [17]. 

The statistical results are summarized in Table 3. It is observed that the proposed MPSO 

has approached the global optimum of CF1 by a tiny threshold in the order of 5(10 )O  ; well 

superior to the best result of PSO as 0.06 and also to the others. Regarding the mean results 

on CF1, MPSO has obtained 0.15; that is 15 times better than PSO and 5 times smaller than 

0.76 by FOA which is itself the best among the others.  
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Figure 3. Composite/hybrid test functions CF1~CF6; plotted in the domain of [-5, 5]2 

 

According to Table 3, such a superiority in the best optima has remained stable in solving 

CF2 to CF6; particularly in comparison of MPSO with PSO. A similar trend is observed for 

the mean results except in solving CF3 where FOA has revealed 17.78 and MPSO has the 

second rank by obtaining 40.19, on average.  

Table 3 also declares that in most of the treated cases, the proposed method has exhibited 
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competitive standard deviation (SD) with the other methods revealing its robustness in 

solving such complex test functions. 
 

Table 1: Definition of the benchmark functions  

Function Definition Type 

 1 2 10, ,...,f f f Sphere function   

CF1 1 2 10, ,..., [1,1,...,1]     composite 

 1 2 10, ,..., [5 /100,5 /100,...,5 /100]      

   

 1 2 10, ,..., 'f f f Greiwank s function   

CF2 1 2 10, ,..., [1,1,...,1]     composite 

 1 2 10, ,..., 5. / [100,100,...,100]      

   

 1 2 10, ,..., 'f f f Greiwank s function   

CF3 1 2 10, ,..., [1,1,...,1]     composite 

 1 2 10, ,..., [1,1,...,1]      

   

 

1 2 3 4

5 6 7 8

9 10

, ' , '

, , '

,

f f Ackley s function f f Rastrigin s function

f f Weierstrass function f f Greiwank s function

f f Sphere function

 

 

  

 

CF4 1 2 10, ,..., [1,1,...,1]     hybrid 

 1 2 10, ,..., 5. / [32,32,1,1,0.5,0.5,100,100,100,100]      

   

 

1 2 3 4

5 6 7 8

9 10

, ' ,

, ' , '

,

f f Rastrigin s function f f Weierstrass function

f f Greiwank s function f f Ackley s function

f f Sphere function

 

 

  

 

CF5 1 2 10, ,..., [1,1,...,1]     hybrid 

 1 2 10, ,..., [0.2,0.2,10,10,0.05,0.05,5 / 32,5 / 32,0.05,0.05]      

   

 

1 2 3 4

5 6 7 8

9 10

, ' ,

, ' , '

,

f f Rastrigin s function f f Weierstrass function

f f Greiwank s function f f Ackley s function

f f Sphere function

 

 

  

 

CF6 1 2 10, ,..., [0.1,0.2,0.3,...,0.9,1]     hybrid 

 1 2 10, ,..., [0.02,0.04,3.00,4.00,0.5 0.05,0.6 0.05,0.7 5 / 32,0.8 5 / 32,0.9 0.05,1 0.05]            

 

Nevertheless, MPSO shows considerable improvement with respect to PSO as a main 

objective of this experiment on unconstrained optimization. In the next part of this study, the 

optimal shape design of a concrete arch dam will be treated as a highly-constrained practical 

problem.  
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Table 2: Control parameters of the applied optimization algorithms  

PSO MPSO LAPO BES FOA ASO AO 

1

2

2

i

c

s

C

C

C





  

0

2

2

2

0.10, 0.25

0.10, 0.01,

0.05, 0.99

0.01

i

c

s

C

C

C

q b

 

 









 

 

 

  

- 

10

1.5

2

a

R







  

2.0

2.0

2.0

0.1

0.8

0.1

1.0

c

s

c

C

C

f

AP

DP

b















  

50

0.2







  

0

0.1

0.1

0.005

0.0265

10

u

r















  

 
Table 3: Results comparison in optimizing test functions 

Function  PSO MPSO LAPO BES FOA ASO AO 

 Best 0.06 1.8E-05 0.03 0.07 0.03 25.66 00.12 

CF1 Mean 2.33 0.15 38.30 98.29 0.76 281.79 46.00 

 SD 4.38 0.78 29.93 147.31 1.34 89.26 46.96 

         

 Best 3.84 0.13 35.96 47.27 3.55 164.94 4.25 

CF2 Mean 154.15 27.93 130.25 203.47 89.54 297.44 108.01 

 SD 92.53 30.37 45.76 141.78 79.38 46.54 47.42 

         

 Best 0.66 0.01 3.22 0.62 0.27 210.91 2.93 

CF3 Mean 128.11 40.19 79.86 282.91 17.78 644.45 132.51 

 SD 164.24 67.39 96.73 312.19 32.25 172.57 126.41 

         

 Best 132.71 2.64 201.73 235.15 104.35 402.57 54.63 

CF4 Mean 215.31 195.98 368.35 608.99 356.73 751.81 308.85 

 SD 64.05 76.41 98.21 220.26 94.36 160.50 157.75 

         

 Best 0.63 0.003 0.34 1.03 0.95 107.94 0.40 

CF5 Mean 111.17 36.91 74.65 223.46 69.41 538.22 38.06 

 SD 147.70 48.84 44.53 261.65 47.64 163.01 46.65 

         

 Best 105.03 100.03 107.98 174.31 110.78 314.08 124.06 

CF6 Mean 409.29 229.28 349.28 409.35 377.91 475.18 373.60 

 SD 119.23 155.12 110.52 104.24 118.94 32.43 103.13 

 

 

4. GEOMETRY ASSESSMENT OF THE DOUBLE-CURVED DAMS 
 

Arch dams are structures that rely on the spatial form of their body to withstand the applied  [
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loads. Horizontal and vertical profiles in a concrete dam as well as the corresponding 

dimensions have a major role in providing sufficient stability and structural strength [2]. In 

the other hand, the cost of the construction material; i.e. concrete, is so high that makes it 

reasonable to seek for its minimal value under the given constraints. The optimal dam-

geometry is also affected by the material strength and the shape of the valley surrounding 

the dam [46].  

When a designer attempts to determine the geometrical shape of a double-curved dam, 

the crown cantilever is concerned first and then the horizontal rings should be determined at 

all vertical levels. However in an automatic optimal design procedure, both vertical and 

horizontal design parameters can simultaneously be altered until their optimal values are 

found. Such parameters commonly obey some template shapes to govern the geometry of a 

double-curved dam.  The template relations have already been offered and upgraded by a 

number of investigators [2,7]. Prior to formulating the optimization problem we describe the 

applied template relations and their parameters to asses shape of the double-curved dam. 

  

4.1 Geometric description of crown cantilever 

According to Fig. 4, shape of the crown cantilever (the vertical profile) depends on the 

upstream and downstream curves. Once the upstream curve and local thicknesses are 

derived, the central curve can be configured. A third-order polynomial function [47] is used 

to define the up-stream curve in the center-line of the dam: 

 
2

( ) ( )2 31 1 2 1 1 2
( ) 1 2

2 (1 ) 3 (1 )

S S S S S S
y z S z z z

h h

 

   

   
   

 
 (18) 

 

whereas h, S1 and S2 are the height of the dam, slope in the crown and slope in the footing, 

respectively. A fraction of the dam height which corresponds to zero slope is denoted 

by z h . 

Suppose the dam height is discretized by n  parts (at 1n   levels). Consequently, 

thickness of the crown cantilever is interpolated from thickness at 1n   levels as: 

 

   
1

1

n

C i Ci

i

t zz L t




   (19) 

 

At any ith level, tc
i
 stands for the crown cantilever thickness while  L zi  denote the 

corresponding Lagrange interpolator function; given by: 

 

 
 

1

1

1

1

     
( )

n

mm
i n

i mi

z z
L z m i

z z










 






 (20) 

 

where zi and zm stand for the coordinates at the ith and mth levels of the central cantilever, 

respectively. In the present study, the number of subdivided parts n is taken 5. Consequently, 
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n+1 corresponding height levels are denoted by z hi i  where the counter index i can be 

an integer between 1 and 6. 

 

 
Figure 4. Shape of a typical double-curved dam and the governing variables 

 

 Figure 5. Finite element model of Morrow Point dam: (a) Integrated dam_water_foundation 

rock system, (b) dam-lake system, (c) dam body 

 

4.2 Geometric description of the central horizontal arch ring 

A typical profile of the dam body is depicted in Fig. 4. It is distinguished by the second-

order functions defining the upstream and downstream curves as recommended in the 

literature [7]. The corresponding relations are given as: 

 

 
 

 
1 2

,

2

y x z x B zcu
r z
u

   (21) 
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 
 

   
1 2

,

2

y x z x B z t zc
r z

cd
d

    (22) 

 

r
d

 and y
cd

 denote the radius and y-coordinate of the downstream curve, respectively. The 

interpolated function ( ) ( )B z y z . The corresponding values for the upstream curve are given 

as r
u

 and y
cu

. Height-wise variation of such radii are obtained by Lagrange interpolation as 

follows: 

 

   
1

1
r z r

n
L Ziu uii



 


 (23) 

 

   
1

1
r z r

n
L Zid dii



 


 (24) 

 

This way, the horizontal and vertical shape of the dam is determined based on the thickness, 

upstream and downstream radii at n+1=6 equal-distant points. Due to real-world conditions 

in construction of the dam, its plan section may be inclined about the central z-axis by the 

angle . 

 

 

4. PROBLEM FORMULATION 
 

It is aimed to minimize total concrete volume V in the body of the double-curved dam by 

altering its shape so that it can withstand the design loads.  

 

1

min ( )

Ne

e
e

vV X


   (25) 

 

The volume of every eth element is denoted by ve. According to the previous relations, the 

design vector X for shape optimization of the double-curved dam is defined as: 

 

 , ..., , , ..., , , ..., , , , ,1 6 1 6 1 6 1 2

T
X t t r r R R S Sc c    (26) 

 

Such a design vector has 22 continuous variables. The constraints in such an optimization 

problem are denoted by side limits 
L U

X X X  and behavior constraints in the general form 

of ( ) 0g Xm   for any mth constraint. During the optimization, the design variables are 

enforced to fall within their side bounds; however, satisfaction of the other constraints are 

ensured by an external penalty approach to provide required stability and serviceability. The 

problem formulation is transformed into fitness maximization as:  [
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max ( ) ( ) ( ) [1 max(0, ( ))]Fitness X X V X k g Xp m
m

        (27) 

 

The penalized cost is denoted by ( )X  as reverse of the fitness function. The penalty 

factor kp is selected large enough to achieve feasible optimal designs by MPSO. In this 

problem, the constraints (other than simple bounds) are distinguished in stress, stability and 

geometrical groups [7] and are detailed as follows. 

Arch dams can be constructed using mass concrete without any reinforcement. The 

design, safe operation and stability of the structure are controlled based on the allowable 

stress method. The maximal absolute stresses are computed by finite element analysis after 

generating the dam shape and its structural model. Such stresses are subject to the following 

constraints: 

 

( ) 1 01
c

G X

Fc


    (28) 

 

( ) 1 02
t

G X

Ft


    (29) 

 
  and F represent the principal stress and allowable uniaxial strength, respectively. The 

subscript t stands for tension while c stands for compression.  

To provide stability, the central ring angle of the arch dam is controlled here at various 

height levels by: 

 

( ) 1 03,
i

G Xi U




    (30) 

 

( ) 1 04,
i

G Xi L




    (31) 

 

in which 
L

  and 
U

  represent the minimum and maximum allowable central angle and i
  

is the angle at the ith height level. 

Geometrical constraints are applied due to executive considerations during the 

construction phase. In this study, three geometrical constraints are considered: overhang and 

undercut slopes, upstream and downstream radii and dam thickness among its height. 

Crown cantilever curve slopes at the overhang and undercut levels are defined as partial 

geometrical constraints. 1S  and 2S  denote the overhang and undercut slopes, respectively. 

They are confined to their allowable limit: allS by the following relations. 
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1
( ) 1 05

S
G X

Sall

    (32) 

 

2
( ) 1 06

S
G X

Sall

    (33) 

 
Table 4: Mechanical properties for materials of the dam-water-rock system 

Parameter Value (Unit) 

Dam-body Concrete 

Mass Density 

Elasticity modulus  

Poisson’s Ratio  

Uniaxial compressive strength  

Uniaxial tensile strength  

2483 (Kg/m3) 

27580 (MPa) 

0.20 

30 (MPa) 

1.5 (MPa) 

Water  

Mass Density  

Velocity of Pressure Waves  

Wave reflection coefficient  

1000 (Kg/m3) 

1440 (m/s) 

0.90 

Foundation rock Properties 

Mass Density  

Elasticity modulus  

Poisson’s Ratio 

2483 (Kg/m3) 

27580 (MPa) 

0.25 

 

To prevent the coincidence of the upstream and downstream curves, the following 

constraint is applied: 

 

( ) 1 07,

ri
G Xi

Ri

    (34) 

 

in which, 
idr  and 

iur  denote the radii of the downstream and upstream curves at the ith 

interpolation point, respectively.  

Due to construction and gravitational load considerations, the thickness of each point 

among the dam height should not be greater than a neighbor point above it. This geometrical 

constraint is thus applied by the following relation: 

 

,
( ) 1 08,

, 1

tc i
G Xi

tc i

  



 (35) 

 

where ,tc i  stands for the thickness of the dam in the crown vertical for the ith height level.  
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Table 5: Lower and upper bounds on the design variables  

Variable XL XU 

,1tc  7 10 

,2tc  8 15 

,3tc  12 20 

,4tc  15 25 

,5tc  17 30 

,6tc  20 35 

,1rd  115 156 

,2rd  99 133 

,3rd  82 111 

,4rd  65 88 

,5rd  48 65 

,6rd  31 42 

,1ru  115 156 

,2ru  99 133 

,3ru  82 111 

,4ru  65 88 

,5ru  48 65 

,6ru  31 42 

1S
 0.09 0.36 

2S
 0.09 0.36 

  0.5 0.9 

( )
o


 

-1 1 

 

 

5. SHAPE OPTIMIZATION OF MORROW POINT ARCH DAM 
 

Morrow Point double-curvature arch dam, was constructed in 1968 over the Gunnison River, 

263 km south-west of Denver in Colorado. Since then, several research works have already 

addressed design of this dam as a case study [48–50]. Table 4 gives the properties of the 

construction and environmental materials; i.e. body, water and foundation-rock [51,52]. 

Simple bounds on the design variables are given in Table 5.  [
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Table 6: Comparison of shape designs for Morrow Point dam by different methods 

Variable USBR PSO MPSO 

,1tc  
6.60 7.00 7.02 

,2tc  
10.00 10.35 9.86 

,3tc  
13.30 14.04 12.02 

,4tc  
16.00 16.20 15.03 

,5tc  
18.60 19.85 17.02 

,6tc  
21.70 22.03 20.10 

,1rd  
287.00 124.95 134.41 

,2rd  
187.00 116.07 120.97 

,3rd  
106.00 106.74 108.98 

,4rd  
94.00 88.00 87.86 

,5rd  
79.60 65.00 64.86 

,6rd  
63.70 42.00 41.61 

,1ru  
122.00 124.39 123.54 

,2ru  
108.00 113.37 117.36 

,3ru  
93.00 105.48 108.19 

,4ru  
78.00 88.00 87.74 

,5ru  
61.00 62.71 64.79 

,6ru  
42.00 41.33 41.42 

1S
 

0.36 0.34 0.36 

2S
 

0.10 0.10 0.09 

  0.70 0.63 0.73 

( )
o


 

0.00 -0.23 0.98 

Best V(m3) 294841.00 278236.60 233065.38 

Mean V - 263238.29 261359.51 

Mean Penalized V - 255765.40 245814.40 

SD - 16010.56 36246.26 

 

Parts of the finite element model for the system of dam-water-rock are illustrated in 

Fig. 5. Such an interacting system is simultaneously modeled in three dimensions using 

ANSYS software [53] with the capability of automatic mesh generation. It is linked with our 

optimization programs in MATLAB environment [54]. During optimization, each design 
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vector is decoded to reveal the corresponding shape of the dam body. Consequently, the 

entire finite element model is constructed and analyzed to derive structural responses. 

Critical responses such as principal stresses and reactions are used to evaluate the constraints 

and fitness function for the corresponding design vector. 

As PSO and MSPO are both stochastic methods, they are run for 60 independent trials to 

obtain reliable results. The problem is solved with 40 individuals up to 250 iterations while 

other control parameters are given in Table 2. Henceforth, 10000 finite element analyses are 

implemented at each run to ensure convergence of the algorithms. As such a real-world 

design task is computationally expensive, it is highly rewarding to improve efficiency and 

effectiveness of PSO via the proposed MPSO.   

 

 
Figure 6. Convergence comparison for the best run of MPSO vs. PSO in shape optimization of 

Morrow Point dam 

 

In order to evaluate design improvement via optimization with respect to common 

practice, the Morrow Point dam is once designed by the procedure of USBR and Varshney’s 

method [55,56]. Such a single practical design is then inserted in the initial population of 

particles that are randomly generated during optimization. The initial population is 

identically used for each independent run of PSO and MPSO to provide a fair comparison 

between them; however, it is regenerated in every new run. 
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MPSO PSO USBR 

   
(a) 

   
(b) 

   
(c) 

Figure 7. Comparison of principal stresses in final design of Morrow Point dam by USBR vs. 

optimal designs by PSO and MPSO: (a)  ,(b)  and (c)  

 

During this numerical experiment no feasible optimal design coincided with the design 

by USBR’s method; i.e. structural volume of 294841.0 m3 for the concrete in the dam body. 

The mater indicates that such a practical design is not optimal. According to Table 6, the best 

design of PSO resulted in a volume of 278236.6 m3 which is 6% lower than USBR’s design. 

MPSO exhibits more improvement of 21% in obtaining its best design that weighs 

233065.4 m3. In another word, the proposed MPSO has considerably reduced the material 

consumption by 61776 m3 with respect to the common practice (USBR) and 45171 m3 with 

respect to PSO. Fig. 6 reveals superior convergence of MPSO with respect to PSO in such 

an optimization run. It is observed that PSO has revealed a rapid initial drop in the penalized 

cost; however, it has further been ended with a less-fit local optimum. In contrary, the 

proposed MPSO has exhibited better search refinement than PSO and has overpassed local 

optimum toward a fitter (lower cost) optimal design.  [
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The constraints are checked and reported in Table 7 for the best designs of PSO and 

MPSO in shape optimization of Morrow Point dam. It can be noticed that despite PSO, the 

proposed MPSO has successfully satisfied all the constraints to obtain a perfect feasible 

design. It is while the best design of PSO has infeasibility in the stability constraint ( )4,3G X ; 

that corresponds to an out-of-bound value for the central ring angle at the 3rd control point. 

Table 6 also shows superiority of MPSO over PSO in obtaining better mean penalized 

cost and mean volume.  The proposed MPSO has enhanced performance with respect to 

PSO; not only in the best design but also in constraint handling to obtain fitter mean results. 

According to Table 6, more standard deviation can be observed over different trails of 

MPSO with respect to PSO. It can indicate higher diversity maintained by MPSO during 

such a shape optimization. 

In order to have further engineering insight on the aforementioned designs of Morrow 

point dam; distribution of principal stresses are compared in Fig. 7. It is observed that 

despite the USBR design, the optimal designs have generally distributed less stresses even in 

less effective parts of the dam body. 

According to Fig. 7, several stress zones can be distinguished for the dam body mainly in 

the upstream and downstream surfaces.  The tensile zone area  is as small as nearly 5% of 

the dam surface by USBR procedure due to applying high safety factor for tension. In the 

best design by PSO, two narrow bands of tension stresses are detected at left and right 

abutments. Finally in MPSO design, tracing tension stress in the upstream surface, three 

high-stress narrow bands are declared at the right and left abutments and also at the bottom 

of the dam body. Comparison of the results indicates that the proposed optimum design has 

been more successful in achieving tensile capacity of the concrete dam body in the allowable 

range. 

 

 

6. CONCLUSION 
 

Shape optimization is treated as a crucial issue in the design of arch dams. It was formulated 

using 22 continuous design variables and a rigorous set of behavior constraints. A 

preliminary procedure of USBR as well as two swarm intelligent algorithms: PSO and 

MPSO were employed for the shape design of concrete double-curved dams. The proposed 

MPSO indirectly utilizes previous experiences of the artificial search agents via pheromone 

trails selecting new states to increase effectiveness of the optimization algorithm. It takes 

advantage  of Boltzmann machine to tune the algorithm for better performance. 

Performance of the proposed method was evaluated in comparison with a number of 

meta-heuristics in optimizing six composite test functions. Consequently, MPSO showed 

superior performance to PSO not only in the best but also in the mean results. In most cases, 

the achieved standard deviation by MPSO remained in the same range as the other treated 

methods revealing its competitive performance. 

In shape optimization of the Morrow Point dam, it was observed that PSO and MPSO can 

reveal significantly lower costs than USBR design procedure. However, the optimum design 

of PSO had some degree of infeasibility. In contrary, the proposed MPSO was found 

superior to the others not only in the quality of the best final design but also in the mean 
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fitness over 60 independent runs of such an expensive task. The best result of MPSO was 

perfectly feasible and it provided 21% lower material cost than USBR and 16% lower than 

PSO. It is important from practical point of view; considering necessity of satisfying several 

behavior constraints and that total cost of the arch dam majorly depends on its concrete 

volume. 
Comparison of the designs obtained by the treated methods in view of stress distributions 

in the dam body, revealed further superiority of the proposed hybrid algorithm over the 

others. The results of this study declare that principal tensile stress at the abutment of the 

upstream face in MPSO is greater than PSO. In conclusion, the proposed hybrid method is 

capable of revealing satisfactory enhancement over the well-known PSO and superior results 

in compared with the common practice of USBR design procedure for the arch dams.  
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