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ABSTRACT 
 

Natural frequencies of a structure give useful information about the structural response to 

dynamic loading. These frequencies should be far enough from the critical frequency range 

of dynamic excitations like earthquakes in order to prevent the resonance phenomenon 

sufficiently. Although there are many investigations on optimization of truss structures 

subjected to frequency constraints, just a few studies have been considered for optimal 

design of frame structures under these constraints. In this paper, a recently proposed 

metaheuristic algorithm called Adaptive Charged System Search (ACSS) is applied to 

optimal design of steel frame structures considering the frequency constraints. Benchmark 

design examples are solved with the ACSS, and optimization results are illustrated in terms 

of some statistical indices, convergence history and solution quality. The design examples 

include three planar steel frames with small to large number of design variables. Results 

show that the ACSS outperforms the charged system search algorithm in this sizing 

optimization problem. 
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1. INTRODUCTION 
 

Design optimization of mechanical and structural systems subjected to frequency constraints 

has been investigated by many researchers [1-4]. The importance of this investigation is due 

to the fact that the dynamic response of a structure can be expressed in terms of its natural 

frequencies and modal shapes, and hence one can design a structure with some natural 

frequency constraints for avoiding the resonance phenomenon in some vibration modes. 
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Optimal structural design for frequency constraints is a highly nonlinear problem which is 

usually difficult to be solved by a gradient-based optimizer due to the change of vibration 

modes with modifying sizing variables. The vibration mode variation motivates the 

convergence difficulties for an optimization algorithm. Also, another concern is that some 

optimally designed structures represent the repeated eigenvalues increasing the complexity 

of the problem. 

Nowadays, metaheuristic algorithms have been applied to various engineering 

optimization problems [3, 5-8]. These algorithms require neither gradient information of 

objective function nor those of constraints and have been inspired by physical or natural 

phenomena. Many researchers have focused on structural optimization with metaheuristic 

methods. A part of these studies conducted the optimal design of structures under different 

constraints considering gravity, wind and earthquake loadings [9-15]. On the other hand, 

numerous studies were carried out for optimal design of truss structures based on frequency 

constraints for which metaheuristic methods consisting of particle swarm optimization [16], 

adaptive hybrid evolutionary firefly [17], symbiotic organisms search [18], vibrating 

particles system [19], collaborative optimization strategy [20], hybridized optimization 

approaches [21], hybridized optimality criteria and genetic algorithm [22], and enhanced 

differential evolution [23] were applied. Nevertheless, few researchers have optimized the 

design of frame structures with frequency constraints. Clearly, optimal design of frame 

structures is more complex than that of truss structures because the number of degrees of 

freedom for the frames is higher, leading to larger eigenproblem being more sensitive to the 

alteration of sizing variables in an optimization problem. 

McGee and Phan [24, 25] performed the optimal design of planar and space frame 

structures with an efficient optimality criteria method in which an iterative method 

according to the Karush-Kuhn-Tucker optimality condition was used. Salajegheh [26] 

proposed the response approximation and optimality criteria methods for design 

optimization of grid and frame structures subjected to frequency constraints such that the 

desired derivatives of the functions were computed by a semi-analytical approach in order to 

reduce the number of structural analyses. Also, Salajegheh [27, 28] derived two-point and 

three-point approximation of the Rayleigh quotient for estimation of the eigenvalues 

required for optimizing frames subjected to frequency limitations. Although metaheuristic 

algorithms have widely been used for optimizing truss structures under frequency 

constraints, only one study has been found for metaheuristic-based design optimization of 

frame structures under these constraints [29]. 

This study applies the adaptive charged system search (ACSS) for optimal design of steel 

frame structures with multiple frequency limitations.  In order to show the capability of the 

ACSS, three planar frames including two-story, seven-story and ten-story structures are 

considered as design examples. Optimization results are reported using statistical analysis, 

convergence curves and optimized design variables. 

 

 

2. THE OPTIMIZATION PROBLEM DESCRIPTION 
 

The sizing optimization problem of a structure with frequency constraints is expressed as 

follows: 
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in which x denotes the vector of design variables including the cross-sectional areas, and 

each design variable is limited by its lower bound (xmin) and upper bound (xmax). Also, nv 

represents the number of design variables. w(x) and ( )xjg  denote the weight of the structure 

and the jth constraint, respectively. For constraint handling, the penalty approach is used 

here, which transforms a constrained optimization problem into an unconstrained 

optimization problem as follows: 

 

(2) Minimize ( ) ( ) ( )x x xobjf w p   

where ( )xobjf  represents the objective function (i.e., the penalized structural weight), and 

p(x) shows the penalty function. The weight and the penalty function are defined by: 
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where li and i are the length and the material density of the ith design variable, respectively; 

the sum of the violated constraints is indicated by  ; and j  denotes the amount of the jth 

constraint violation. For the penalty function, 
1  is often chosen as unity and 

2 is an 

increasing function of iteration. Also, in order to check whether or not the frequency 

constraints are violated, an eigenvalue analysis should be carried out for every objective 

function evaluation. A frequency constraint is expressed as: 
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the frequency corresponding to the solution vector, x, for the jth mode. 

Unlike the analysis of trusses, cross-sectional properties of frame members are not 

defined only by the cross-sectional areas. Thus, the remaining cross-sectional properties are 

expressed in terms of the primary variable (cross-sectional area), i
x , so that continuous 

form of the optimization problem can be maintained. Empirical relationships between the 

primary and the secondary variables for  prevalent wide-flange steel sections in the 

American Institute of Steel Construction (AISC) Manual [30] have been derived as [24]: 
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in which the secondary variable is Izi denoting the principal moment of inertia about 

major axis for the ith member. The primary variables are chosen as optimization variables, 

by which the number of design variables is reduced because the secondary variables are 

obtained from the primary ones. 

 

 

3. EIGENVALUE ANALYSIS OF PLANAR FRAME STRUCTURES 
 

This section provides the mass and stiffness matrices of planer frame structures for the 

eigenvalue analysis required for the optimization problem. The consistent mass matrix of a 

frame element is expressed as [29]: 

 

(7) 



































2

22

4

22156

00140

31304

1354022156

007000140

420

L

Lsymmetric

LLL

LL

AL
e


m  

 

and stiffness matrix of a frame element is obtained as [29]: 
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with E, ρ and L being elastic modulus, mass density and length of an element with cross-

sectional properties of A and I which are the area and the moment of inertia, respectively. 

Transformation of these element matrices from the local coordinate system to the global 

coordinate system and the assembly procedure result into the following eigenvalue problem:  

 

(9) 2
Kφ Mφi i i  

 

where i  and iφ  are the circular frequency and mode shape vector for the ith mode of 

vibration, respectively. K and M denote the assembled stiffness and mass matrices of the 

structure. In this study, natural frequencies of a few modes corresponding to the smallest 

eigenvalues are needed, which can be calculated as per Refs. [31, 32]. 

 

 

4. THE ADAPTIVE CHARGED SYSTEM SEARCH 
 

Recently, the adaptive charged system search (ACSS) algorithm was developed by Zakian 

and Kaveh [5]. The ACSS is an improved variant of the charged system search (CSS) 

algorithm. Like the CSS [33, 34], the ACSS is a population-based algorithm consisting of 

charged particles (CPs). Each particle (or agent) is defined as a sphere with uniform charge 

density and radius of a. Every CP is affected by the force field of particles. The resultant 

force is calculated with the electrostatics laws, and the quality of the movement is based on 

Newtonian mechanics. A good CP must impose a larger force than that of a bad CP. 

The ACSS uses two improvements for the CSS, including a modified initialization and a 

modified random walk [5]. The step-by-step procedure of the ACSS algorithm is 

summarized as follows: 

Step 1: Initialization.  

Initial positions of CPs are defined randomly in the search space, while the initial 

velocities of CPs are chosen to be zero. The values of objective function for the CPs are 

calculated and are sorted in an ascending order. The best CP among the entire set of CPs is 

selected as xbest and its corresponding objective function value is fbest. Similarly, the objective 

function value corresponding to the worst CP is taken as fworst.  

In contrast to the CSS which uses one search space for initialization, the ACSS uses four 

search spaces [5]. In other words, three new spaces are added to that of the CSS. In the first 

space, the initialization of the ACSS is similar to the CSS. In the second space, the 

opposition-based learning (OBL) concept is employed for the initialization step. The OBL is 

a concept in soft computing for improving the convergence rate of optimizers [35]. The 

OBL uses a population with its opposite counterpart to consider better potential solutions. 

Previous investigations have shown that using the OBL increases the probability of finding 

global optimum [35, 36]. As a simple definition of an opposite number, assume x as a real 

number within [a, b] then its opposite number is equal to a+b-x.  In the third space and the 

fourth space, the random numbers are initialized using the lower bound and upper bound 

subdomains. This is because optimal solutions have usually a tendency to be close to the 

boundaries of domain, and hence one can divide a domain to upper bound and lower bound 

subdomains to take this point into account. Consequently, four spaces are introduced in the 
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initialization part of the ACSS as given by [5]:  

 Space 1 (ordinary; like the CSS): 

 

(10) 1
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 Space 2 (based on the OBL): 
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 Space 4 (upper bound): 
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After initializing the design variables, best solutions among the four spaces are stored in a 

charge memory (CM) without any change in the size of CM with respect to that of the CSS. 

No additional computational efforts are imposed to the algorithm during the iterative 

process. In other words, the four spaces are utilized only for the initialization step. The CM 

is a matrix wherein a number of the best CPs and their corresponding values of the objective 

function are stored. Here, rand is a uniformly distributed random number within [0,1]. 

Step 2: Force determination.  

The force vector for a CP is calculated as: 
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in which Fj denotes the resultant force acting on the jth CP and n is the total number of CPs. 

The charge magnitude of each CP, qi, is obtained according to its solution quality, that is: 
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In addition, the distance rij between two particles is computed by: 
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where the positions of the ith and jth CPs are based on xi and xj, respectively. In order to 

avoid the singularity, an infinitesimally positive real number (ε) is added to the denominator. 

Here, pij is the probability of each particle movement towards the others, that is: 
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Radius of a charged sphere is obtained using the following relation: 

 

(18)  0 ,max ,minmax ( ) ; 1,2,...,i ia c x x i nv     

 

with 0c  being a constant coefficient which is close to 0.005 here. 

Step 3: Solution and updating procedure.  

Each CP moves to its new position based on the resultant force of the CP, old velocity 

and the old position. In the ACSS, Levy flight algorithm is used to enhance the random 

exploration [5]. Levy flight is an efficient random walk which has been implemented in 

some optimization algorithms [37, 38]. Levy motion is a non-Gaussian random process 

whose random walks are based on Levy distribution as a power law formula. In 

mathematical representation, a simple version of Levy distribution can be written as: 
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in which   parameter is a shift parameter; 0  parameter is a scale factor; and   is 

the skewness parameter within [-1,1]. 

Here, the influence of the local best solution, xbest, is formulated through Levy flight. 

Therefore, the ACSS uses the following equation for determining the new position of 

particles [5]: 

 

(20) , 1 2 , , ,2/3
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u
x rand F rand k v x x x
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where u and v are randomly selected numbers with normal distribution; randj1 and randj2 are 

random numbers uniformly distributed in [0,1]. The third term on the right-hand side of Eq. 

(20) represents the Levy flight contribution.  

Also, the new velocity is determined by: 



P. Zakian 

 

588 

(21) , , ,j new j new j oldv x x   

 

It should be noted that the ACSS does not use the acceleration coefficient (ka) [5], but it 

uses kv with cv being equal to or less than those of the CSS. kv is a decreasing function 

known as the velocity coefficient to stabilize the effect of the previous velocity and to 

control the exploration, as given by:  

 

(22) 
max

[1 ( )]v v

iter
k c

iter
    

 

in which iter is the current iteration number and itermax is the maximum number of 

iterations. cv is a constant value adjusted based on the optimization problem.  

Similar to the CSS, when a new CP is outside the allowable search space during the 

updating process, a harmony search-based approach can be used to limit its position to the 

allowable search space [33]. This strategy permits any component of the solution vector 

violating the variable boundaries to be regenerated from the CM or from a randomly 

selected value belonging to the allowable range of variables. In addition, if there are some 

new CPs better than the worst ones in the CM, then the worst CPs in the CM are substituted 

by the better solution vectors (that is, better CPs). 

Step 4: Stopping criterion.  

Steps 2 and 3 must be repeated until meeting a prescribed stopping criterion. In this 

study, the maximum number of iterations is chosen as the stopping criterion. 

 

 

5. DESIGN EXAMPLES 
 

In this section, optimal structural design of three planar frames under frequency constraints 

is carried out in order to assess the capability of the ACSS algorithm. Weight density and 

elasticity modulus of the steel material for these frames are taken as 0.28 lb/in3 and 30 Msi, 

respectively [29]. Mass source of these structures includes both structural mass and non-

structural mass. The consistent mass matrix is used for defining the structural mass, whereas 

the lumped mass matrix is utilized for defining the non-structural mass. For the non-

structural mass, the lumped mass corresponding to transitional degrees of freedom at 

horizontal direction is considered. Number of particles used in examples 1, 2 and 3 are 

selected as 20, 30 and 40, respectively. The performance of the ACSS is compared to the 

solutions of other metaheuristic algorithms in Ref. [29], those which used the same number 

of structural analyses. Due to the inherent randomness of the algorithms, optimization 

results are based on 20 independent runs. 

 

5.1 Planar two-story frame 

The first example is a benchmark frame (shown in Fig. 1) with cross-sectional areas ranging 

from 3 in2 to 88.28 in2 [29]. The first three natural frequencies of the structure are 

constrained  such that 51 f Hz, 182 f Hz and 353 f Hz. Non-structural uniform weight 

of 10 lb/in is loaded on the horizontal members. The gradient-based methods achieved the 
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optimal weights of 3280.24 lb [25] and 3267.93 lb [27] for this structure. Also, Table 1 

shows the results of other metaheuristic algorithms (obtained in Ref. [29]) including particle 

swarm optimization (PSO) [39], grey wolf optimizer (GWO) [40], improved grey wolf 

optimizer (IGWO) [14] and the CSS [33]. Although the ACSS gives better solutions than the 

GWO and the CSS, the PSO and the IGWO provide slightly smaller structural weight. 

Average and best convergence histories of the ACSS are drawn in Fig. 2. Based on Table 2, 

the constraint of the first mode is slightly violated by the ACSS but it is negligible compared 

to the results of other algorithms. 

 

 
Figure 1. Geometry and member numbering of the planar two-story frame 

 

 
Figure 2. Convergence curves of the ACSS corresponding to the best result and the average of 

results obtained from 20 runs for the planar two-story frame 
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Table 1: Optimized designs obtained for the planar two-story frame; design variables are cross-

sectional areas (in2) 

Variable no. PSO [29] CSS [29] 
GWO 

[29] 

IGWO 

[29] 

ACSS 

(present study) 

1 10.4830 3.7755 3.8064 10.7295 10.5348 

2 3.7418 10.4271 10.5934 3.7342 3.7434 

3 29.7480 3.0065 3.0000 29.5943 29.7063 

4 3.0000 29.7753 29.7558 3.0002 3.0048 

5 3.0000 3.0017 3.0225 3.0011 3.0009 

6 3.0000 3.0034 3.0000 3.0000 3.0063 

Best weight (lb) 2733.2520 2734.7324 2741.7958 2733.6560 2733.9139 

Average weight (lb) 2795.2559 2778.2240 2795.5196 2736.7087 2738.7826 

Standard deviation 

weight (lb) 
126.1530 145.6291 27.1642 4.9400 2.9231 

 
Table 2: Natural frequencies (Hz) computed for optimized designs of the planar two-story frame 

Mode no. 
PSO 

[29] 

CSS 

[29] 

GWO 

[29] 

IGWO 

[29] 

ACSS 

(present study) 

1 5.0000 5.0002 5.0122 4.9999 4.9998 

2 18.7548 18.7198 18.8507 18.9200 18.7907 

3 35.0011 35.0113 35.1406 35.0068 35.0207 

 

5.2 Planar seven-story frame 

Here, a seven-story frame with 21 members is considered, as indicated in Fig. 3. Lower and 

upper bounds of cross-sectional areas are limited to 7.9187 in2 and 88.28 in2, respectively. 

Only the fundamental frequency of this structure is constrained to 1.6234 Hz [29]. Definition 

of non-structural mass is similar to the previous example. McGee and Phan [25] optimized this 

structure with the optimality criteria method and the obtained weight was 16537 lb. Here, 

Table 3 shows that the structure optimized by the ACSS is lighter than the structure optimized 

by the CSS, the GWO and the PSO. Natural frequencies of the first three modes are listed in 

Table 4 showing that the equality constraint of the first mode is satisfied. Furthermore, the 

average and the best convergence histories of the ACSS are illustrated in Fig. 4. 
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Figure 3. Geometry and member numbering of the planar seven-story frame 

 

 
Figure 4. Convergence curves of the ACSS corresponding to the best result and the average of 

results obtained from 20 runs for the planar seven-story frame 

 

Table 3: Optimized designs obtained for the planar seven-story frame; design variables are cross-

sectional areas (in2) 

Variable no. PSO [29] CSS [29] GWO [29] IGWO [29] 
ACSS 

(present study) 

1 7.9187 7.9702 7.9187 7.9202 7.9215 

2 7.9187 7.9540 7.9187 7.9187 7.9293 

3 7.9187 7.9511 7.9187 8.0989 7.9938 

4 7.9187 7.9399 7.9187 7.9374 7.9446 

5 7.9187 8.1593 7.9187 7.9766 7.9331 
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6 15.9691 8.0299 8.8018 8.7332 7.9292 

7 7.9187 8.0136 7.9187 9.7156 8.2603 

8 11.1336 9.1955 14.1927 8.0608 10.0747 

9 26.7111 11.8688 7.9187 8.4559 10.0165 

10 7.9187 8.0259 7.9994 10.0986 8.0564 

11 44.1940 8.0093 14.3966 14.2558 7.9940 

12 7.9187 13.4150 10.5120 7.9231 13.9082 

13 71.5218 7.9915 8.9831 41.5235 8.0281 

14 7.9187 41.8599 46.1671 7.9187 40.0801 

15 7.9187 7.9217 7.9187 7.9199 7.9442 

16 7.9187 7.9261 7.9187 7.9187 7.9630 

17 16.3990 8.6765 7.9187 9.2514 9.9582 

18 7.9187 13.1870 14.7851 12.8494 12.9320 

19 7.9187 14.1600 12.6396 14.8597 14.5069 

20 7.9187 14.8598 16.0874 13.9370 14.2683 

21 7.9187 8.0487 7.9187 7.9187 7.9379 

Best weight (lb) 18015.0718 16142.3968 16625.4825 16123.8870 16133.5758 

Average weight (lb) 21748.0732 16193.1860 16845.6255 16148.8398 16185.9713 

Standard deviation 

weight (lb) 
3144.8827 45.6982 151.1948 20.6601 36.6943 

 
Table 4: Natural frequencies (Hz) computed for optimized designs of the planar seven-story frame 

Mode no. 
PSO 

[29] 

CSS 

[29] 

GWO 

[29] 

IGWO 

[29] 

ACSS 

(present study) 

1 1.6234 1.6234 1.6282 1.6234 1.6233 

2 4.9392 4.2478 4.2784 4.2616 4.2788 

3 8.6486 8.1862 8.4829 8.2172 8.1359 

 

5.3 Planar ten-story frame 

In the last example, a ten-story frame with 70 members shown in Fig. 5 is optimized by the 

ACSS. The definition of non-structural mass is the same as that of the first example. Cross-

sectional area of each member is taken as a design variable ranging from 3 in2 to 88.28 in2 

[29]. The first three natural frequencies should be limited as follows: 21 f Hz, 72 f Hz 

and 153 f Hz. This structure was also studied by McGee and Phan [25] who obtained an 

optimum weight of 131648.5 lb. In this study, the ACSS outperforms the CSS, the GWO 

and the PSO but the solution of the IGWO is slightly better. However, the ACSS gives a 

relatively small standard deviation of the structural weight, which illustrates the suitable 

stability of the algorithm considering the inherent randomness. Convergence curves of the 

ACSS are shown in Fig. 6, and Tables 5 and 6 report the solution details. Also, natural 

frequencies calculated for the optimal solution are indicated in Table 7 demonstrating no 

violation of constraints.  
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Figure 5. Geometry and member numbering of the planar ten-story frame 

 

 
Figure 6. Convergence curves of the ACSS corresponding to the best result and the average of 

results obtained from 20 runs for the planar ten-story frame 

 

Table 5: Optimized cross-sectional areas (in2) obtained for the planar ten-story frame 
PSO [29] CSS [29] GWO [29] IGWO [29] ACSS (present study) 

1 29.5197 36 33.6549 1 9.0595 36 37.4742 1 3.0000 36 14.8100 1 4.6338 36 41.9878 1 7.2454 36 42.6438 

2 56.0686 37 62.3277 2 44.9220 37 42.6536 2 76.7831 37 88.2800 2 45.9518 37 59.9886 2 42.4460 37 57.5284 

3 51.0850 38 53.8149 3 29.8205 38 45.6266 3 88.2800 38 74.1726 3 57.3066 38 49.3658 3 35.4969 38 62.3191 

4 30.3950 39 54.6463 4 10.2679 39 82.4349 4 3.1957 39 88.2800 4 8.6656 39 74.2058 4 21.1137 39 62.3722 

5 37.4872 40 57.4868 5 30.3284 40 62.4833 5 36.4190 40 74.3477 5 7.0983 40 54.4365 5 34.0488 40 46.6877 

6 24.6963 41 3.0000 6 39.1328 41 3.5698 6 41.6098 41 5.4863 6 35.8760 41 5.4696 6 55.6339 41 3.8544 

7 44.4298 42 3.0000 7 62.0522 42 33.2252 7 48.4907 42 3.6124 7 46.7428 42 3.1025 7 35.2796 42 28.1173 

8 25.5762 43 3.0000 8 39.0820 43 5.4702 8 10.1905 43 4.4459 8 44.3974 43 3.0778 8 21.0913 43 4.3737 

9 51.6692 44 33.3543 9 21.2109 44 37.4164 9 34.4618 44 63.0352 9 4.3259 44 3.4710 9 23.8671 44 45.4013 
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10 26.0943 45 47.4641 10 47.7581 45 42.9331 10 77.7641 45 82.7444 10 41.3986 45 68.9757 10 41.1491 45 40.6756 

11 46.1273 46 41.0117 11 43.5721 46 43.6959 11 82.8627 46 3.0000 11 45.9778 46 47.1158 11 49.4592 46 38.4261 

12 39.0085 47 38.9506 12 50.1162 47 40.0182 12 4.9180 47 31.9705 12 41.7316 47 9.1771 12 40.2268 47 40.6960 

13 42.2062 48 48.4108 13 15.5862 48 6.1057 13 45.7692 48 56.0556 13 5.6217 48 48.0278 13 20.2190 48 44.0171 

14 45.3889 49 44.2000 14 34.1207 49 69.4682 14 18.7481 49 8.5576 14 43.8835 49 53.0359 14 43.9537 49 47.8302 

15 21.3996 50 23.1173 15 41.3569 50 16.1663 15 80.1337 50 34.9689 15 40.5803 50 6.1905 15 41.4136 50 3.1699 

16 55.8747 51 25.2248 16 34.0594 51 52.8570 16 3.6303 51 6.0126 16 43.2366 51 3.9220 16 26.3408 51 25.5141 

17 54.6989 52 3.0000 17 35.8065 52 4.1141 17 26.0943 52 16.5495 17 5.9044 52 46.7173 17 13.8420 52 42.8114 

18 44.3630 53 3.0000 18 34.4436 53 3.4906 18 88.2800 53 44.3998 18 41.5151 53 9.9630 18 45.1544 53 3.1115 

19 69.2845 54 45.0476 19 42.0667 54 10.7157 19 36.5706 54 3.2490 19 44.1385 54 3.0993 19 43.4024 54 3.2235 

20 36.3042 55 33.2372 20 41.1269 55 42.6278 20 3.6994 55 7.2914 20 42.6853 55 44.1764 20 34.6751 55 40.3892 

21 51.4064 56 51.3823 21 29.8335 56 20.0221 21 22.8482 56 50.2551 21 7.4434 56 7.8372 21 20.2150 56 23.4285 

22 59.0334 57 34.0133 22 42.4877 57 48.5791 22 56.4145 57 88.2800 22 43.4209 57 50.2297 22 37.5687 57 44.3394 

23 52.5156 58 3.0000 23 53.2635 58 21.4132 23 72.4224 58 3.0000 23 55.4360 58 44.1736 23 43.3777 58 35.4990 

24 88.2800 59 52.5090 24 35.1364 59 38.1539 24 8.0787 59 12.4085 24 39.9090 59 3.2029 24 48.6701 59 35.8941 

25 27.8664 60 29.8101 25 26.1959 60 15.6696 25 33.8972 60 68.8886 25 3.0193 60 45.1477 25 33.4961 60 32.2447 

26 60.8462 61 37.8282 26 44.6208 61 50.2004 26 62.3369 61 5.0984 26 21.8692 61 44.8072 26 35.5172 61 34.4426 

27 49.4879 62 35.9664 27 33.7693 62 7.9297 27 52.1827 62 50.7306 27 45.1819 62 3.0598 27 16.6273 62 45.2556 

28 35.6458 63 3.0000 28 49.6919 63 43.6860 28 4.8242 63 10.9981 28 44.3409 63 7.8814 28 37.8035 63 3.9604 

29 35.2384 64 3.0000 29 8.3112 64 3.6401 29 27.3140 64 3.0000 29 3.0256 64 42.1576 29 40.4308 64 4.5185 

30 50.7653 65 3.0000 30 45.7488 65 5.8682 30 28.0415 65 3.0000 30 30.4577 65 3.4860 30 35.1539 65 3.6150 

31 26.9287 66 3.0000 31 24.8783 66 9.8094 31 31.4979 66 47.0715 31 23.9756 66 3.2132 31 12.3125 66 3.1877 

32 25.1350 67 4.7347 32 42.9816 67 3.4524 32 4.4834 67 3.0000 32 43.6214 67 18.5162 32 46.3373 67 5.5657 

33 25.7039 68 39.4951 33 12.2387 68 4.1140 33 22.1488 68 40.7262 33 8.8847 68 44.1659 33 35.1358 68 48.4156 

34 30.9292 69 3.0000 34 47.3799 69 43.2039 34 49.5387 69 62.1344 34 34.4806 69 5.5788 34 45.3763 69 5.7537 

35 47.1990 70 69.5588 35 26.4803 70 45.6091 35 49.5348 70 5.0830 35 20.9954 70 48.3381 35 4.6655 70 44.2022 

 
Table 6: Optimization results obtained for the planar ten-story frame 

Statistical index PSO [29] CSS [29] GWO [29] IGWO [29] 
ACSS 

(present study) 

Best weight (lb) 140127.5309 130115.2747 143448.7343 120635.7922 128370.0454 

Average weight (lb) 158293.3047 133489.9963 153209.0455 125677.0802 133027.6469 

Standard deviation 

weight (lb) 
7532.3112 2027.1734 4204.8825 2980.1319 2213.4142 

 

Table 7: Natural frequencies (Hz) computed for optimized designs of the planar ten-story frame 

Mode no. PSO [29] CSS [29] GWO [29] IGWO [29] 
ACSS 

(present study) 

1 2.0000 2.0060 2.2755 2.0408 2.0029 

2 7.0000 7.0095 7.0971 7.0000 7.0020 

3 15.0000 15.0006 15.1538 15.0000 15.0003 

 

 

6. CONCLUSIONS 
 

This study uses a recently developed metaheuristic algorithm known as the adaptive charged 
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system search (ACSS) for optimal design of planar frame structures under natural frequency 

constraints. The ACSS is an enhanced version of the CSS, which contains an improved 

initialization procedure as well as an improved updating procedure.  

Three design examples including two-story, seven-story and ten-story planar frames are 

considered for the optimization. Results demonstrate the desirable performance of the 

ACSS, as indicated by the statistical indices like the average, standard deviation and 

convergence history. The ACSS outperforms the CSS and provides suitable stability 

according to the standard deviation of the solutions. However, the improved grey wolf 

optimizer (IGWO) provides better solutions than the ACSS in the test cases investigated 

here. This study also shows that the ACSS can provide desirable solutions for optimal 

design of moment-resisting frames subjected to frequency constraints. 
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