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ABSTRACT  
 
The main aim of the present study is to propose a modified harmony search (MHS) 
algorithm for size and shape optimization of structures. The standard harmony search (HS) 
algorithm is conceptualized using the musical process of searching for a perfect state of the 
harmony. It uses a stochastic random search instead of a gradient search. The proposed 
MHS algorithm is designed based on elitism. In fact the MHS is a multi-staged version of 
the HS and in each stage a new harmony memory is created using the information of the 
previous stages. Numerical results reveal that the proposed algorithm is a powerful 
optimization technique with improved exploitation characteristics compared with the 
standard HS. 
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1. INTRODUCTION  
 

Structural optimization is a critical activity that has received considerable attention in the 
last four decades. Usually, structural optimization problems involve searching for the 
minimum of the structural weight. This minimum weight design is subjected to various 
constraints on performance measures, such as stresses and displacements, and also restricted 
by practical minimum cross-sectional areas or dimensions of the structural members or 
components. Due to considering these constraints the possibility of trapping in the local 
optima will be larger.  

Optimum shape design of structures is one of the challenging research areas of the 
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structural optimization field. In this class of optimization problems two types of design 
variables with different natures, including sizing and geometric variables, are involved. The 
shape optimization problem has been identified as a more difficult but more important task 
than pure sizing optimization, since potential savings in material can be far better improved 
than by the latter.  

Most of the engineering optimization algorithms are based on numerical linear and 
nonlinear programming methods that require substantial gradient information and usually 
seek to improve the solution in the neighborhood of a starting point. These algorithms, 
however, reveal a limited approach to complicated real-world optimization problems. If 
there is more than one local optimum in the problem, the result may depend on the selection 
of an initial point, and the obtained optimal solution may not necessarily be the global 
optimum.  

In the last years, structural optimization has been studied by using different natural 
phenomena based meta-heuristic algorithms. The most extensively applied meta-heuristic 
algorithms are Genetic Algorithm (GA) [1] Ant Colony Optimization (ACO) [2], Particle 
Swarm Optimization (PSO) [3] and etc. In the field of structural engineering many 
successful applications of the above mentioned algorithms have been reported in the 
literature [4-9]. The popularity of these algorithms is due to this fact that for implementation 
of the meta-heuristics the gradient of objective function and constraints are not required. In 
other words, they use a stochastic random search strategy instead of a gradient search so that 
derivative information is unnecessary. Also they are able to handle both discrete and 
continuous design variables and their computer implementation is simple.  

One of the recent additions to meta-heuristics is the Harmony Search (HS) [10] method. 
The so called HS algorithm was recently developed by Lee and Geem in an analogy with 
music improvisation process where music player improvise the pitches of their instruments 
to obtain better harmony. Solution vectors in HS algorithm, is simulated with harmony in 
the music and search plan with artist initiative. In comparison with other meta-heuristics, HS 
imposes fewer mathematical requirements. These features increase flexibility of the HS to 
analysis various engineering optimization problems [11].  

In this paper, a new multi-stage HS algorithm is proposed for size and shape optimization 
of structures. Also the exterior penalty function method (EPFM), due to its simplicity and 
ease of implementation, is employed in the framework of the sequential unconstrained 
minimization technique (SUMT) [12] to handle the constraints. The proposed algorithm is 
denoted as modified harmony search (MHS) algorithm. 

Two benchmark structural shape optimization problems are solved by the proposed 
MHS. The numerical results indicate that the computational performance of the proposed 
MHS is better than that of the HS. 

 
 

2. FORMULATION OF THE OPTIMIZATION PROBLEM 
 

The mathematical formulation of structural optimization problems toward the design 
variables, the objective and constraint functions depend on the type of the application. 
However, all optimization problems can be expressed in standard mathematical terms, which 
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in general form can be stated as follows: 
 

 

Minimize    F(X)  
Subject to   gi(X) ≤ 0  ,   i = 1, . . . , m

u
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where, X is the vector of design variables; F(X) is the objective function to be minimized; 
gi(X) is the ith behavioral constraints; u

j
l
j XX  and are the lower and the upper bounds on a 

typical design variable 
jX .  

In this study, to transform the constrained structural optimization problem into an 
unconstrained one the EPFM is employed. Penalty function methods transform the basic 
optimization problem into alternative formulations such that numerical solutions are sought 
by solving a sequence of unconstrained minimization problems. The above mentioned 
constrained optimization problem can be converted into an unconstrained problem by 
constructing a function of the following form: 
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whereΦ , and rp are the pseudo objective function, and positive penalty parameter, 
respectively.  

By choosing the minor values for the penalty parameter, the effect of constraints in pseudo 
objective function decrease and optimization processes cause to minimize objective function 
with small amount of violated constraints, in the other side by choosing the high value for 
penalty parameter, the effect of constraints in pseudo objective function increases and the 
portion of objective function decreases. Vanderplaats recommended that if the unconstrained 
minimization of the pseudo objective function is repeated for a sequence of values of the penalty 
parameter, rp, the solution may be brought to converge to that of the original problem. These 
methods are known as sequential unconstrained minimization techniques (SUMT). In the 
present study, the EPFM is employed in the framework of the SUMT to handle the constraints. 

 
 

3. MODIFIED HARMONY SEARCH ALGORITHM 
 

Harmony is defined as an attractive sound made by two or more notes being played at the 
same time. The new HS meta-heuristic algorithm was derived by adopting the idea that 
existing meta-heuristic algorithms are found in the paradigm of natural phenomena. The HS 
algorithm parameters that are required to solve the optimization problem are also specified 
in this step: harmony memory size (number of solution vectors, labled as HMS), harmony 
memory considering rate (HMCR), pitch adjusting rate (PAR), an arbitrary distance 
bandwidth for continuous variable (bw) and termination criterion (maximum number of 
searches). The basic steps of the HS may be mentioned as follows: 
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Step 1. Initialize algorithm parameters:  

Specification of each design variable, a possible value range in each design variable, HMS, 
HMCR, PAR, and termination criterion are initialized. 
Step 2. Initialize harmony memory:  

The harmony memory (HM) matrix is filled with randomly generated designs as the size of 
the harmony memory (HMS). 
 
Step 3. Improvise a new harmony from the HM:  

New harmony vectors improvised from either the initially generated HM or the entire 
possible range of values. The new harmony improvisation progresses based on memory 
considerations, pitch adjustments, and randomization. Here, it is possible to choose the new 
value using the HMCR parameter, which varies between 0 and 1 as follows: 
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where the HMCR is the probability of choosing one value from the significant values stored 
in the HM, and (1-HMCR) is the probability of randomly choosing one practical value not 
limited to those stored in the HM.  

Every component of the new harmony vector is examined to determine whether it should 
be pitch-adjusted. This procedure uses the PAR parameters as follows.  
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The pitch adjusting process is performed only after a value is chosen from the HM. The 

value (1-PAR) sets the rate of doing nothing. A PAR of 0.05 indicates that the algorithm will 
choose a neighboring value with 5% HMCR probability. 

If the pitch adjustment applied for a design variable then a neighboring value with the 
probability of PAR%×HMCR is taken for it as follows: 
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in which m is the neighboring index; α is the value of bwu(-1,1); bw is an arbitrary distance 
bandwidth for the continuous variable and u(-1,+1) is a uniform distribution between -1 and +1. 
  

 
Step 4. Update the Harmony Memory:  

If the new harmony is better than the worst vector in the HM the new solution vector is 
included in the HM and the existing worst vector is excluded from the HM. 
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Step 5. Termination Criteria:  

Steps 3 and 4 are repeated until the termination criterion is satisfied. The termination 
criterion stops the algorithm when the maximum number of searches is reached. 

In order to improve the exploration ability of the standard HS, the algorithm is employed in 
the framework of SUMT to solve the optimization problem and the design constraints are 
handled by EPFM. At first by choosing a minor rp a HM with the size of HMS is initialized and 
the HS is employed to achieve a preliminary optimization task. The found solution in this 
manner may be infeasible. In the next step, the harmony vectors of new HM are selected from a 
neighboring region of the best solution obtained in the previous process. In this case, the best 
solution is directly transformed to the new HM and the remaining vectors are selected as the 
random numbers normally distributed about the mentioned best solution with the standard 
deviation of 10% times the best solution. After initializing a new HM, another optimization 
process is achieved by HS using an increased rp. This procedure is repeated until the algorithm 
converges.  

 
 

4. NUMERICAL EXAMPLE 
 

In order to investigate the computational performance of the proposed MHS algorithm, two 
examples are presented. For all examples the HS parameters are as: HMS=10, 
HMCR=0.971, PAR = 0.05 and bw = 0.3. Also the maximum numbers of iterations in each 
optimization process and the maximum number of optimization processes are limited to 100 
and 5, respectively (5000 structural analyses). All of the required computer programs are 
coded in MATLAB [13] platform. 

 
4.1. 15-bar Truss 

This problem has been investigated by Wu and Chow [14], Hwang and He [15], Tang et al. 
[16] and Rahami et al. [17]. The fifteen-bar 2-D truss is shown in Figure 1. the magnitude of 
the vertical load is P = 10 kips. The material density is 0.1 lb/in3 and the modulus of 
elasticity is 104 ksi.  

 

 

Figure 1. Fifteen-bar truss 
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In this example there are 23 design variables including two categories: Sizing variables: 
Ai, i=1,2,…,15 and Geometry variables: x2 = x6; x3 = x7; y2; y3; y4; y6; y7; y8. Stress limitation 
for all elements is ksi 25 .  

The size variables are selected from the following set: 
D = { 0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 

1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 
8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180} (in.2). Also side constraints for 
geometry variables are as follows:  
100 in. ≤ x2 ≤ 140 in.; 220 in. ≤ x3 ≤ 260 in.; 100 in. ≤ y2 ≤ 140 in.; 100 in. ≤ y3 ≤ 140 in.; 50 
in. ≤ y4 ≤ 90 in.; 20 in. ≤ y6 ≤ 20 in.;  −20 in. ≤ y7 ≤ 20 in.; 20 in. ≤ y8 ≤ 60 in.; 

The best results obtained in this study are compared with those of the other works in 
Table 1.  

Table 1. Optimal design comparison for the 15-bar planner truss 

Present work 
Design variables 

Wu and 
Chow [14] 

Hwang and 
He [15] 

Tang et 
al. [16] 

Rahami et 
al. [17] HS MHS 

A1 1.174 0.954 1.081 1.081 1.081 0.954 
A2 0.954 1.081 0.539 0.539 0.954 0.539 

A3 0.440 0.440 0.287 0.287 0.270 0.220 

A4 1.333 1.174 0.954 0.954 0.954 0.954 

A5 0.954 1.488 0.954 0.539 0.539 0.539 

A6 0.174 0.270 0.220 0.141 0.270 0.220 

A7 0.440 0.270 0.111 0.111 0.111 0.111 

A8 0.440 0.347 0.111 0.111 0.141 0.111 

A9 1.081 0.220 0.287 0.539 0.220 0.440 

A10 1.333 0.440 0.220 0.440 0.220 0.347 

A11 0.174 0.220 0.440 0.539 0.440 0.347 

A12 0.174 0.440 0.440 0.270 0.111 0.270 

A13 0.347 0.347 0.111 0.220 0.440 0.270 

A14 0.347 0.270 0.220 0.141 0.287 0.220 

A15 0.440 0.220 0.347 0.287 0.220 0.220 

x2 123.189 118.346 133.612 101.5775 137.2764 135.5676 

x3 231.595 225.209 234.752 227.9112 220.0000 245.5421 

y2 107.189 119.046 100.449 134.7986 138.5269 123.1303 

y3 119.175 105.086 104.738 128.2206 127.4160 120.6957 

y4 60.462 63.375 73.762 54.8630 50.0000 57.9313 

y6 16.728 20.0 10.067 16.4484 19.1800 5.9742 

y7 15.565 20.0 1.339 16.4484 2.8000 2.9125 

y8 36.645 57.722 50.402 54.8572 38.3190 56.3256 

Best weight (lb) 120.52 104.573 79.820 76.6854 80.364 73.887 

Number of analyses - - 8000 8000 5000 5000 

The results demonstrate the computational advantages of the MHS with respect to other 
algorithms. The geometry of the optimum structure is shown in Figure 2. 
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(a) (b) 

Figure 2. (a) Optimum shape of fifteen-bar planar truss (b) geometry of nodes 4 and 8 
 
To assess the computational performance of the proposed MHS algorithm, 25 

independent runs are achieved and the best, worst and mean weights of 73.887 lb, 88.420 lb 
and 79.206 lb are obtained. 

 
4.2. 25-bar truss 

This problem has been investigated by Wu and Chow [14], Tang et al. [16] and Rahami 
et al. [17]. The twenty five-bar truss is considered as shown in Figure 3. 

  

 
Figure 3. Twenty five-bar space truss 

 
The material density is 0.1 lb/in3 and the modulus of elasticity is 104 ksi. Loading data is 
given in Table 2. 
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Table 2. Loading data for twenty five-bar truss 

Node Fx (kips) Fy (kips) Fz (kips) 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 

 
There are 13 design variables including two categories as follows:  
Size variables: A1; A2 = A3 = A4 = A5; A6 = A7 = A8 = A9; A10 = A11; A12 = A13; A14 = A15 = 

A16 = A17; A18 = A19 = A20 = A21; A22 = A23 = A24 = A25 
Geometry variables: x4 = x5 = -x3 = -x6; x8 = x9 = -x7 = -x10; y3 = y4 = -y5 = -y6; y7 = y8 = -y9 

= -y10; z3 = z4 = z5 = z6 
Stress limitation for all elements is ksi 40  also displacement constraint in all directions is 

0.35 in. The size variables are selected from the following set: 
D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 

2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4} (in.2). 
Also side constraints for geometry variables are as follows:  
20 in. ≤ x4 ≤ 60 in.; 40 in. ≤ x8 ≤ 80 in.; 40 in. ≤ y4 ≤ 80 in.; 100 in. ≤ y8 ≤ 140 in.;  
90 in. ≤ z4 ≤ 130 in.; 
The best results obtained in this study are compared with those of the others in Table 3.  
 

Table 3. Optimal design comparison for the 25-bar space truss 

Present work 
Design variables 

Wu and 
Chow [14] 

Tang et al. 
[16] 

Rahami et al. 
[17] HS MHS 

A1 0.1 0.1 0.1 0.1 0.1 

A2 0.2 0.1 0.1 0.1 0.1 

A3 0.1 1.1 1.1 1.0 0.1 

A4 0.2 0.1 0.1 0.1 0.1 

A5 0.3 0.1 0.1 0.1 0.1 

A6 0.1 0.2 0.1 0.1 0.1 

A7 0.2 0.2 0.2 0.1 0.1 

A8 0.9 0.7 0.8 1.0 0.9 

X4 41.07 35.47 33.0487 32.95 37.82 

Y4 53.47 60.37 53.5663 68.185 55.485 

Z4 124.6 129.07 129.9092 107.37 128.73 

X8 50.8 45.06 43.7826 47.367 52.068 

Y8 131.48 137.04 136.8381 136.02 139.59 

Best weight (lb) 136.20 124.94 120.11 122.62 117.38 

Number of analyses - 6000 8000 5000 5000 
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The results demonstrate the computational advantages of the MHS with respect to other 
algorithms. The geometry of the optimum structure is shown in Figure 4. 

To assess the computational performance of the proposed MHS algorithm, 25 
independent runs are achieved and the best weight of 117.40 lb, the worst weight if 130.20 
lb and the mean weight of 119.02 lb are obtained. 

 

(a) (b) 

Figure 4. (a) Optimum shape of truss in (a) y-z plan and (b) x-z plan 
 
 

5. CONCLUSION 
 

The shape optimization of truss structures is tackled in this paper using an enhanced HS meta-
heuristic algorithm. In order to improve the computational performance of HS the standard HS 
algorithm is sequentially utilized in the framework of SUMT employing EPFM to handle the 
design constraints. The proposed meta-heuristic algorithm is termed as modified harmony 
search (MHS) algorithm. Both size and shape structural optimization problems are solved by the 
proposed algorithm and the results are compared to those of the other researchers. The 
numerical results indicate that using MHS not only better solutions can be found but also a 
significant reduction in computational effort may be achieved. For more details, in the case of 
first example, the best weight found in the literature is 76.6854 lb spending 8000 structural 
analyses while in the present paper the best weight of 73.887 lb is obtained after 5000 structural 
analyses. In the case of second example, the weight of the best structure and its corresponding 
required number of analyses reported in the literature are 120.11 lb and 8000, respectively while 
these values in the present paper are 117.38 lb and 5000, respectively. These results emphasize 
on the efficiency of the proposed MHS algorithm for shape optimization of structures. 
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