
 

 
 
 
 

PREDICTION OF NONLINEAR TIME HISTORY DEFLECTION OF 
SCALLOP DOMES BY NEURAL NETWORKS 

 
 

R. Kamyab*, † and E. Salajegheh 
Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 

The Iranian Academic Center for Education, Culture and Research, Kerman, Iran 
 
 

ABSTRACT 
 

This study deals with predicting nonlinear time history deflection of scallop domes subject to 
earthquake loading employing neural network technique. Scallop domes have alternate ridged 
and grooves that radiate from the centre. There are two main types of scallop domes, lattice 
and continuous, which the latticed type of scallop domes is considered in the present paper. 
Due to the large number of the structural nodes and elements of scallop domes, nonlinear time 
history analysis of such structures is time consuming. In this study to reduce the computational 
burden radial basis function (RBF) neural network is utilized. The type of inputs of neural 
network models seriously affects the computational performance and accuracy of the network. 
Two types of input vectors: cross-sectional properties and natural periods of the structures can 
be employed for neural network training. In this paper the most influential natural periods of 
the structure are determined by adaptive neuro-fuzzy inference system (ANFIS) and then are 
used as the input vector of the RBF network. Results of illustrative example demonstrate high 
performance and computational accuracy of RBF network. 
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1. INTRODUCTION 
 

Dynamic analysis of structures subject to earthquakes is usually achieved by a step-by-step 
procedure that determines the history of response of structures which vary with time. Such 
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processes are called time history methods. Time history analysis of large scale structures 
requires much computational effort. This drawback will be resonated when the dynamic 
responses of structures are required to complete an iterative algorithm such as optimisation. 
Therefore, approximating of the time history responses of structures may effectively reduce 
the computational burden. 

In the recent decade, neural network techniques are widely utilized to simplify the complex 
problems in a broad range of science and engineering cases. All the neural networks have 
training and predicting operational modes. In training mode they accept a set of input-target 
pairs and regulate the adjustable arguments of the networks according to the best mapping 
relationship between input and target spaces. In predicting mode the trained networks are 
employed to predict the outputs.  

Some neural networks such as radial basis function (RBF), generalized regression (GR), 
counter propagation (CP), back propagation (BP) and wavelet back propagation (WBP) 
neural networks are used in civil and structural engineering applications [1-4]. In the field of 
structural engineering, one of the most popular neural networks is RBF network [5-7]. This 
network is very interesting due to its rapid training, generality and simplicity [8].   

In the last years, RBF neural network are used for predicting linear time history responses 
of structures subjected to earthquake [9-13]. Also in [14] RBF neural network is employed for 
predicting nonlinear time history responses of space towers. In this study the most influential 
natural periods of scallop domes are determined using ANFIS. These important natural 
periods are employed then as the inputs of the RBF network instead of cross-sectional 
properties. This task significantly improves the computational performance of the RBF 
network.        

In the numerical example, the inputs and outputs of the RBF neural network are the most 
influential natural periods of the structures and time history deflection of top node of structures 
subject to the vertical component of BAM earthquake. In order to provide training data 
ANSYS [15] are employed, also, to train and test the RBF network and ANFIS, MATLAB 
[16] is utilized.  

 
 

2. SCALLOP DOMES  
 

The idea of scallop domes was proposed for the first time by Nooshin et. al in [17]. Consider 
the dome configuration a perspective view of which is shown in Figure 1a. This is a single 
layer dome whose nodes lie on a spherical cap. The plan view of the dome is shown in Figure 
1b [17].  
Now, consider the dome configuration shown in Figure 1d. The plan view of this dome is 
identical to that of the dome of Figure 1a, as given in Figure 1b. Also, the borders of the 
segments in Figure 1d are identical in shape to the ones in Figure 1a. The difference between 
the domes of Figures 1a and 1d is that the segments in Figure 1d are arched. More 
specifically, in the case of the dome of Figure 1d, the nodal points along every circumferential 
ring are raised vertically such that the part of the ring between the borders in each segment is 
turned into an arch. The arching effect is such that: The nodal points on the segmental borders 
remain in their original positions (in particular, the position of the crown of the dome remains 
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unchanged) and the rise of the arches increases with distance from the crown of the dome. The 
maximum rise for a circumferential ring, which occurs at the middle of each segment, is 
referred to as the "amplitude of the ring". The ring that is furthest away from the crown, 
namely, the "base ring" has the largest amplitude. This amplitude is referred to as the 
"amplitude of the dome", as indicated in Figure 1d. In this figure, the dotted curve shows the 
identical position of the base ring before "arching" of the segments. The dome of Figure 1d is 
an example of a class of domes that are referred to as scallop domes [17]. 

 
Figure 1. Examples of scallop domes 

 
 

3. NONLINEAR TIME HISTORY ANALYSIS OF STRUCTURES 
 

Time-history analysis is a step-by-step analysis of the dynamical response of structures to a 
specified loading that vary with time such as earthquake. Time history analysis against the 
earthquake determines the dynamic response of structures subject to ground acceleration. The 
dynamic equilibrium equations that must be solved are given as: 

 
 )()()()( tuItUtUtU g&&

&&& MKCM −=++  (1)  
 

where M, C and K are the mass, damping and stiffness matrices, respectively; Ü(t), )(tU& and 
)(tU are the acceleration, velocity and displacement vectors of structure; I is unit vector; 
)(tug&& is the ground acceleration. 

The dynamic equilibrium of motion Eq. (1) can be solved by using any of the available 
numerical integration methods. One of the popular solution methods is the Newmark’s 
integration method. 

In order to perform dynamic analysis considering inelastic behavior, ANSYS is employed. 
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A simple perfectly plastic stress-strain relationship is adopted in order to take into account the 
transient nature of earthquake loading. Geometric nonlinearity effects are also considered. The 
perfectly plastic stress-strain relationship is shown in Figure 2. 

 

 
Figure 2. Full plastic stress-strain relationship 

 
Nonlinear time history analysis of large scaled structures, such as scallop domes, is a time 

consuming process. In this study, in order to reduce the computational burden RBF neural 
network are employed to predict the desired structural responses. 

 
    

4. RADIAL BASIS FUNCTION (RBF) NEURAL NETWORK  
 

Radial basis functions (RBFs) take an interesting approach by viewing the design of a neural 
network as a curve-fitting problem by finding a best fit to the training data in a 
multidimensional space. RBF networks are two layer feed forward neural networks. The first 
layer consists of RBF neurons with Gaussian activation functions. The outputs of RBF 
neurons have significant responses to the inputs only over a range of values of s called the 
receptive field. The size of the receptive field is determined by the value of σ. The value of σ 
allows the sensitivity of the RBF neurons to be adjusted. Activation function of RBF neurons 
is as follows: 

 )
σ2

)()(
exp()(h 2

T

ξ

ξξ
ξ

cscs
s

−−−
=  (2) 

 
where s is an input vector, ξh , ξc  and ξσ  are Gaussian activation function, weight vector and 
radius of receptive field of ξ th RBF neuron, respectively. 

The output layer neurons produce the linear weighted summation of hidden layer neurons 
responses.  

To train the hidden layer of RBF networks no training is accomplished and the transpose of 
training input matrix is taken as the layer weight matrix [8].  

 

 TΛC =  (3) 
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where, C and Λ are input layer weight matrix and training input matrix, respectively.   

The second layer weights are obtained by solving the following matrix equation: 

 
 TΦWΦWT 1−=⇒=  (4) 
 
where T , Φ , and W are the target matrix (desired outputs), the matrix of first layer outputs, 
and the weight matrix of the second layer.  

The numerical results of many scientific and engineering applications indicate that RBF 
networks are very good tools for interpolation and also their training is very fast.  

It is demonstrated in [10-13] that using the natural periods of the structures as the inputs of 
the RBF network leads to better performance generality. In this study also the natural periods 
are used as the inputs of the RBF network. As the number of the natural periods of the scallop 
domes is large, considering all of them as the inputs is impossible. Therefore a computational 
strategy should be adopted to select the important ones. In this study, ANFIS is employed to 
achieve this task. 

      
 

5. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 
 

The ANFIS is a hybrid network which uses neural network learning algorithms and fuzzy 
reasoning to map inputs into an output. For simplicity, a typical ANFIS architecture with only 
two inputs leading to four rules and one output for the first order Sugeno fuzzy model is 
expressed [18-19]. It is also assumed that each input has two associated membership 
functions (MFs). It is evident that this architecture can be easily generalized to any arbitrary 
dimensions. The architecture of a typical ANFIS is shown in Figure 3. 

 

 
Figure 3. The architecture of a typical ANFIS  

 
Modifiable parameters of the ANFIS architecture are placed in Layers 1 and 4. During the 

training phase, adjustment of the modifiable parameters is facilitated by a gradient vector. In 
this study, a hybrid algorithm is employed for training which its mathematical background can 
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be found in [20].  
ANFIS can be used to find the most influential inputs, ni, from the whole candidates, nt, 

affecting an output in the framework of an exhaustive search by building an ANFIS model for 
each combination of input vector components and training it for a little epoch. In this study, 
however the aim is to predict the time history nonlinear deflection of the top node, the 
maximum deflection of each structure, all over the earthquake duration, is considered as the 
ANFIS output. By using this technique, the dimension of the input vector of the neural 
networks can be reduced and the accuracy of the prediction is improved. The pseudo code of 
exhaustive search by ANFIS to determine the most influential inputs is given in [12]. After 
finding the most influential inputs, they can be employed as the inputs instead of the initial 
inputs, in the training phase of neural network models. In this case, as the number of input 
vector components is reduced, the training process is efficiently achieved.  

 
 

6. EVALUATION METRICS   
 

In order to evaluate the accuracy of the approximate structural responses obtained by RBF 
neural networks, two evaluation metrics are used: 

The RRMSE error between the exact and approximate responses is defined as follows: 
 

  2
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where ηu  and η

~u are the η th component of the exact and approximate responses, respectively. 
The mean value of exact vectors component and the vectors dimension are expressed by u  
and r, respectively.  

 
 

7.  NUMERICAL RESULTS  
 

In this study a scallop dome with the span of 44.32m and the height of 7.63 m, shown in 
Figure 4, is considered. Young’s modulus and mass density are 2.1×1010 kg/m2 and 7850 
kg/m3, respectively. The computational time is measured in terms of CPU time required by a 
PC Pentium IV 3000 MHz. 
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Figure 4. The considered scallop dome 

 
All the structural members of top, web and bottom layers are grouped in groups 1, 2 and 3, 

respectively. These groups are shown in Figure 5.   
 

 
Figure 5. The structural elements’ groups  

 
The available standard pipe profiles for this example are listed in Table 1. In this study, 

vertical component of Bam earthquake (Iran-2003) is considered. This component of the 
earthquake contains 13310 points with the PGA of 9.885 m/s2. Here a portion of the 
earthquake with 1500 points shown in Figure 6 is considered.   
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Table 1: Available standard pipe profiles 
No. d (mm) t (mm) A (cm2) No. d (mm) t (mm) A (cm2) 

1 33.7 2.6 2.54 9 101.6 4.0 12.30 

2 42.4 2.6 3.25 10 88.9 5.0 13.20 

3 48.3 3.2 4.53 11 88.9 6.0 15.60 

4 48.3 4.0 5.57 12 88.9 6.3 16.30 

5 60.3 4.0 7.07 13 114.3 5.0 17.20 

6 60.3 5.0 8.69 14 101.6 6.3 18.90 

7 76.1 4.0 9.06 15 114.3 6.3 21.40 

8 88.9 4.0 10.70 16 114.3 8.0 26.70 
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Figure 6. Vertical component of Bam earthquake (Iran-2003)  

 
In order to train RBF neural network to predict the nonlinear time history displacement of 

the top node of the structure, 100 samples are randomly generated based on groups 1 to 3 
cross-sectional-areas. The selected structures are analyzed for the Bam earthquake record 
using nonlinear FE method and Newmark scheme. The spent time in this stage is 800.0 min. 
Cross-sectional-areas of the selected 100 structures are given in Table 2. In this table, the 
structures which loss their overall stability during the nonlinear time history analysis are 
shown bf F and otherwise by S. it can be observed from 100 structures, in analysing 12 ones, 
the convergence is not met and these structures loss their stability subject to earthquake. From 
88 safe structures, 79 and 9 ones are randomly selected for training and testing, respectively.  

In order to achieve an exhaustive search to find important natural periods, the first 50 
natural periods are selected, nt = 50.  

 

 T
5021ANFIS }{ T   ...   T   TIn =  (7)  

 
 }1,2,...,   , )(max{ ANFIS nepitdOut i ==  (8)  

 
where, T, d and nep are natural period, deflection and the number of earthquake points, 
respectively.   

Table 2: Selected structures 
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No. A1 A2 A3 Failed/Safe No. A1 A2 A3 Failed/Safe 
1 18.9 21.4 4.53 S 51 9.06 2.54 21.4 S 
2 21.4 15.6 3.25 S 52 26.7 10.7 10.7 S 
3 7.07 12.3 26.7 S 53 8.69 21.4 8.69 S 
4 26.7 4.53 26.7 S 54 3.25 17.2 9.06 F 
5 26.7 10.7 17.2 S 55 5.57 9.06 3.25 F 
6 4.53 9.06 21.4 S 56 4.53 26.7 26.7 S 
7 17.2 26.7 15.6 S 57 13.2 2.54 5.57 S 
8 2.54 18.9 21.4 S 58 8.69 18.9 2.54 S 
9 15.6 17.2 16.3 S 59 2.54 4.53 15.6 F 
10 9.06 15.6 4.53 S 60 16.3 15.6 10.7 S 
11 16.3 2.54 7.07 S 61 12.3 7.07 16.3 S 
12 2.54 3.25 18.9 F 62 5.57 15.6 4.53 S 
13 16.3 8.69 26.7 S 63 8.69 15.6 17.2 S 
14 2.54 10.7 9.06 S 64 3.25 21.4 17.2 S 
15 17.2 17.2 4.53 S 65 10.7 9.06 10.7 S 
16 10.7 10.7 15.6 S 66 7.07 12.3 12.3 S 
17 16.3 17.2 7.07 S 67 18.9 17.2 15.6 S 
18 15.6 15.6 4.53 S 68 9.06 17.2 12.3 S 
19 3.25 10.7 26.7 S 69 8.69 26.7 21.4 S 
20 8.69 13.2 5.57 S 70 12.3 13.2 13.2 S 
21 17.2 7.07 12.3 S 71 5.57 7.07 10.7 S 
22 16.3 21.4 26.7 S 72 5.57 18.9 5.57 S 
23 12.3 4.53 4.53 S 73 5.57 4.53 5.57 S 
24 7.07 18.9 7.07 S 74 9.06 7.07 21.4 S 
25 18.9 5.57 21.4 S 75 9.06 4.53 21.4 S 
26 8.69 5.57 7.07 S 76 26.7 10.7 3.25 S 
27 13.2 10.7 8.69 S 77 7.07 9.06 13.2 S 
28 18.9 13.2 12.3 S 78 7.07 13.2 16.3 S 
29 21.4 7.07 17.2 S 79 5.57 3.25 7.07 F 
30 17.2 9.06 13.2 S 80 8.69 9.06 12.3 S 
31 3.25 2.54 12.3 F 81 3.25 7.07 17.2 F 
32 17.2 21.4 4.53 S 82 2.54 21.4 16.3 S 
33 13.2 10.7 2.54 S 83 10.7 13.2 5.57 S 
34 8.69 4.53 17.2 S 84 10.7 26.7 12.3 S 
35 7.07 12.3 4.53 S 85 12.3 5.57 10.7 S 
36 13.2 7.07 15.6 S 86 13.2 15.6 9.06 S 
37 16.3 16.3 10.7 S 87 8.69 26.7 2.54 S 
38 3.25 5.57 21.4 S 88 21.4 21.4 17.2 S 
39 4.53 18.9 12.3 S 89 3.25 7.07 8.69 S 
40 26.7 3.25 10.7 S 90 15.6 4.53 16.3 S 
41 3.25 26.7 2.54 F 91 3.25 15.6 10.7 S 
42 17.2 18.9 18.9 S 92 17.2 16.3 21.4 S 
43 3.25 9.06 7.07 S 93 21.4 8.69 16.3 S 
44 17.2 9.06 21.4 S 94 5.57 2.54 16.3 F 
45 4.53 7.07 4.53 F 95 12.3 10.7 21.4 S 
46 4.53 18.9 13.2 S 96 13.2 13.2 18.9 S 
47 12.3 4.53 18.9 S 97 17.2 13.2 4.53 S 
48 13.2 8.69 12.3 S 98 5.57 21.4 2.54 S 
49 9.06 3.25 5.57 F 99 10.7 4.53 26.7 S 
50 3.25 4.53 5.57 F 100 16.3 12.3 10.7 S 

 
In this case, four influential natural periods are determined as follows: 
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 T

291753 }   { TT  T  TIninf =  (9) 
 
The spent time in this stage is about 72.0 min. 
Two RBF neural network models, RBF and RBF+ANFIS, are trained for predicting the 

nonlinear time history deflection of the top node of the scallop dome. The actual and predicted 
responses of the mentioned test samples by RBF+ANFIS are compared in Figures 7 to 15. 

Table 3: Testing results 

RBF RBF+ANFIS 
No. Sample No. in Table 2. 

Rrmse R2 Rrmse R2 

1 61 0.9984 0.0392 0.9976 0.0491 
2 15 0.9604 0.1988 0.9980 0.0438 
3 58 0.9855 0.1202 0.9983 0.0408 
4 68 0.9089 0.3017 0.9859 0.1188 
5 35 0.9994 0.0003 0.9998 0.0001 
6 21 0.9287 0.2670 0.9899 0.1002 
7 84 0.9751 0.1576 0.9961 0.0621 
8 12 0.9930 0.0834 0.9975 0.0494 
9 46 0.9297 0.2857 0.9899 0.1003 

mean - 0.9643 0.1615 0.9948 0.0627 
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Figure 7. Actual top node deflection vs. predicted one by RBF neural network for 1st test sample 
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Figure 8. Actual top node deflection vs. predicted one by RBF neural network for 2nd test sample 

-6

-4.5

-3

-1.5

0

1.5

3

4.5

6

0 4.75 9.5 14.25 19 23.75 28.5

time (s)

To
p 

no
de

 d
ef

le
ct

io
n 

(c
m

) 

Actual RBFActual max-point (4.9396 cm , 12.141 s)
RBF max-point (4.7159 cm , 12.141 s)

 
Figure 9. Actual top node deflection vs. predicted one by RBF neural network for 3rd test sample 
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Figure 10. Actual top node deflection vs. predicted one by RBF neural network for 4th test sample 

-6

-4.5

-3

-1.5

0

1.5

3

4.5

6

0 4.75 9.5 14.25 19 23.75 28.5

time (s)

To
p 

no
de

 d
ef

le
ct

io
n 

(c
m

) 

Actual RBFActual max-point (4.2778 cm , 12.141 s)
RBF max-point (4.3523 cm , 12.141 s)

 
Figure 11. Actual top node deflection vs. predicted one by RBF neural network for 5th test sample 
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Figure 12. Actual top node deflection vs. predicted one by RBF neural network for 6th test sample 

-6

-4.5

-3

-1.5

0

1.5

3

4.5

6

0 4.75 9.5 14.25 19 23.75 28.5

time (s)

To
p 

no
de

 d
ef

le
ct

io
n 

(c
m

) 

Actual RBF

Actual max-point (-3.4948 cm , 11.514 s)
RBF max-point (-3.3326 cm , 11.514 s)

 
Figure 13. Actual top node deflection vs. predicted one by RBF neural network for 7th test sample 
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Figure 14. Actual top node deflection vs. predicted one by RBF neural network for 8th test sample 
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Figure 15. Actual top node deflection vs. predicted one by RBF neural network for 9th test sample 
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8. CONCLUSION 
 

An efficient methodology is introduced for predicting nonlinear time history deflection of 
scallop domes subject to earthquake loads by the main goal of reducing the computational 
burden. As the scallop domes are large scaled structures, nonlinear time history analysis of 
these structures is time consuming. Radial basis function (RBF) neural network is employed 
to reduce the computational effort. Also, the most influential natural periods of the structure 
are determined by adaptive neuro-fuzzy inference system (ANFIS) and then are used as the 
input vector of the RBF network. In this case two neural network models: RBF and 
RBF+ANFIS are used to predict the responses. Numerical results indicate that the 
generalization of the RBF+ANFIS model is better than that of the RBF model. 
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