
 

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING  
Int. J. Optim. Civil Eng., 2021; 11(x): 383-396 

 
 
 

RELIABILITY ANALYSIS OF OPTIMALLY DESIGNED 
DOUBLE LAYER BARREL VAULTS 

 
M. H. Seyyed Jafari and S. Gholizadeh*, † 

Department of Civil Engineering, Urmia University, Urmia, Iran 
 

ABSTRACT 
 

The present work deals with optimization and reliability assessment of double layer barrel 
vaults. In order to achieve the optimization task an improved colliding bodies optimization 
algorithm is employed. In the first phase of this study, different forms of double layer barrel 
vaults namely, square-on-square, square-on-diagonal, diagonal-on-diagonal and diagonal-
on-square are considered and designed for optimal weight by the improved colliding bodies 
optimization algorithm. In the second phase, in order to account for the existing 
uncertainties in action and resistance of the structures, the reliability of the optimally 
designed double layer barrel vaults is assessed using importance sampling method by taking 
into account a limit-state function on the maximum deflection of the structures. The results 
demonstrate that the minimum reliability index of the optimal designs is 0.92 which means 
that all the optimally designed double layer barrel vaults are reliable and safe against 
uncertainties.   
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1. INTRODUCTION 
 

The primary objective of this study is to evaluate the reliability of optimally designed double 
layer barrel vaults with different forms considering uncertainties in structural capacity and 
demands. The designer must verify the serviceability and ultimate conditions dominated by 
the action and resistance related parameters. The intrinsic random nature of material 
properties and actions must be actually considered in the design process of structures and the 
probability of failure must be computed from the joint probability distribution of the random 
variables associated with the action and resistance. Theory and methods for structural 
reliability are actually useful tools for evaluating the safety of complex structures. Recent 
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developments allow anticipating that their application will gradually increase, even in the 
case of common structures [1]. Monte Carlo Simulation (MCS) is a simulation method for 
reliability analysis. The main concept of simulation techniques is to simulate a probabilistic 
phenomenon numerically and then observe the frequency of a certain event in that 
phenomenon [2]. The implementation of these simulation techniques is easy, but in the case 
of small failure probabilities, the required number of simulations is prohibitively high and 
drastically increases the computational cost of these simulation techniques. So, MCS method 
can be applied to many practical problems allowing the direct consideration of any type of 
probability distribution for the random variables. It is able to compute the probability of 
failure with the desired precision and it is easy to implement. However, its computational 
burden is high as MCS requires a great number of structural analyses [3]. During the recent 
years a few studies have been conducted on the reliability analysis of different kinds of 
space structures. Gordini et al [4] investigated the effects of initial member length and its 
imperfection on the load-bearing capacity of double-layer space domes. Hadidi et al [5] used 
the response surface method to evaluate the reliability of structures. In his research, the 
efficiency of the proposed method has been increased by using the exponential alternative 
model instead of the quadratic function. Tahammoli and Gordini [6] investigated the effect 
of initial curvature coefficients on the load-bearing capacity of double layer grids with 
different types of supports. Biabani and Kalatjari [7] proposed a computational framework 
for evaluating the system reliability of truss structures and simultaneously optimizing size 
and geometry of the structures under reliability constraints.  

Optimization of structures is an integral part of the design and construction process of 
structures. The major concern in this field is designing the cheapest possible structures with 
the minimum amount of used material. To this end, modern optimization methods can be 
effectively employed in the field of structural engineering. In recent years, metaheuristic 
algorithms have been widely used in the field of civil engineering to solve large-scaled and 
complex optimization problems. Regarding the optimization of space structures, one can 
refer to the works done by Gholizadeh et al [8], Kaveh and Rezaei [9], Kamyab and Selajgeh 
[10], and Saka and Kameshki [11]. One of the efficient metaheuristics developed by Kaveh 
and Mahdavi [12] is colliding bodies optimization (CBO) algorithm which is designed based 
on the governing laws of one dimensional collision between two bodies from the physics. 
An enhanced CBO (ECBO) algorithm was proposed by Kaveh and Ilchi Ghazaan [13] to 
improve performance and convergence rate of original CBO algorithm. Since the number of 
metaheuristic algorithms is very large and each of them is suitable for solving a specific 
class of optimization problems, so in this research, an improved colliding bodies 
optimization algorithm (ICBO) [8] is used to efficiently tackle the optimization problem of 
double layer barrel vaults.   

In the first phase of the proposed methodology of the present work, double layer barrel vaults 
having different forms including square-on-square, square-on-diagonal, diagonal-on-diagonal 
and diagonal-on-square are designed for optimal weight by ICBO metaheuristic algorithm taking 
into account different load cases. In the second phase, the reliability of the optimally designed 
double layer barrel vaults is assessed using MCS method by taking into account different limit-
state functions. The obtained numerical results demonstrate that the minimum reliability index of 
the optimally designed double layer barrel vaults is 0.92 which means that all the optimally 
designed double layer barrel vaults are reliable and safe against uncertainties.  
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2. DOUBLE LAYER BARREL VAULTS 
 
In the case of structures with many members, one of the most important issues that should 
be addressed prior to optimization is to find the best form. The vertical section of a typical 
double layer barrel vault is depicted in Fig. 1 defining its height (H), span (S), and layer 
thickness (h). As regard S is usually predefined, one of the most important issues in the form 
finding process is to find the best values of H and h. In the present study, four basic forms 
including square-on-square (SS), square-on-diagonal (SD), diagonal-on-diagonal (DD) and 
diagonal-on-square (DS), with S=42.0 m and length (L) of 60 m, shown in Fig. 2, are 
considered.  
 

 
Figure 1. The vertical section of a typical double layer barrel vault 

 

 
(a)            (b) 

 
(c)            (d) 

Figure 2. Double layer barrel vaults with (a) SS, (b) SD, (c) DS, and (d) DD forms 
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In the design process of these structures, dead, symmetrical and non-symmetrical snow, 
earthquake and wind loads are considered according to Standard No. 400 [14], Standard No. 
2800 [15], Eurocode 1, Part 1.3 [16] and Part 1.4 [17]. For optimal design of double layer 
barrel vault considering nonlinear behavior service load combinations are employed. The 
design dead load is determined on the basis of the actual loads that may be expected to act 
on the structure of constant magnitude. In this study, a uniform dead load of 70 kg/m2 is 
considered for estimated weight of sheeting, structural members, and nodes of barrel vault. 
The snow load for arched roofs is calculated according to Eurocode 1, Part 1.3 [16]. Snow 
loads acting on a sloping surface is assumed to act on the horizontal projection of that 
surface and can be computed as follows: 

 

ikte SCCS   (1) 

 
where Ce, Ct, Sk and µi are exposure coefficient, thermal coefficient, flat roof snow load and 
shape coefficient, respectively. In this study, Ce = 1.0, Ct = 1.0 and Sk = 1.5 kN/m2. The 
shape coefficient µi is computed for symmetrical and non-symmetrical snow load based on 
the values of α and δ, shown in Fig. 3, as follows: 
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Figure 3. Distribution of symmetrical and non -symmetrical snow loads 

 
In the case of wind load in arched roofs, different loads are applied in the windward 

quarter, center half and leeward quarter of the roof as depicted in Fig. 4. Wind induced loads 
are computed according to Eurocode 1, Part 1.4 [17] as follows: 

 

pebe CqCW   (3) 

 
where Ce and qb are exposure coefficient and basic wind pressure, respectively and Cpe is 
external pressure coefficient which determines the distribution of wind load. 
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In the present work, Ce = 2.0, bq = 0.6 kN/m2. Based on Fig. 4, values of Cpe in zones A, 
B, C, D, E, F, G, I and J are -0.45, 0.55, 0.4, -0.75, 0.5, 1.1, 1.2, 0.8, and 0.5, respectively. 
The value of e in Fig. 4 is determined as follows: 
 

 )(2,min CHHSe   (4) 

 

 
Figure 4. Distribution of wind load in x and y directions 

 
Earthquake equivalent static loads in x and y directions are applied according to Standard 

No. 2800 [15]. Vertical earthquake load acting on a sloping surface shall be assumed to act 
on the horizontal projection of that surface. The vertical earthquake load is calculated using 
the following equation in agreement with Standard No. 400 [15] requirements. 
 

)50(20 S.D.Ev   (5) 

 

Wind 

x 
z 

A 

B 

C 

D E 

S 

H 

HC 

x 
y 

e/4 e/4 

J 

I 

F F G 

Wind 

e/10 

2e/5 

L-e/2 

L 



M. H. Seyyed Jafari and S. Gholizadeh 

 

388 

In order to model nonlinear behavior of members of barrel vault an element with 
plasticity and large deflection capabilities is utilized. In elasto-plastic analysis the von-mises 
yield function is used as yield criterion, flow rule in this model is associative and the 
hardening rule is bi-linear kinematics hardening in tension. In compression, according to 
FEMA-274 [18], it is assumed that the element buckles at its corresponding buckling stress 
state and its residual stress is about 20% of the buckling stress.  
 
 

3. OPTIMIZATION PROBLEM FORMULATION 
 
The main aim of the optimization problem of double layer barrel vaults considering 
nonlinear behaviors is to minimize the weight of the structure, subject to some constraints. 
The first constraint limits the maximum deflection of the structure. The second constraint is 
checked to ensure the overall stability of the structure during the optimization process. For a 
double layer barrel vault with ne members collected in ng groups, if the design variables 
associated with each design group are selected from a given profile list, the nonlinear 
optimization problem can be formulated as follows: 
 

Minimize:  
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where w represents the weight of the frame; ρi and Ai are weight of unit volume and cross-
sectional area of the ith group section, respectively; nm is the number of elements collected 
in the ith group; Lj is the length of the jth element in the ith group; gΔ(X) is the maximum 
deflection constraint; Δmax is the maximum deflection of the structure and Δall is its allowable 
value; gS(X) is the stability constraint; fapp is applied load and fu is ultimate load of the 
structure which can be determined by incremental nonlinear analysis; Xi is an integer value 
expressing the sequence numbers of steel sections assigned to the ith group. 

In this study, the constraints of the optimization problems are handled using the concept 
of exterior penalty function method (EPFM). In this case, the pseudo unconstrained 
objective function for optimization processes is expressed as follows: 
 

    22 )}(max{0,)}(max{0,1)()( XgrXgrXwXΦ SΔNL   (9) 

 
where )(XΦNL

is pseudo objective function; and r is the penalty parameter. 
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4. IMPROVED COLLIDING BODIES OPTIMIZATION 
 

Colliding bodies optimization (CBO) is a meta-heuristic search algorithm that has been 
developed by Kaveh and Mahdavi [12]. In this technique, one object collides with other 
object and they move towards a minimum energy level. The CBO is simple in concept and 
does not depend on any internal parameter. Kaveh and Ilchi Ghazaan [13] proposed 
enhanced CBO (ECBO) to improve convergence rate and reliability of CBO by adding a 
memory to save some of the best solutions during the optimization process and also utilizing 
a mutation operator to decrease the probability of trapping into local optima. In order to 
improve the convergence rate of CBO a different computational strategy, in comparison 
with ECBO, has been proposed in [8] and an improved colliding bodies optimization 
(ICBO) has been introduced to tackle space structures optimization problems. In the 
framework of ICBO the global best body up to current iteration is saved based on this 
important point that during the optimization process the best solutions should not be lost and 
should be passed onto the next generations. Furthermore, a simple mechanism has been 
included in ICBO to escape from local optima. The basic steps of ICBO is as follows: 
1. The initial positions of all colliding bodies (CBs) are determined randomly in an m-

dimensional search space using Eq. (10). 
 

niXX.RXXi 1,2,..., , )( minmaxmin
0   (10) 

 
in which Xi

0 is the initial solution vector of the ith CB. Here, Xmin and Xmax are respectively 
the lower and upper bounds of design variables; R is a random vector in the interval [0, 1]; n 
is the number of CBs. 
2. Each colliding body (CB), has a specified mass defined using Eq. (11). 
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where F(Xi) is the objective function value of the ith CB. 
 
3. In order to select pairs of objects for collision, CBs are divided into two equal groups: 
(a) Stationary group: iS = 1,2, ... , n/2  
(b) Moving group: iM = (n/2)+1, ... , n 
4. The velocities of stationary and moving bodies before collision are evaluated using Eq. (12). 
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5. The velocities of stationary and moving bodies after collision are evaluated using Eqs. (13) to 
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where iter and itermax are the current iteration number and the total number of iterations for 
optimization process, respectively; ε is the coefficient of restitution the best value of C 0 
should be determined by performing sensitivity analysis. 
 
6. The position of CBs in design space are updated using Eqs. (16) to (17) 
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where 

Si
R and 

Mi
R are random vectors uniformly distributed in the range of [-1,1]; iR  is a 

random vector in the interval [-0.5, 0.5]. In this work αdamp is considered to be 0.995 and in 
order to find the best value of 0 sensitivity analysis should be conducted. 
 
7. This process continues until one of the termination criteria is met.  

 
The results of sensitivity analysis conducted in [8] demonstrated that the best values of 

C0 and α0 are 3.0 and 2.0, respectively.  
 
 

5. STRUCTURAL RELIABILITY ANALYSIS 
 
Deterministic structural optimization without considering the uncertainties in structural 
capacity and demands results in an unreliable design and therefore cannot provide a fine 
balance between cost and safety. In this case, it is not possible to ensure that the structural 
performance will be fulfilled during the lifetime of structures, because the uncertainty in 
actions and resistances affect the structural response. An appropriate framework for 
modeling uncertainty is probability theory which allows calculating the reliability index of 
structures. In the past decades, to deal with the randomness in actions and resistances, semi-
probabilistic, approximate probabilistic, and exact probabilistic methods have been widely 
used [19]. In exact probabilistic methods the probability of failure is determined based on 
the joint probability distribution of the random variables. Monte Carlo simulation (MCS) is 
a simulation method categorized in exact probabilistic methods that allows the consideration 
of any probability distribution function for random variables. The major advantage of MCS 
is that accurate solutions can be obtained for almost every problem, however its 
computational cost is excessive in many cases [20]. 

In order to solve a reliability problem, random design variables need to be defined. For 
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the optimally designed double layer barrel vaults the random variables taken in the present 
study are represented as follows: 
 

 }    { TSfEZ y (19) 

 
where Z is vector of random variables; E and fy are respectively Young’s modulus and yield 
strength; and S is snow load.  

A reliability problem is normally formulated using a limit state function. Limit state 
function for optimally designed nonlinear double layer barrel vaults is defined as follows: 
 

 )(- )( ZZG ST  (20) 

 
where G is a limit state function; δT and δS are the target vertical displacement and maximum 
displacement of double layer barrel vaults.  

The non-performance probability, Pf, is defined as a function of the defined limit state 
functions for the problem at hand. Estimation of the non-performance probability requires 
the evaluation of the multiple integral over the failure domain, i.e. G(Z) < 0, as follows: 
 

 ZZFP ZZGf )d( 
)(
 (21) 

 
where FZ(Z) is the joint probability density function of Z.  

The total exceedance probability, PfE, is defined as a series system when one of the limit 
state functions fails: 
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where nl is the number of the limit state functions.  

As in the present work there is only one limit state function for each structure, Eq. (22) 
can be rewritten as follows: 
 

 0)(  ZGPPfE (23) 

 
Computation of total exceedance probability requires integration of a multi-normal 

distribution function. This integral can be estimated by the MCS method and it allows the 
determination of an estimate of PfE given by 
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where N is the number of independent samples generated based on the probability 
distribution for each random variable. 

Finally, the reliability index (RI) for the problem at hand is determined as follows: 
 

EPfRI 1 (26) 

 
The standard MCS method is the most straightforward approach to evaluate the reliability 

of structures. However, this approach is in general time-consuming, especially if the failure 
probability is small (e.g. ≤ 10−6 ) and/or the number of structures to be analyzed is large. The 
efficiency of the MCS can be amended by employing the importance sampling (IS) 
technique which its mathematical background is well described in literature [19–21]. The IS-
based simulation samples the failure domain more frequently and therefore achieves a higher 
efficiency in estimating the failure probability compared with the simple MCS [21-24]. In 
this work, Rt [25] software is used to perform IS-based reliability analysis of structures.  
 
 

5. PROPOSED METHODOLOGY 
 
The outlines of methodology presented in this study to evaluate the reliability index RI of 
optimally designed double layer barrel vaults are as follows:  

Design optimization of double layer barrel vaults is achieved using ICBO algorithm 
according to the formulation provided in section 2. The cross-sections of structural members 
of double layer barrel vaults are selected from a set of available Pipe profiles given in Table 
1. In this case, 16 models with 3.0 m modulation and different height to span (H/S) ratios are 
generated as given in Table 2.  
 

Table 1: The available list of standard Pipe profiles 

No. Profile Area (cm2) 
1 D48×2.9 4.1089 
2 D60×3.0 5.3721 
3 D76×3.0 6.8801 
4 D89×3.0 8.1053 
5 D114×4.0 13.823 
6 D114×5.0 17.121 
7 D140×4.0 17.090 
8 D140×5.0 21.206 
9 D168×5.0 25.604 
10 D168×6.0 30.536 
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Table 2: Different models of double layer barrel vaults 

No. Form Height (m) Span (m) H/S Model name 
1 square-on-square 8.4 42 0.2 SS20 
2 square-on-square 12.6 42 0.3 SS30 
3 square-on-square 14.7 42 0.35 SS35 
4 square-on-square 16.8 42 0.4 SS40 
5 diagonal-on-diagonal 8.4 42 0.2 DD20 
6 diagonal-on-diagonal 12.6 42 0.3 DD30 
7 diagonal-on-diagonal 14.7 42 0.35 DD35 
8 diagonal-on-diagonal 16.8 42 0.4 DD40 
9 square-on-diagonal 8.4 42 0.2 SD20 
10 square-on-diagonal 12.6 42 0.3 SD30 
11 square-on-diagonal 14.7 42 0.35 SD35 
12 square-on-diagonal 16.8 42 0.4 SD40 
13 diagonal-on-square 8.4 42 0.2 DS20 
14 diagonal-on-square 12.6 42 0.3 DS30 
15 diagonal-on-square 14.7 42 0.35 DS35 
16 diagonal-on-square 16.8 42 0.4 DS40 

 
Reliability assessment of the optimally designed double layer barrel vaults is carried out 

using IS method. The probability density function, mean value and standard deviation of 
each random parameter are given in Table 3. 

 
Table 3: Properties of the random variables for steel lattice domes 

Random Variable Probability density function Mean value Standard deviation 
E Lognormal 2.1e6 kg/cm2 2.1e5 
fy Lognormal 2400 kg/cm2 480 

S (snow load) Normal 250 kg/m2 50 

 
The limit state function considered in this study is as follows: 

 
 maxΔG (27) 

 
where Δmax is the maximum deflection of double layer barrel vault determined by performin 
structural analysis; δ is a limiting value which is considered as L/360 in which L is span 
length of the barrel vault.  
 
 

6. NUMERICAL RESULTS 
 
The optimal weight of different models of double layer barrel vaults obtained by ICBO 
metaheuristic are given in Table 4. The results of IS-based reliability assessment of these 
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optimal designs, considering 2000 samples, are given in Table 5. 
 

Table 4: Results of optimization of double layer barrel vaults  

No. Model name Number of element Number of joint Optimal weight (kg) 

1 SS20 2720 718 35937.07 
2 SS30 2720 718 39794.06 
3 SS35 2720 718 42426.51 
4 SS40 2720 718 45821.55 
5 DD20 3597 1061 46563.49 
6 DD30 3597 1061 48928.82 
7 DD35 3597 1061 51385.31 
8 DD40 3597 1061 54803.07 
9 SD20 3293 1021 40952.24 
10 SD30 3293 1021 44447.81 
11 SD35 3293 1021 49586.98 
12 SD40 3293 1021 52679.35 
13 DS20 3433 1057 36946.54 
14 DS30 3433 1057 39110.86 
15 DS35 3433 1057 41981.89 
16 DS40 3433 1057 46550.41 

 
Table 5: Results of reliability analysis 

No. Model name Coefficient of Variation (CoV) Pf RI 

1 SS20 0.0663 0.041 0.959 

2 SS30 0.0638 0.038 0.962 

3 SS35 0.0579 0.036 0.964 

4 SS40 0.0537 0.032 0.968 

5 DD20 0.0461 0.067 0.933 

6 DD30 0.0426 0.057 0.943 

7 DD35 0.0399 0.050 0.95 

8 DD40 0.0376 0.043 0.957 

9 SD20 0.0661 0.080 0.920 

10 SD30 0.0624 0.077 0.923 

11 SD35 0.0596 0.074 0.926 

12 SD40 0.0563 0.072 0.928 

13 DS20 0.0646 0.047 0.953 

14 DS30 0.0594 0.045 0.955 

15 DS35 0.0521 0.044 0.956 

16 DS40 0.0498 0.043 0.957 

 
The obtained RI values for different models are depicted in Fig. 5 indicating that the 

minimum and maximum RI values are 0.920 and 0.968, respectively which means that all 
the optimally designed double layer barrel vaults are reliable and safe against uncertainties. 
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In addition, it can be observed that by increasing the H/S ratio for all forms, RI increases.  
 

 
Figure 5. Reliability indices of optimally designed double layer barrel vaults 

 
 

7. CONCLUSIONS 
 
This study is devoted to reliability analysis of optimally designed double layer barrel vaults. 
An improved colliding bodies optimization algorithm is used to implement the optimization 
process. Different forms of double layer barrel vaults including square-on-square (SS), 
square-on-diagonal (SD), diagonal-on-diagonal (DD) and diagonal-on-square (DS) are 
optimized. The reliability of the optimally designed double layer barrel vaults is assessed 
using importance sampling (IS) method. The obtained numerical results indicate that the 
maximum reliability index among the different forms of double layer barrel vaults belongs 
to SS form and the minimum to SD form. Moreover, the minimum and maximum indices of 
are 0.920 and 0.968, respectively which implies that all the optimally designed double layer 
barrel vaults are reliable and safe against uncertainties. 
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