

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING

Int. J. Optim. Civil Eng., 2021; 11(2): 329-356

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR

STRUCTURAL OPTIMIZATION

A. Kaveh*, †, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki
1School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran,

Iran

ABSTRACT

Jellyfish Search (JS) is a recently developed population-based metaheuristic inspired by the

food-finding behavior of jellyfish in the ocean. The purpose of this paper is to propose a

quantum-based Jellyfish Search algorithm, named Quantum JS (QJS), for solving structural

optimization problems. Compared to the classical JS, three main improvements are made in

the proposed QJS: (1) a quantum-based update rule is adopted to encourage the

diversification in the search space, (2) a new boundary handling mechanism is used to avoid

getting trapped in local optima, and (3) modifications of the time control mechanism are

added to strike a better balance between global and local searches. The proposed QJS is

applied to solve frequency-constrained large-scale cyclic symmetric dome optimization

problems. To the best of our knowledge, this is the first time that JS is applied in frequency-

constrained optimization problems. An efficient eigensolution method for free vibration

analysis of rotationally repetitive structures is employed to perform structural analyses

required in the optimization process. The efficient eigensolution method leads to a

considerable saving in computational time as compared to the existing classical

eigensolution method. Numerical results confirm that the proposed QJS considerably

outperforms the classical JS and has superior or comparable performance to other state-of-

the-art optimization algorithms. Moreover, it is shown that the present eigensolution method

significantly reduces the required computational time of the optimization process compared

to the classical eigensolution method.

Keywords: jellyfish search optimizer; quantum; structural optimization; dome structures;

frequency constraints; optimal structural analysis.

Received: 20 March 2021; Accepted: 28 May 2021

*Corresponding author: School of Civil Engineering, Iran University of Science and Technology, Narmak,

Tehran, Iran
†E-mail address: alikaveh@iust.ac.ir (A. Kaveh)

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

330

1. INTRODUCTION

The dynamic characteristics (i.e., natural vibration frequencies and mode shapes) are

arguably the single most important property of a mechanical system affecting the dynamic

behavior of the system [1]. For example, in a mechanical system with low-frequency

vibrations, the dynamic response of the system is mainly a function of its fundamental

frequency [2]. In such cases, the performance of the structure can be considerably improved

by manipulating the selected frequency [3]. Structural optimization considering frequency

constraints provides a systematic design approach for engineering designers to manipulate

the dynamic characteristics of the structural systems in various ways. For example, in

designing most space vehicles, to avoid the resonance phenomenon that causes the vibration

failure, it is necessary to impose constraints on the natural frequency ranges of the designed

vehicles. Since the early 1980s, some researchers have applied gradient-based optimization

methods to the optimal design of structures with frequency constraints [4-10]. However, the

structural optimization problems with frequency constraints are considered challenging

optimization problems with highly nonlinear, non-convex, and multimodal search spaces

[11]. Thus, gradient-based optimization methods may not be suitable for this type of

optimization problem. On the other hand, metaheuristic optimization algorithms could be

considered appropriate alternatives [12-19].

Metaheuristic optimization algorithms have been one of the most popular research areas

in computer science for more than three decades. These approximate optimization

techniques have been extensively applied to a wide variety of engineering optimization

problems. This is because metaheuristics: (1) are easy to design and implement as compared

to other optimization methods, (2) require no gradient information during the search, and

(3) are not problem-specific [20]. Nature-inspired metaheuristics can be classified into four

main categories based on the source of inspiration: evolution-based, physics-based, swarm-

based, and human-based [20]. Recently, a novel swarm-based metaheuristic optimizer,

named Jellyfish Search (JS), has been developed based on the food-finding behavior of

jellyfish in the ocean [21]. Jellyfish move in the ocean in search of planktonic organisms

such as fish eggs and larvae, phytoplankton, etc. The movement patterns of jellyfish in the

ocean can be classified into two major types: (1) their following the ocean current and (2)

their motions inside the jellyfish swarm. Therefore, two main phases are considered in JS. In

the early stages of the search process, jellyfish tend to follow ocean currents in search of

food, while as the search progresses, jellyfish tend to switch to passive and active motions

inside the swarm. A time control mechanism is considered to govern the switching between

these movement patterns. The first and second phases are designed to deal with the

diversification and the intensification of the search, respectively. Our experimental results,

which will be discussed in Section 6, indicate that the classical JS may easily get trapped in

local optima due to the lack of diversification in the search space (exploration). Moreover, it

seems that the trade-off between exploration and exploitation during the search should be

balanced.

A large number of structural analyses are usually required to be performed in order to

achieve optimal or near-optimal designs using metaheuristic algorithms. Thus, it may be

very time-consuming or even impractical to solve large-scale structural optimization

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

331

problems using metaheuristic algorithms. In structural optimization problems with

frequency constraints, the structural analyses involve relatively large generalized

eigenproblems to find the vibration characteristics of structures [22]. The dimensions of the

involved matrices in the free-vibration eigenproblem of a structural system are proportional

to the number of degrees of freedom. This indicates that the required computational time of

the frequency-constrained optimization problems depends strongly on the size of the

structure. Therefore, efficient eigensolution methods, which require less computational

effort to solve a single free-vibration eigenproblem, could be very beneficial for frequency-

constrained structural optimization problems, especially in the case of large-scale structures.

Since the mid-2000s, the first author and his students have worked extensively on

developing efficient methods for eigenvalue problems of symmetric, repetitive, and regular

structures [23-29].

The main objective of this study is to propose a quantum-based Jellyfish Search

algorithm, named Quantum JS (QJS), to solve structural optimization problems. Three main

improvements made in the proposed QJS are (1) a quantum-based update rule to encourage

the diversification in the search space, (2) a new boundary handling mechanism to avoid

getting trapped in local optima, and (3) modifications of the time control mechanism to

strike a better balance between global and local searches. The proposed QJS is applied to

optimal design of cyclic symmetric dome structures with multiple frequency constraints. The

required structural analyses are conducted by an efficient eigensolution method proposed by

Kaveh et al. [30-32] for free vibration analysis of rotationally repetitive structures.

Section 2 reviews the classical Jellyfish Search (JS) algorithm. In Section 3, after

pointing out the drawbacks of the classical JS, the proposed quantum-based version of JS

(QJS) is outlined. In Section 4, the formulation of the truss optimization problem subject to

frequency constraints is presented. In Section 5, the free vibration analysis of cyclic

symmetric structures is presented. In Section 6, two large-scale cyclic symmetric dome

structures are optimized to demonstrate the effectiveness and computational efficiency of the

proposed method. Finally, the last section draws concluding remarks and provides possible

extensions of this work.

2. JELLYFISH SEARCH (JS) OPTIMIZER1

Jellyfish Search (JS) optimizer is one of the most recent swarm-based metaheuristics

developed by Chou and Truong [21]. The JS algorithm mimics the food-finding behavior of

jellyfish in the ocean. Movement patterns of jellyfish in the ocean can be categorized into

two main types: (1) following ocean currents to form jellyfish swarms, known as jellyfish

blooms, and (2) motions inside swarms of jellyfish. Fig. 1 shows the movement patterns of

jellyfish in the ocean. The JS optimizer takes into account both the diversification and the

intensification of the search. Indeed, at the beginning of the search process, jellyfish follow

ocean currents in search of food sources. As time goes by, jellyfish tend to switch to passive

1. The source code of the Jellyfish Search algorithm is available at

https://www.researchgate.net/publication/343499745_Jellyfish_Search_Algorithm_Source_Code

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

332

and active motions inside the swarms of jellyfish for intensification. A time control

mechanism is provided to govern the switching between these two types of motion. In the

following subsection, the mathematical formulation of the classical JS algorithm is

reviewed.

Figure 1. Movement patterns of jellyfish in the ocean

2.1 Mathematical model of the JS optimizer

The JS algorithm is designed based on the following three idealized rules [21]:

(1) Jellyfish either follow the ocean current or move inside the jellyfish swarm, and a

time control mechanism is provided to govern the switching between these two types of

motion.

(2) Jellyfish move around in the ocean to find food. Regions with greater availability of

food sources are more likely to attract more significant numbers of jellyfish.

(3) Each solution is represented by a location, and its corresponding objective function is

represented by the quantity of food found at the location.

2.1.1 Ocean current

Jellyfish can detect ocean currents and feed on smaller planktonic organisms such as fish

eggs and larvae, phytoplankton, etc. The direction of the ocean current (𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) is

determined as follows:

𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
1

𝑛𝑃𝑜𝑝
∑𝑡𝑟𝑒𝑛𝑑𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ =
1

𝑛𝑃𝑜𝑝
∑(𝑋∗ − 𝑒𝑐𝑋𝑖) = 𝑋∗ − 𝑒𝑐

∑𝑋𝑖

𝑛𝑃𝑜𝑝
= 𝑋∗ − 𝑒𝑐𝜇 (1)

where 𝑛𝑃𝑜𝑝 is the number of jellyfish, 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the direction of the ocean current, 𝑋∗ is the

location of the current best jellyfish of the swarm, 𝜇 is the mean location of all jellyfish, 𝑋𝑖

is the location of the 𝑖-th jellyfish, and 𝑒𝑐 is a factor governing the attraction.

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

333

Let 𝑒𝑐𝜇 be denoted by 𝑑𝑓. Then, Eq. (1) can be rewritten as follows:

𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑋∗ − 𝑑𝑓 (2)

Assuming a normal distribution for the jellyfish’s locations, a distance of ±𝛽𝜎 around the

mean location has a higher likelihood of containing more jellyfish, where 𝜎 is the standard

deviation of the normal distribution and 𝛽 (𝛽 > 0) is a coefficient of distribution related to

the length of 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗. If the standard deviation 𝜎 is assumed to be given by 𝜇 × 𝑟𝑎𝑛𝑑𝜎(0, 1),

the following equation can be derived:

𝑑𝑓 = 𝛽 × 𝜎 × 𝑟𝑎𝑛𝑑𝑓(0, 1) = 𝛽 × 𝜇 × 𝑟𝑎𝑛𝑑𝜎(0, 1) × 𝑟𝑎𝑛𝑑𝑓(0, 1) (3)

To simplify the calculations, Eq. (3) is rewritten as follows:

𝑑𝑓 = 𝛽 × 𝜇 × 𝑟𝑎𝑛𝑑(0, 1) (4)

By substituting Eq. (4) into Eq. (2), the following equation for 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is obtained:

𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑋∗ − 𝛽 × 𝜇 × 𝑟𝑎𝑛𝑑(0, 1) (5)

The new location of each jellyfish can be obtained as follows:

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑(0, 1) × 𝑡𝑟𝑒𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (6)

where 𝑋𝑖(𝑡 + 1) and 𝑋𝑖(𝑡) are the new location and the current location of the 𝑖-th jellyfish,

respectively. After updating each jellyfish’s location via Eq. (6), the better location (i.e., the

location with greater availability of food sources) is taken as the jellyfish’s current location.

2.1.2 Jellyfish bloom

Inside a jellyfish bloom, jellyfish exhibit two types of motion: passive motions (type A) and

active motions (type B), between which the jellyfish switch. At the first stages of the search

process (i.e., when the jellyfish bloom has just been formed), most jellyfish tend to exhibit

type A motion, but type B motion is favored as time goes by. In the following two

subsections, these two types of motion are modeled mathematically.

2.1.2.1 Passive motion (type A)

Type A motion is associated with the motion of jellyfish around their own current locations,

with the aim of finding better locations. The new location of each jellyfish is determined as

follows:

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛾 × 𝑟𝑎𝑛𝑑(0, 1) × (𝑈𝑏 − 𝐿𝑏) (7)

where 𝑋𝑖(𝑡 + 1) and 𝑋𝑖(𝑡) are the new location and the current location of the 𝑖-th jellyfish,

respectively, 𝐿𝑏 and 𝑈𝑏 are the lower and upper bounds of the search space, respectively,

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

334

and 𝛾 (𝛾 > 0) is a coefficient of motion related to the length of passive motion. After

updating each jellyfish’s location via Eq. (7), the better location (i.e., the location with

greater availability of food sources) is taken as the jellyfish’s current location.

Based on the result of sensitivity analysis carried out by Chou and Truong [21] to

investigate the effectiveness of parameters 𝛽 and 𝛾, the JS optimizer can find the best

optimal results when 𝛽 = 3 and 𝛾 = 0.1.

2.1.2.2 Active motion (type B)

To simulate type B motion of each jellyfish 𝑖, a jellyfish 𝑗 other than the one of interest is

selected randomly (i.e., 𝑖 ≠ 𝑗). Then, the jellyfish 𝑖 and 𝑗 interact with each other to move

toward locations with greater availability of food sources. To this end, the jellyfish 𝑖 moves

directly towards the jellyfish 𝑗 if the quantity of food at the 𝑗-th jellyfish’s location exceeds

that of the 𝑖-th jellyfish. Otherwise, the jellyfish 𝑖 moves directly away from the jellyfish 𝑗.
So, each jellyfish moves toward a location with greater availability of food sources. Type B

motion encourages diversification in the search space. Type B motion can be formulated as:

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟𝑎𝑛𝑑(0, 1) × 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (8)

where

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {
𝑋𝑖(𝑡) − 𝑋𝑗(𝑡) if 𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)

𝑋𝑗(𝑡) − 𝑋𝑖(𝑡) if 𝑓(𝑋𝑖) ≥ 𝑓(𝑋𝑗)
 (9)

where 𝑓(𝑋𝑖) and 𝑓(𝑋𝑗) are the objective function values of the jellyfish 𝑖 and 𝑗, respectively,

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ is the vector of the active motion. After updating each jellyfish’s location via

Eqs. (8) and (9), the better location (i.e., the location with greater availability of food

sources) is taken as the jellyfish’s current location.

2.1.3 Time control mechanism

The time control mechanism is provided to regulate the type of motion of jellyfish over time.

It controls not only type A and type B motions of jellyfish inside the jellyfish bloom but also

their movements toward ocean currents. To this end, the time control mechanism employs a

threshold constant 𝐶0 and a time control function 𝑐(𝑡). As can be seen from Eq. (10), the

time control function is a random number that fluctuates between 0 and 1 but shows an

overall decreasing trend over time, as shown in Fig. 2. If the value of the time control

function exceeds 𝐶0, the jellyfish follow the ocean current, whereas if it does not exceed 𝐶0,

the jellyfish move inside the jellyfish bloom. Chou and Truong recommended a value of 0.5

for 𝐶0 [21]. The time control function is given by:

𝑐(𝑡) = |(1 −
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) × (2 × 𝑟𝑎𝑛𝑑(0, 1) − 1)| (10)

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

335

where 𝑡 is the time index specified as the iteration number, and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is the maximum

iteration number.

Fig. 2 Time control function with an overall decreasing trend

To regulate the jellyfish‘s movements inside a jellyfish bloom (type A and type B

motions), the function (1 − 𝑐(𝑡)) is used as follows: If 𝑟𝑎𝑛𝑑(0, 1) exceeds (1 − 𝑐(𝑡)), type

A motion is favored. On the other hand, if 𝑟𝑎𝑛𝑑(0, 1) is lower than (1 − 𝑐(𝑡)), type B

motion is favored. Since (1 − 𝑐(𝑡)) shows an overall increasing trend from 0 to 1 overtime,

the jellyfish tend to exhibit type A motion within the first stages of the search process, but as

time passes, type B motion becomes more likely.

2.2 Population initialization

In the JS optimizer, instead of using a simple random initialization, the Logistic map is used

to generate the initial population. The Logistic map is formulated as follows:

𝑋𝑖+1 = 𝜂𝑋𝑖(1 − 𝑋𝑖), 0 ≤ 𝑋0 ≤ 1 (11)

where 𝑋𝑖 is the chaotic logistic value for the 𝑖-th jellyfish’s location and 𝑋0 is a randomly

generated location used for generating the initial population of jellyfish. Obviously, 𝑋𝑖 is a

number between 0 and 1 under the conditions that 𝑋0 ∈ [0, 1] and 𝑋0 ∉
{0.0,0.25,0.5,0.75,1.0}. The parameter 𝜂 is set to 4 in all experiments.

2.3 Boundary handling mechanism

If a jellyfish exceeds the boundaries of the search space, it will be located within the

boundaries through the following equation:

{
𝑋𝑖,𝑑

′ = (𝑋𝑖,𝑑 − 𝑈𝑏,𝑑) + 𝐿𝑏,𝑑 if 𝑋𝑖,𝑑 > 𝑈𝑏,𝑑

𝑋𝑖,𝑑
′ = (𝑋𝑖,𝑑 − 𝐿𝑏,𝑑) + 𝑈𝑏,𝑑 if 𝑋𝑖,𝑑 < 𝐿𝑏,𝑑

 (12)

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

336

where 𝑋𝑖,𝑑 is the current location of the 𝑑-th dimension of the 𝑖-th jellyfish, 𝑋𝑖,𝑑
′ is the

updated location of the 𝑑-th dimension of the 𝑖-th jellyfish after satisfying the boundary

constraints of the search space, and 𝐿𝑏,𝑑 and 𝑈𝑏,𝑑 are the lower and upper bounds of the 𝑑-th

dimension of the search space, respectively. Fig. 3 illustrates the boundary handling

mechanism of Eq. (12). As the figure shows, if the lower bound of the 𝑑-th dimension of the

search space is violated, the boundary handling mechanism will return its upper bound, and

vice versa.

The pseudo-code of the classical JS algorithm is provided in Fig. 4.

Figure 3. Boundary handling mechanism

Figure 4. Pseudo-code of the classical JS algorithm

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

337

3. QUANTUM JELLYFISH SEARCH (QJS) ALGORITHM

During the early iterations of the classical JS, the dominant tendency of jellyfish is to follow

ocean currents. As indicated before, the direction of the ocean current is determined based

on the difference between the location of the current best jellyfish of the swarm and the

mean location of all jellyfish of the swarm. Thus, in the early stages of the search process,

the mean of the jellyfish swarm moves towards the location of the current best jellyfish of

the swarm. However, it should be noted that in the early iterations, the current best jellyfish

of the swarm is probably not a high-quality jellyfish. This may lead to undesirable premature

convergence in the early stages of the search. The experimental results confirm that the

classical JS suffers from premature convergence, especially when dealing with complex

optimization problems. Therefore, in order to address this issue and improve the exploration

capability of the classical JS, based on the work of Kaveh et al. [33], a quantum-based

update rule is proposed for the exploration phase of the classical JS, as follows: the local

attractor of each jellyfish of the swarm is determined by Eq. (13):

𝑋𝑖,𝑑
𝑡 (𝑡) = 𝑋𝑖,𝑑(𝑡) × 𝑟𝑎𝑛𝑑1𝑖,𝑑(0, 1) + (1 − 𝑟𝑎𝑛𝑑1𝑖,𝑑(0, 1)) × 𝑋𝑑

𝐵𝑒𝑠𝑡 (13)

where 𝑋𝑖
𝑡 is the local attractor of the 𝑖-th jellyfish of the swarm, 𝑋𝑖 is the current location of

the 𝑖-th jellyfish of the swarm, 𝑋𝐵𝑒𝑠𝑡 is the best jellyfish found so far, and 𝑟𝑎𝑛𝑑1 is a

random number uniformly distributed on (0, 1). Eq. (13) indicates that 𝑋𝑖
𝑡, the local attractor

of the 𝑖-th jellyfish, lies on the line connecting 𝑋𝑖 and 𝑋𝐵𝑒𝑠𝑡 so that it moves following 𝑋𝑖

and 𝑋𝐵𝑒𝑠𝑡.

The location of each jellyfish is updated according to the following equation:

𝑋𝑖,𝑑(𝑡 + 1) = 𝑋𝑖,𝑑
𝑡 (𝑡) + (−1)𝑟𝑎𝑛𝑑𝑖([1,2]) × log(1 𝑟𝑎𝑛𝑑2𝑖,𝑑(0, 1)⁄) × 𝛽(𝑡)

× |𝜇𝑑 − 𝑋𝑖,𝑑(𝑡)|
(14)

where

𝛽(𝑡) = 1 − (1 − 𝑟𝑎𝑛𝑑3(0, 1)) × (
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
) (15)

where 𝑋𝑖(𝑡 + 1) represents the new location and the current location of the 𝑖-th jellyfish,

𝑟𝑎𝑛𝑑2 and 𝑟𝑎𝑛𝑑3 are random numbers uniformly distributed on (0, 1), 𝜇 is the mean

location of all jellyfish of the swarm, and 𝛽(𝑡) controls the convergence of the jellyfish

toward the best jellyfish found so far.

In the classical JS, if a solution exceeds the boundary of the search space, the boundary

handling mechanism of Eq. (12) brings it back to the opposite bound, as seen from Fig. 3.

Such a boundary handling mechanism may cause difficulties in the convergence process.

Indeed, it has been recognized that the optimal solutions often lie close to (or even on) the

boundary of the search space [34]. Thus, during the optimization process, especially in the

final stages, many solutions, which are probably close to optimal, are likely to move out of

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

338

the boundaries of the search space. However, the boundary handling mechanism of Eq. (12)

significantly alters the values of the design variables exceeding their corresponding bounds.

As a consequence of such a boundary handling mechanism, some potentially good solutions,

which slightly exceed the boundary of the search space, may be lost during the search

process. in the proposed QJS, in order to address this issue, we utilize a simple boundary

handling mechanism, as follows:

{
𝑋𝑖,𝑑

′ = 𝑈𝑏,𝑑 if 𝑋𝑖,𝑑 > 𝑈𝑏,𝑑

𝑋𝑖,𝑑
′ = 𝐿𝑏,𝑑 if 𝑋𝑖,𝑑 < 𝐿𝑏,𝑑

 (16)

If a solution exceeds the boundary of the search space, the boundary handling mechanism

of Eq. (16) brings it back to the violated bound.

Fig. 2 shows a typical trend of the time control function of Eq. (10). As can be seen from

the figure, in only 16 out of 100 iterations (16%), the time control function value is greater

than the threshold constant 𝐶0 = 0.5. Hence, in only 16 iterations, mainly from the first ones

(i.e., before the 42 th iteration), jellyfish follow the ocean current, while, in the other 84

iterations, jellyfish exhibit passive and active motions inside the swarm. As mentioned

before, following ocean currents encourages diversification in the search space (i.e., global

exploration), while exploitation of the search takes place through passive and active motions

inside jellyfish swarms. As a result, classical JS seems to suffer from the lack of global

exploration of the search space and focuses mainly on local exploitation of the best solutions

found. In the proposed QJS, in order to address this issue and achieve a better balance

between diversification and intensification of the search process, a simple linear time control

mechanism is proposed as follows:

𝑐(𝑡) = |(1 −
𝑡

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
)| (17)

Such a deterministic definition of time control mechanism leads to a simple trade-off

between intensification and diversification during the search. The first half of iterations (i.e.,

when 𝑐(𝑡) ≥ 0.5) are dedicated to the global exploration of the search space, while the

second half (i.e., when 𝑐(𝑡) < 0.5) deals with local exploitation of the best solutions found.

In the classical JS, passive (type A) motion is associated with the motion of jellyfish

around their current locations, with the aim to find better locations. Each jellyfish, whether

good or bad, exploits its own neighborhood, which may cause difficulties such as slow

convergence rate and easily getting trapped in local optima. In the proposed QJS, in order to
enhance the exploitation capability of the classical JS and speed up its convergence rate without

loss of diversity, passive (type A) motion is associated with the motion of jellyfish around the

location of the best jellyfish found so far, and is defined as follows:

𝑋𝑖(𝑡 + 1) = 𝑋𝐵𝑒𝑠𝑡 + (−1)𝑟𝑎𝑛𝑑𝑖([1,2]) × 𝑟𝑎𝑛𝑑(0, 1) × (𝑈𝑏 − 𝐿𝑏) (18)

where 𝑋𝐵𝑒𝑠𝑡 is the location of the best jellyfish found so far and 𝑟𝑎𝑛𝑑𝑖([1,2]) returns a

pseudorandom scalar integer between 1 and 2. The term 𝑟𝑎𝑛𝑑𝑖([1,2]) allows to explore the

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

339

whole neighborhood of the best jellyfish found so far.

Fig. 5 shows the pseudo-code of the Quantum JS (QJS) algorithm.

Figure 5. Pseudo-code of the QJS algorithm

4. MATHEMATICAL FORMULATION OF THE OPTIMIZATION

PROBLEM

In a truss sizing optimization problem with frequency constraints, the aim is to minimize the

total weight of the structure while satisfying some constraints on natural vibration

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

340

frequencies. The cross-sectional areas of structural members are considered as continuous

design variables. The layout of the structure is pre-defined and kept unchanged during the

optimization process. The mathematical formulation of the optimization problem is as

follows [1]:

Find {𝑋} = [𝑥1, 𝑥2, … , 𝑥𝑛𝐷𝑉] (19)

to minimize 𝑃({𝑋}) = 𝑓({𝑋}) × 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋}) (20)

subject to: {

𝜔𝑗 ≥ 𝜔𝑗
∗ for some natural vibration frequencies 𝑗

𝜔𝑘 ≤ 𝜔𝑘
∗ for some natural vibration frequencies 𝑘

𝐿𝑏,𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑏,𝑖 𝑖 = 1,2, … , 𝑛𝐷𝑉
 (21)

where {𝑋} denotes the vector of design variables, including sizing design variables, 𝑛𝐷𝑉 is

the number of design variables, which is selected considering the member-grouping

configuration, 𝑥𝑖 is the cross-sectional area of the structural members of the 𝑖-th member

group, 𝑓({𝑋}) is the objective function of the optimization problem to be minimized, which

represents the total weight of the structure in a weight minimization problem, 𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦({𝑋})

is the penalty function which is used to handle the problem constraints, and 𝑃({𝑋}) is the

penalized objective function. 𝐿𝑏,𝑖 and 𝑈𝑏,𝑖 are the lower and upper bounds of the cross-

sectional area of the structural members of the 𝑖-th member group, respectively, 𝜔𝑗 and 𝜔𝑘

are the 𝑗-th and the 𝑘-th natural vibration frequencies of the structure, respectively, 𝜔𝑗
∗ is the

lower bound of the 𝑗-th natural vibration frequency of the structure, and 𝜔𝑘
∗ is the upper

bound of the 𝑘-th natural vibration frequency of the structure. The objective function is

considered to be the total weight of the structure and can be defined as follows:

𝑓({𝑋}) = 𝑊({𝑋}) = ∑𝜌𝑖 × 𝐴𝑖 × 𝐿𝑖

𝑛𝐸

𝑖=1

 (22)

where 𝜌𝑖, 𝐴𝑖, and 𝐿𝑖 are the material density, cross-sectional area, and length of the 𝑖-the

structural member, respectively, 𝑛𝐸 is the number of structural members of the structure,

and 𝑊({𝑋}) is the total weight of the structure.

Various strategies have been suggested to handle constraints in optimization problems,

one of the most popular of which is penalizing strategies. The main idea of penalizing

strategies is to transform a constrained optimization problem into an unconstrained one by

penalizing the infeasible solution and extending an unconstrained objective function [35].

Here, a dynamic penalty function is used to tackle the violated constraints [36]:

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋) = (1 + ɛ1 × 𝜐)ɛ2 , 𝜐 = ∑𝜐𝑖

𝑛𝐶

𝑖=1

 (23)

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

341

where 𝑛𝐶 is the number of constraints of the problem, ɛ1 and ɛ2 are the penalty parameters

that affect the severity of violated constraints, and 𝜐 denotes the sum of the constraint

violations. The value of 𝜐𝑖 is set to zero if the 𝑖-th constraint is satisfied, while in the case of

a violated constraint, it is selected considering the severity of the violation. The

mathematical expression of 𝜐𝑖 is as follows:

𝜐𝑖 = {
|1 −

𝜔𝑖

𝜔𝑖
∗| if the 𝑖 − th frequency constraint is violated

0 otherwise

 (24)

Dynamic penalty functions take into account the progress of the optimization process so

that penalty is imposed at a dynamic or increasing rate [35]. This means that a low degree of

penalty is imposed at the beginning of the search process. However, as the search process

progresses, the degree of the penalty also gradually increases [37]. Such a dynamic strategy

encourages the diversification in the search space (i.e., more exploration) in the early

iterations of the optimization process, but more emphasis on the intensification of the best

solutions found (i.e., more exploitation) in the last iterations [22].

The parameters ɛ1 and ɛ2 control how much an infeasible solution is penalized. The

severity of penalizing is very sensitive to these parameters. Hence, setting the parameters ɛ1

and ɛ2 is a challenging task and requires many preliminary trials [38]. If they are chosen too

small, feasible regions of search space may not be explored effectively, and even the

algorithm may never converge to a feasible solution. On the other hand, if they are too large,

premature convergence may occur [39]. In this study, a constant value for the parameter ɛ1

is chosen, whereas the parameter ɛ2 increases monotonically with the number of iterations.

5. FREE VIBRATION ANALYSIS OF CYCLIC SYMMETRIC STRUCTURES

Free vibration means the motion of a structure without any externally applied vibration

forcing [40]. Vibration characteristics (i.e., natural vibration frequencies and mode shapes)

play an essential role in the dynamic analysis of structures [41]. Determining the vibration

characteristics of an undamped structure requires the solution of the following algebraic

equation, known as the matrix eigenvalue problem [42]:

𝐾𝜙𝑖 = 𝛾𝑖𝑀𝜙𝑖 , 𝑖 = 1,2,⋯ ,𝑁 (25)

where 𝐾 is the elastic stiffness matrix of the structure (hereafter called stiffness matrix of the

structure), 𝑀 is the mass matrix of the structure, which is a linear combination of structural

and non-structural mass matrices, 𝜙𝑖 is the 𝑖-th natural mode shape of vibration of the

structure corresponding to the 𝑖-th eigenvalue (𝛾𝑖), and 𝑁 is the number of degrees of

freedom of the structure. The 𝑖-th natural frequency of vibration (𝜔𝑖) and its corresponding

natural period of vibration (𝑇𝑖) are related to the 𝑖-th eigenvalue as follows:

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

342

𝛾𝑖 = 𝜔𝑖
2 = (2𝜋 𝑇𝑖⁄)2, 𝑖 = 1,2,⋯ , 𝑁 (26)

There are many different methods to solve eigenvalue problems [43]. However, it should

be noted that there is no single method that can always give a very efficient solution to every

eigenvalue problem. Classical eigensolution methods do not take advantage of the

potentially beneficial properties of the matrices involved in eigenvalue problems (i.e., the

matrices 𝐾 and 𝑀) and thus deal with large-dimension matrices. As a result, the required

computational effort of these methods depends strongly on the size of the structure (i.e., the

number of degrees of freedom) [22]. Hence, it is time-consuming and inefficient to solve the

generalized eigenvalue problem given by Eq. (25) with classical eigensolution methods,

especially for large-scale structures. However, in the case of general structures, it is

inevitable to use classical eigensolution methods. On the other hand, the design optimization

process of a structure with frequency constraints usually requires many free vibration

analyses to be carried out. As mentioned before, the mathematical formulation of free

vibration analysis of structures leads to the generalized eigenvalue problem given by Eq.

(25). The most time-consuming part of frequency constraint optimization problems is

usually the solution of eigenvalue problems [44]. As a result, design optimization of large-

scale structures with frequency constraints could not be performed using the classical

eigensolution methods in a reasonable time. Consequently, alternative efficient

eigensolution methods, which take the maximum advantage of the properties of the matrices

involved in eigenvalue problems in order to decrease the required computational time and

memory, should be considered. The global stiffness matrix and mass matrix of a cyclic

symmetric structure in the cylindrical coordinate system exhibit a unique pattern known as

block circulant [45]. Circulant matrices can be expressed as the sum of Kronecker products

in which the first components satisfy the commutative property of multiplication [30]. This

property facilitates the block diagonalization of circulant matrices. Therefore, using this

property of block circulant matrices, the initial generalized eigenvalue problem, derived

from the free vibration analysis, is decomposed into highly smaller sub-eigenproblems [32].

This approach leads to not only the high accuracy of the free vibration analysis results but

also a significant decrease in computational time as compared to classical eigenvalue

solutions [45]. The details on the efficient eigensolution method can be found in [30-32].

6. CASE STUDIES

In this study, two cyclic symmetric dome optimization examples are considered to

demonstrate the validity, efficiency, and accuracy of the present method for free vibration

analysis of rotationally repetitive structures and the proposed QJS for solving sizing

optimization of dome structures with multiple frequency constraints. These domes are taken

from Kaveh et al. [45]. The first example is the sizing optimization of a 600-bar single-layer

dome structure with 25 design variables. The second example is the sizing optimization of a

1410-bar double-layer dome structure with 47 design variables. Table 1 lists the material

properties, cross-sectional area bounds, and frequency constraints of all examples. The

results of QJS are compared with those of JS and other optimization methods reported in the

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

343

literature. Moreover, the present efficient eigensolution method is compared in terms of

accuracy and computational time with the existing classical eigensolution method. The

optimization results are reported in terms of the best weight, average weight, worst weight,

and standard deviation. The maximum number of objective function evaluations is taken as

the termination criterion of the optimization process. In both examples, the population size

𝑛𝑃𝑜𝑝 is chosen to be 20 for both the JS and the QJS, and the maximum number of iterations

(𝑀𝑎𝑥𝐼𝑡𝑒𝑟) is set to 1000. To consider the stochastic nature of the optimization process, ten

independent runs are performed for each problem, and the optimal design results of the best

run are reported. The finite element models and the optimization codes are implemented in

the Matlab environment. It is noted that the optimizations are performed on a PC with

Windows 10, Intel(R) Core (TM) i5-7200U CPU 2.50 GHz 2.71 GHz, and 8.00 GB RAM.

Table 1: Material properties, cross-sectional area bounds, and frequency constraints of

investigated examples

Problem
Elasticity modulus

𝐸 (N/m2)

Material density

𝜌 (kg/m3)

Cross-sectional area

bounds (m2)

Frequency

constraints (Hz)

600-bar dome-like truss 2×1011 7850 0.0001 ≤ 𝐴𝑖 ≤ 0.01 𝜔1 ≥ 5, 𝜔3 ≥ 7

1410-bar dome-like truss 2×1011 7850 0.0001 ≤ 𝐴𝑖 ≤ 0.01 𝜔1 ≥ 7, 𝜔3 ≥ 9

6.1 The 600-bar single-layer dome structure

The first design problem solved in this study is the 600-bar single-layer dome shown in Figs.

6 and 7. The entire structure is comprised of 216 nodes and 600 elements and could be

generated by the cyclic repetition of a sub-structure with 9 nodes and 25 elements around the

cyclic symmetry axis of the structure. Fig. 8 shows the details of a typical sub-structure,

including nodal numbering. The angle of cyclic symmetry is equal to 15 degrees, which

results in a total of 24 similar sub-structures. Table 2 summarizes the nodal coordinates of

the first sub-structure in the Cartesian coordinate system. The connectivity information of

the first sub-structure is also given in Table 3. The cross-sectional area of each element of

the sub-structure is considered as an independent sizing design variable. However, the layout

of the structure is kept unchanged during the optimization process. Therefore, this is a sizing

optimization problem with 25 design variables. A non-structural mass of 100 kg is attached

at all free nodes of the dome. As Table 1 shows, the frequency constraints are imposed on

the first and third natural vibration frequencies. This problem was previously studied by

different researchers using different metaheuristic optimization algorithms [15, 46-50].

Table 3 provides a comparison of the optimization results obtained by JS, QJS, and other

referenced metaheuristics [15, 46-50]. It can be seen that the best and average optimized

weights obtained by QJS over the ten independent runs are lighter than those corresponding

to the best designs of all other considered optimization methods. Furthermore, it is clear that

QJS significantly outperforms the classical JS in terms of optimized weight and standard

deviation on optimized weight. QJS achieved a feasible optimized design corresponding to a

weight of 6065.503 kg, 1.65% lighter than the optimum design found by JS (i.e., 6166.965

kg). Moreover, QJS found an average optimized weight of 6077.634 kg over ten

independent runs, 19.50% lighter than the average weight of JS (i.e., 7549.676 kg). QJS

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

344

required only 8820 analyses to find a feasible design corresponding to a structural weight of

6079.643 kg, which is lighter than the best weights found by all other referenced

optimization methods [15, 46-50]. As can be seen from the table, there is a significant

difference between the average weight and best weight values of the classical JS. This is

because the classical JS easily gets trapped in local optima in some cases. In the present

example, in 9 out of 10 optimization runs, the classical JS has been trapped in local optima

far from the global optimum. Fig. 9 compares the average-weight convergence histories of

the classical JS and QJS. As can be observed from the figure, the classical JS shows a very

fast convergence rate in the early iterations of the search process, which may result in a

premature loss of diversity in the population, and a premature convergence could occur. On

the other hand, because of a better diversification of the search, especially in the early

iterations, QJS has a high probability of escaping from local optima. Table 4 provides the

first five natural frequencies of the optimized designs obtained by JS, QJS, and other

referenced metaheuristics [15, 46-50]. It can be seen that the optimized designs of JS and

QJS satisfy all frequency constraints.

Table 8 provides a comparison of computational efficiency between the classical and the

proposed efficient eigensolution method. As can be seen from the table, through the efficient

eigensolution method, instead of solving a direct eigenvalue problem of order 576, we need

to find the eigenvalues for 24 matrices of order 24 (8 free nodes of sub-structure). This leads

to a considerable saving in computational time. In fact, in the case of the 600-bar single-

layer dome, the average computational time of the classical eigensolution method for free

vibration analysis is calculated 0.0363 sec, which is more than six times the computational

time required by the efficient eigensolution method (0.0054 sec). Furthermore, we have

estimated that 7253.9406 sec (about 121 min) would be required to perform ten independent

runs of the proposed QJS using the classical eigensolution method. However, using the

efficient eigensolution method, the same algorithm requires only 1075.9423 sec (about 18

min) to perform these runs.

Figure 6. Schematic of the 600-bar single-layer dome

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

345

Figure 7. The 600-bar single-layer dome (top view)

Figure 8. Details of a sub-structure of the 600-bar single-layer dome

Table 2: Nodal coordinates (m) of the sub-structure of the 600-bar single-layer dome

Node number Coordinates (𝑥, 𝑦, 𝑧)

1 (1.0, 0.0, 7.0)

2 (1.0, 0.0, 7.5)

3 (3.0, 0.0, 7.25)

4 (5.0, 0.0, 6.75)

5 (7.0, 0.0, 6.0)

6 (9.0, 0.0, 5.0)

7 (11.0, 0.0, 3.5)

8 (13.0, 0.0, 1.5)

9 (14.0, 0.0, 0.0)

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

346

Table 3: Comparison of optimal results of the 600-bar dome obtained by different algorithms

(cm2)

Element number

(element nodes)

CBO

[15]

DPSO

[46]

VPS

[47]

ECBO-

Cascade

[48]

MDVC-

UPVS

[49]

PFJA

[50]

This study

JS QJS

1 (1-2) 1.2404 1.365 1.3030 1.0299 1.2575 1.1867 1.3667 1.2623

2 (1-3) 1.3797 1.391 1.3998 1.3664 1.3466 1.2967 1.3336 1.4105

3 (1-10) 5.2597 5.686 5.1072 5.1095 4.9738 4.5771 12.2413 5.1157

4 (1-11) 1.2658 1.511 1.3882 1.3011 1.4025 1.3356 5.1191 1.3939

5 (2-3) 17.2255 17.711 16.9217 17.0572 17.3802 18.3157 16.4818 17.5568

6 (2-11) 38.2991 36.266 38.1432 34.0764 37.9742 38.5097 33.5000 34.5863

7 (3-4) 12.2234 13.263 11.8319 13.0985 13.0306 13.5917 13.1109 13.0500

8 (3-11) 15.4712 16.919 16.6149 15.5882 15.9209 16.8824 15.8066 14.9897

9 (3-12) 11.1577 13.333 11.3403 12.6889 11.9419 13.8766 10.8633 11.3361

10 (4-5) 9.4636 9.534 9.3865 10.3314 9.1643 9.5286 10.5474 9.1993

11 (4-12) 8.8250 9.884 8.7692 8.5313 8.4332 9.4218 8.0920 8.3409

12 (4-13) 9.1021 9.547 9.6682 9.8308 9.2375 9.7643 9.7763 9.2362

13 (5-6) 6.8417 7.866 6.9826 7.0101 7.2213 7.2431 6.8615 7.5831

14 (5-13) 5.2882 5.529 5.4445 5.2917 5.2142 5.3913 5.3937 5.3152

15 (5-14) 6.7702 7.007 6.3247 6.2750 6.7961 6.7468 6.4819 6.5682

16 (6-7) 5.1402 5.462 5.1349 5.4305 5.2078 5.1493 4.8695 4.8128

17 (6-14) 5.1827 3.853 3.3991 3.6414 3.4586 3.8342 3.2424 3.5015

18 (6-15) 7.4781 7.432 7.7911 7.2827 7.6407 8.0665 7.4539 7.6773

19 (7-8) 4.5646 4.261 4.4147 4.4912 4.3690 4.2800 4.5403 4.2587

20 (7-15) 1.8617 2.253 2.2755 1.9275 2.1237 2.2509 2.3723 2.1748

21 (7-16) 4.8797 4.337 4.9974 4.6958 4.5774 4.5372 5.0763 4.7066

22 (8-9) 3.5065 4.028 4.0145 3.3595 3.4564 3.5615 3.9347 3.8047

23 (8-16) 2.4546 1.954 1.8388 1.7067 1.7920 1.7744 1.9255 1.9187

24 (8-17) 4.9128 4.709 4.7965 4.8372 4.8264 4.6445 4.5980 4.7502

25 (9-17) 1.2324 1.410 1.5551 2.0253 1.7601 1.6141 1.5421 1.5567

Best weight (kg) 6182.01 6344.55 6133.02 6140.51 6115.10 6333.251 6166.965 6065.503

 [6079.643]2

Average weight (kg) 6226.37 6674.71 6142.03 6175.33 6119.95 6380.31 7549.676 6077.634

Worst weight (kg) - - - - - - 7798.256 6094.435

Standard deviation (kg) 60.12 473.21 12.54 34.08 16.23 47.396 463.445 9.356

Maximum Number of

FE analyses
20000 9000 30000 20000 18000 25000 20000 20000

Table 4: Natural frequencies (Hz) of the optimal designs for the 600-bar dome

Frequency

number

CBO

[15]

DPSO

[46]

VPS

[47]

ECBO-

Cascade [48]

MDVC-

UPVS [49]

PFJA

[50]

This study

JS QJS

1 5.000 5.000 5.0000 5.001 5.000 5.0011 5.0097 5.0008

2 5.000 5.000 5.0003 5.001 5.000 5.0011 5.0097 5.0008

3 7.000 7.000 7.0000 7.001 7.000 7.0000 7.0017 7.0001

4 7.000 7.000 7.0001 7.001 7.000 7.0000 7.0017 7.0001

5 7.001 7.000 7.0002 7.002 7.000 7.0000 7.0017 7.0003

2. QJS found a feasible optimum design corresponding to a structural weight of 6079.643 kg after 8820

analyses.

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

347

Figure 9. Average weight convergence histories for the 600-bar single-layer dome

6.2 The 1410-bar double-layer dome structure

The second design example considered in this study is the size optimization of the 1410-bar

double-layer dome structure shown in Figs. 10 and 11. The entire structure is comprised of a

total of 390 nodes and 1410 elements and could be generated by the cyclic repetition of the

sub-structures shown in Fig. 12 around the cyclic symmetry axis of the structure. As can be

seen from the figure, each sub-structure has 13 nodes and 47 elements. The angle of cyclic

symmetry is equal to 12 degrees, which results in a total of 30 similar sub-structures. The

Cartesian coordinates of the nodes of the first sub-structure are listed in Table 5. The

connectivity information of the first sub-structure is given in Table 6. A non-structural mass

of 100 kg is attached to all free nodes of the dome. The cross-sectional area of each element

of the sub-structure represents a continuous sizing design variable of the problem. Therefore,

this is a sizing optimization problem with 47 design variables. As Table 1 shows, the

frequency constraints are imposed on the first and third natural vibration frequencies of the

dome. This structure was previously optimized with different metaheuristic optimization

algorithms [22, 46, 48-52].

Table 6 compares the optimization results obtained by JS, QJS, and other referenced

optimization methods [22, 46, 48-52]. It can be seen that the best and average optimized

weights obtained by QJS over the ten independent runs are lighter than those corresponding

to the best designs of all other considered optimization methods. Furthermore, it is clear that

QJS significantly outperforms the classical JS in terms of optimized weight and standard

deviation on optimized weight. QJS achieved a feasible optimized design corresponding to a

weight of 10278.571 kg, 3.61% lighter than the optimum design found by JS (i.e.,

10663.092 kg). Moreover, QJS found an average optimized weight of 10369.689 kg over ten

independent runs, 8.14% lighter than the average weight of JS (i.e., 11288.002 kg). QJS

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

348

required only 12520 analyses to find a feasible design corresponding to a structural weight

of 10319.228 kg, which is lighter than the best weights found by all other referenced

optimization methods [22, 46, 48-52]. As can be seen from the table, there is a significant

difference between the average weight and best weight values of the classical JS. This is

because the classical JS easily gets trapped in local optima in some cases. Fig. 13 compares

the average-weight convergence histories of the classical JS and QJS. As can be observed

from the figure, the classical JS shows a very fast convergence rate in the early iterations of

the search process, which may result in a premature loss of diversity in the population, and a

premature convergence could occur. On the other hand, because of a better diversification of

the search, especially in the early iterations, QJS has a high probability of escaping from

local optima. Table 7 provides the first five natural frequencies of the optimized designs

obtained by JS, QJS, and other referenced metaheuristics [22, 46, 48-52]. It can be seen that

the optimized designs of JS and QJS satisfy all frequency constraints.

Table 8 provides a comparison of computational efficiency between the classical and the

proposed efficient eigensolution method. As can be seen from the table, through the

presented eigensolution method, instead of solving a direct eigenvalue problem of order

1080, we need to find the eigenvalues for 30 matrices of order 36 (12 free nodes of sub-

structure). This leads to a considerable saving in computational time. In fact, in the case of

the 1410-bar double-layer dome, the average computational time of the classical

eigensolution method for free vibration analysis is calculated 0.1797 sec, which is more than

12 times the computational time required by the efficient eigensolution method (0.0140 sec).

Furthermore, we have estimated that 35941.3224 sec (about 599 min) would be required to

perform ten independent runs of the proposed QJS using the classical eigensolution method.

However, using the efficient eigensolution method, the same algorithm requires only

2806.7635 sec (about 47 min) to perform these runs.

Figure 10. Schematic of the 1410-bar double-layer dome

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

349

Figure 11. The 1410-bar double-layer dome (top view)

Fig. 12 Details of a sub-structure of the 1410-bar double-layer dome

Table 5: Coordinates (m) of the nodes of the 1410-bar double-layer dome

Node number Coordinates (𝑥, 𝑦, 𝑧) Node number Coordinates (𝑥, 𝑦, 𝑧)

1 (1.0, 0.0, 4.0) 8 (1.989, 0.209, 3.0)

2 (3.0, 0.0, 3.75) 9 (3.978, 0.418, 2.75)

3 (5.0, 0.0, 3.25) 10 (5.967, 0.627, 2.25)

4 (7.0, 0.0, 2.75) 11 (7.956, 0.836, 1.75)

5 (9.0, 0.0, 2.0) 12 (9.945, 1.0453, 1.0)

6 (11.0, 0.0, 1.25) 13 (11.934, 1.2543, -0.5)

7 (13.0, 0.0, 0.0)

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

350

Table 6: Comparison of optimal results of the 1410-bar dome obtained by different algorithms

(cm2)

Element

number

(element

nodes)

CPA

[22]

DPSO

[46]

ECBO-

Cascade

[48]

MDVC-

UPVS

[49]

PFJA [50]
CRPSO

[51]
MJA [52]

This study

JS QJS

1 (1-2) 7.416 7.209 7.9969 5.8499 6.1902 2.5000 7.3465 5.7165 7.1979

2 (1-8) 4.768 5.006 6.1723 4.5115 4.4036 6.0000 4.2998 4.9880 5.5897

3 (1-14) 38.993 38.446 35.5011 19.4823 31.2253 18.0000 31.8485 27.1197 34.8424

4 (2-3) 8.966 9.438 10.2510 8.8480 8.4715 9.5000 8.8767 7.8185 8.9950

5 (2-8) 4.511 4.313 5.3727 5.0084 4.8590 6.0000 4.9778 4.8252 5.2544

6 (2-9) 1.544 1.494 1.3488 1.3568 1.5759 1.0000 1.7469 4.9369 1.1174

7 (2-15) 8.371 8.455 11.4427 17.4331 12.9451 29.5000 11.6099 16.5200 12.2753

8 (3-4) 9.276 9.488 9.7157 9.1098 9.3263 8.0000 9.2972 7.8311 8.8234

9 (3-9) 3.583 3.480 1.3005 2.8712 3.2716 2.0000 3.3406 2.5401 2.6118

10 (3-10) 3.476 3.495 2.5046 3.5473 3.2878 1.5000 3.2006 3.8229 2.5921

11 (3-16) 15.531 16.037 10.7849 12.3768 12.6719 1.0000 12.1131 11.0850 9.3809

12 (4-5) 10.285 9.796 10.1954 10.1099 10.0979 7.5000 9.7121 11.0365 9.1070

13 (4-10) 2.497 2.413 2.2300 2.5797 2.5803 1.0000 2.5294 2.2098 2.2585

14 (4-11) 5.397 5.681 5.1186 5.8381 5.3769 6.0000 5.8102 6.9714 5.6850

15 (4-17) 16.503 15.806 14.0053 13.6402 16.0581 14.5000 16.5566 16.0879 14.6390

16 (5-6) 8.193 8.078 8.9713 9.9096 8.6789 9.0000 8.3162 8.3039 9.3749

17 (5-11) 3.829 3.931 4.0756 3.6543 3.3199 1.0000 3.2415 4.3745 3.4546

18 (5-12) 6.151 6.099 5.9211 6.1529 6.4966 8.0000 6.4539 5.7235 6.7717

19 (5-18) 10.465 10.771 10.6915 11.2448 10.8804 19.5000 10.7040 6.1606 11.9384

20 (6-7) 13.925 13.775 10.6220 13.1071 14.0056 16.5000 13.8031 12.1901 13.1518

21 (6-12) 4.415 4.231 4.5064 5.2361 5.0843 5.0000 5.0161 4.4068 5.4571

22 (6-13) 6.863 6.995 8.4086 7.0691 6.9952 9.0000 7.6509 6.5886 7.0355

23 (6-19) 1.769 1.837 5.8405 2.0015 1.0270 1.0000 1.0762 4.6185 1.0564

24 (7-13) 4.339 4.397 5.0342 4.7178 4.3788 5.0000 4.3282 4.3287 4.6344

25 (8-9) 2.115 2.115 3.8932 2.6101 2.1951 6.5000 2.2062 2.2753 2.6707

26 (8-14) 4.951 4.923 6.1647 4.5434 4.2562 5.5000 4.8730 4.4873 5.0560

27 (8-15) 4.147 4.047 6.8990 4.6174 4.6605 7.0000 4.8202 4.8310 6.3306

28 (8-21) 6.044 5.906 11.6387 9.6758 8.8694 15.5000 9.0166 8.5942 11.1431

29 (9-10) 3.222 3.392 3.8343 3.6296 3.2333 4.5000 3.4591 4.0457 3.9277

30 (9-15) 1.970 1.902 1.4772 1.4891 1.7611 2.5000 1.9876 3.1836 1.2864

31 (9-16) 4.290 4.381 1.3075 3.4020 3.2831 2.5000 3.4317 2.0009 2.2858

32 (9-22) 8.020 8.442 4.4876 6.2153 7.1936 1.0000 7.7208 6.4017 5.2431

33 (10-11) 4.857 5.011 6.0196 5.9308 4.9840 6.0000 4.8261 7.1641 4.9566

34 (10-16) 3.689 3.577 2.6729 3.2334 3.6672 1.0000 2.9942 3.8786 2.5732

35 (10-17) 2.831 2.805 1.6342 2.7173 2.4062 1.0000 2.5166 2.9547 2.3854

36 (10-23) 1.985 2.024 1.8410 1.3932 2.1576 1.0000 1.8493 4.0056 1.4009

37 (11-12) 6.373 6.709 6.8841 6.5660 7.1043 10.0000 7.1007 9.2614 7.5222

38 (11-17) 4.865 5.054 4.1393 4.8170 5.2070 5.5000 5.1141 4.0014 4.9231

39 (11-18) 3.412 3.259 3.3264 3.2626 3.6853 3.5000 4.0067 2.6725 3.8285

40 (11-24) 1.027 1.063 1.0000 1.0165 1.0007 1.0000 1.0270 1.0172 1.0086

41 (12-13) 6.218 5.934 6.9373 7.2529 6.6302 7.5000 6.3676 7.8945 6.6448

42 (12-18) 7.342 7.057 4.4568 5.9226 6.6773 8.5000 4.3443 5.6654 6.6450

43 (12-19) 5.458 5.745 4.6758 5.3115 5.2167 7.5000 5.2791 3.8422 5.4045

44 (12-25) 1.140 1.185 1.0084 1.0010 1.0016 1.0000 1.0086 1.0078 1.0024

45 (13-19) 7.401 7.274 7.5103 7.7499 8.1289 7.5000 7.2667 11.0757 7.9904

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

351

46 (13-20) 4.578 4.798 5.2449 4.7836 4.5151 6.5000 4.3730 4.5371 4.0605

47 (13-26) 1.561 1.515 1.0550 1.0035 1.0010 1.0000 1.0761 1.1070 1.0022

Best weight

(kg)
10435.47 10453.84 10504.20 10345.12 10326.296 11044.617 10334.852 10663.092 10278.571

 [10319.228]3

Average

weight (kg)
10658.48 11100.57 10590.67 10393.83 10399.828 13017.900 10420.668 11288.002 10369.689

Worst

weight (kg)
- - - - - - - 11742.704 10481.253

Standard

deviation

(kg)

129.90 334.20 52.51 39.15 75.441 1454.813 79.966 291.065 53.786

Number of

FE analyses
80000 50000 20000 20000 25000 20000 17500 20000 20000

Table 7: Natural frequencies (Hz) of the optimal designs for the 1410-bar dome

Frequency

number

CPA

[22]

DPSO

[46]

ECBO-

Cascade

[48]

MDVC-

UPVS

[49]

PFJA

[50]

CRPSO

[51]

MJA

[52]

This study

JS QJS

1 7.000 7.001 7.0020 7.000 7.0009 7.0008 7.0003 7.0002 7.0000

2 7.000 7.001 7.0030 7.001 7.0009 - 7.0003 7.0002 7.0000

3 9.000 9.003 9.0010 9.000 9.0001 9.0068 9.0000 9.0000 9.0002

4 9.002 9.005 9.0010 9.000 9.0002 - 9.0002 9.0066 9.0002

5 9.002 9.005 9.0030 9.000 9.0002 - 9.0002 9.0066 9.0006

Figure 13. Average weight convergence histories for the 1410-bar double-layer dome

3. QJS found a feasible optimum design corresponding to a structural weight of 10319.228 kg after 12520

analyses.

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

352

Table 8: Comparison of the computational efficiency of the classical and efficient

eigensolution methods

Problem
Classical eigensolution method Efficient eigensolution method

Eigenvalue problem CPU time (s) Eigenvalue problem CPU time (s)

600-bar dome-like truss 1 matrix of 576 × 576 0.0363 24 matrices of 24 × 24 0.0054

1410-bar dome-like truss 1 matrix of 1080 × 1080 0.1797 30 matrices of 36 × 36 0.0140

7. CONCLUSION

In this paper, a quantum-based Jellyfish Search algorithm, named Quantum JS (QJS), is

proposed to solve structural optimization problems. Three main improvements are

introduced in the proposed QJS: a quantum-based update rule to encourage the

diversification in the search space, a new boundary control mechanism to avoid getting

trapped in local optima, and modifications of the time control mechanism to strike a better

balance between global and local searches. The purpose of the proposed QJS is to eliminate

the drawback of the classical JS and to improve the balance between the diversification and

the intensification tasks. The proposed QJS is applied to optimal design of cyclic symmetric

dome structures with multiple frequency constraints. The structural analyses required in the

optimization process are conducted by an efficient eigensolution method. The present

eigensolution method takes advantage of the properties of the mass and stiffness matrices. It

decomposes the initial free-vibration eigenproblem into some smaller sub-eigenproblems,

which results not only in high accurate free vibration analysis results but also a substantial

decrease in computational time as compared to the existing classical methods.

To illustrate the efficiency and accuracy of the present eigensolution method as well as

the performance of the JS and the QJS, both of the algorithms are applied to solve the sizing

optimization problem of two large-scale cyclic symmetric dome structures with multiple

frequency constraints. To the best of our knowledge, this is the first time that JS is applied to

solve frequency-constrained optimization problems. Optimization results confirm that the

best weight and average weight found by the QJS are better than those reported in the

literature. Furthermore, thanks to effective exploration of the search space (within the first

stages of the search process) and the good trade-off between the global exploration and the

local exploitation, the QJS outperforms the classical JS in both terms of effectiveness and

robustness. In all design examples, the best weight, average weight, worst weight, and

standard deviation on average weight obtained by the proposed QJS are much better than

those of the JS. This shows that the proposed QJS can offer a robust and competitive

optimization algorithm for the optimal design of truss structures with multiple frequency

constraints. Moreover, the results show that the present eigensolution leads to a significant

decrease in computational time.

Declaration of competing interest

The authors declare that there are no known conflicts of interest associated with this

publication, and there has been no significant financial support for this work that could have

influenced its outcome.

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

353

REFERENCES

1. Khatibinia M, Naseralavi SS. Truss optimization on shape and sizing with frequency

constraints based on orthogonal multi-gravitational search algorithm, J Sound Vib 2014;

333: 6349-69. https://doi.org/10.1016/j.jsv.2014.07.027.

2. Grandhi RV, Venkayya VB. Structural optimization with frequency constraints, AIAA J

1988; 26: 858-66. https://doi.org/10.2514/3.9979.

3. Grandhi R. Structural optimization with frequency constraints-a review, AIAA J 1993;

31: 2296-303. https://doi.org/10.2514/3.11928.

4. Rao SS, Reddy ES. Optimum design of stiffened conical shells with natural frequency

constraints, Comput Struct 1981; 14: 103-10. https://doi.org/10.1016/0045-

7949(81)90089-4.

5. Bellagamba L, Yang TY. Minimum-mass truss structures with constraints on

fundamental natural frequency, AIAA J 1981; 19: 1452-8. https://doi.org/10.2514/3.7875

6. Khot NS. Optimization of structures with multiple frequency constraints, Comput Struct

1985; 20: 869-76. https://doi.org/10.1016/0045-7949(85)90006-9.

7. Vanderplaats GN, Salajegheh E. An efficient approximation technique for frequency

constraints in frame optimization, Int J Numer Methods Eng 1988; 26: 1057-69.

https://doi.org/10.1002/nme.1620260505.

8. Nakamura T, Ohsaki M. Sequential optimal truss generator for frequency ranges,

Comput Methods Appl Mech Eng 1988; 67: 189-209. https://doi.org/10.1016/0045-

7825(88)90125-9.

9. Xie YM, Steven GP. A simple approach to structural frequency optimization, Comput

Struct 1994; 53: 1487-91. https://doi.org/10.1016/0045-7949(94)90414-6.

10. Tong WH, Liu GR. An optimization procedure for truss structures with discrete design

variables and dynamic constraints, Comput Struct 2001; 79: 155-62.

https://doi.org/10.1016/S0045-7949(00)00124-3.

11. Kaveh A, Biabani Hamedani K, Kamalinejad M. Set theoretical variants of the teaching–

learning-based optimization algorithm for optimal design of truss structures with

multiple frequency constraints, Acta Mech 2020; 231: 3645-72.

https://doi.org/10.1007/s00707-020-02718-3.

12. Lingyun W, Mei Z, Guangming W, Guang M. Truss optimization on shape and sizing

with frequency constraints based on genetic algorithm, Comput Mech 2005; 35: 361-8.

https://doi.org/10.1007/s00466-004-0623-8.

13. Gomes HM. Truss optimization with dynamic constraints using a particle swarm

algorithm, Expert Syst Appl 2011; 38: 957-68.

https://doi.org/10.1016/j.eswa.2010.07.086.

14. Kaveh A, Zolghadr A. Truss optimization with natural frequency constraints using a

hybridized CSS-BBBC algorithm with trap recognition capability, Comput Struct 2012;

102: 14-27. https://doi.org/10.1016/j.compstruc.2012.03.016.

15. Kaveh A, Ghazaan MI. Optimal design of dome truss structures with dynamic frequency

constraints, Struct Multidiscip Optim 2016; 53: 605-21. https://doi.org/10.1007/s00158-

015-1357-2.

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

354

16. Ho-Huu V, Nguyen-Thoi T, Truong-Khac T, Le-Anh L, Vo-Duy T. An improved

differential evolution based on roulette wheel selection for shape and size optimization

of truss structures with frequency constraints, Neural Comput Appl 2018; 29: 167-85.

https://doi.org/10.1007/s00521-016-2426-1.

17. Lieu QX, Do DT, Lee J. An adaptive hybrid evolutionary firefly algorithm for shape and

size optimization of truss structures with frequency constraints, Comput Struct 2018;

195: 99-112. https://doi.org/10.1016/j.compstruc.2017.06.016.

18. Kaveh A, Kamalinejad M, Hamedani KB. Enhanced versions of the shuffled shepherd

optimization algorithm for the optimal design of skeletal structures, Structures 2021; 29:

1463-95. https://doi.org/10.1016/j.istruc.2020.12.032.

19. Kaveh A, Biabani Hamedani K, Barzinpour F. Optimal size and geometry design of truss

structures utilizing seven meta-heuristic algorithms: a comparative study, IJOCE 2020;

10: 231-60.

20. Mirjalili S, Lewis A. The whale optimization algorithm, Adv Eng Softw 2016; 95: 51-67.

https://doi.org/10.1016/j.advengsoft.2016.01.008.

21. Chou JS, Truong DN. A novel metaheuristic optimizer inspired by behavior of jellyfish

in ocean, Appl Math Comput 2021; 389: 125535.

https://doi.org/10.1016/j.amc.2020.125535.

22. Kaveh A, Zolghadr A. Optimal design of cyclically symmetric trusses with frequency

constraints using cyclical parthenogenesis algorithm, Adv Struct Eng 2018; 21: 739-55.

https://doi.org/10.1177%2F1369433217732492.

23. Kaveh A, Salimbahrami B. Eigensolution of symmetric frames using graph factorization,

Commun Numer Methods Eng 2004; 20: 889-910. https://doi.org/10.1002/cnm.711.

24. Kaveh A, Rahami H. Block diagonalization of adjacency and Laplacian matrices for

graph product; applications in structural mechanics, Int J Numer Methods Eng 2006; 68:

33-63. https://doi.org/10.1002/nme.1696.

25. Kaveh A, Nemati F. Eigensolution of rotationally repetitive space structures using a

canonical form, Int J Numer Method Biomed Eng 2010; 26: 1781-96.

https://doi.org/10.1002/cnm.1265.

26. Kaveh A, Rahami H. An efficient analysis of repetitive structures generated by graph

products, Int J Numer Methods Eng 2010; 84: 108-26. https://doi.org/10.1002/nme.2893.

27. Kaveh A, Fazli H. Approximate eigensolution of locally modified regular structures

using a substructuring technique, Comput Struct 2011; 89: 529-37.

https://doi.org/10.1016/j.compstruc.2010.12.013.

28. Kaveh A, Rahmani P. Canonical forms and rotationally repetitive matrices for

eigensolution of symmetric structures, Sci Iran 2020; 28: 192-208.

https://doi.org/10.24200/SCI.2020.56639.4827.

29. Kaveh A, Rahami H, Shojaei I. Swift Analysis of Civil Engineering Structures Using

Graph Theory Methods, Springer, 1st edition, Cham, Switzerland, 2020.

30. Kaveh A, Rahami H. Block circulant matrices and applications in free vibration analysis

of cyclically repetitive structures, Acta Mech 2011; 217: 51-62.

https://doi.org/10.1007/s00707-010-0382-x.

31. Kaveh A, Koohestani K. Combinatorial optimization of special graphs for nodal

ordering and graph partitioning, Acta Mech 2009; 207: 95-108.

QUANTUM-BASED JELLYFISH SEARCH OPTIMIZER FOR STRUCTURAL …

355

https://doi.org/10.1007/s00707-008-0107-6.

32. Koohestani K, Kaveh A. Efficient buckling and free vibration analysis of cyclically

repeated space truss structures, Finite Elem Anal Des 2010; 46: 943-8.

https://doi.org/10.1016/j.finel.2010.06.009.

33. Kaveh A, Kamalinejad M, Hamedani KB, Arzani H. Quantum Teaching-Learning-Based

Optimization algorithm for sizing optimization of skeletal structures with discrete

variables, Structures 2021; 32: 1798-819. Elsevier.

https://doi.org/10.1016/j.istruc.2021.03.046.

34. Kruse R, Borgelt C, Braune C, Mostaghim S, Steinbrecher M, Klawonn F, Moewes C.

Computational intelligence, Springer, 1st edition, London, 2013.

35. Talbi EG. Metaheuristics: from design to implementation, John Wiley & Sons, 1st

edition, USA, 2009.

36. Kaveh A. Advances in metaheuristic algorithms for optimal design of structures,

Springer, 1st edition, Cham, Switzerland, 2014.

37. Joines JA, Houck CR. On the use of non-stationary penalty functions to solve nonlinear

constrained optimization problems with GA's. InProceedings of the first IEEE

conference on evolutionary computation. IEEE world congress on computational

intelligence 1994 Jun 27 (pp. 579-584). IEEE.

https://doi.org/10.1109/ICEC.1994.349995

38. Kulkarni O, Kulkarni N, Kulkarni AJ, Kakandikar G. Constrained cohort intelligence

using static and dynamic penalty function approach for mechanical components design,

Int J Parallel Emergent Distrib Syst 2018; 33: 570-88.

https://doi.org/10.1080/17445760.2016.1242728

39. Jordehi AR. A review on constraint handling strategies in particle swarm optimisation,

Neural Comput Appl 2015; 26: 1265-75. https://doi.org/10.1007/s00521-014-1808-5.

40. Rowe WB. Principles of modern grinding technology, William Andrew, 2nd edition,

USA, 2013.

41. Yang B. Stress, strain, and structural dynamics: an interactive handbook of formulas,

solutions, and MATLAB toolboxes, Academic Press, 1st edition, USA, 2005.

42. Chopra AK. Dynamics of structures, Pearson Education, 1st edition, India, 2007.

43. Zemaityte M. Theory and Algorithms for Linear Eigenvalue Problems, The University

of Manchester, United Kingdom, 2020.

44. Bathe KJ, Wilson EL. Solution methods for eigenvalue problems in structural

mechanics, Int J Numer Methods Eng 1973; 6: 213-26.

https://doi.org/10.1002/nme.1620060207

45. Kaveh A, Biabani Hamedani K,, Joudaki A, Kamalinejad M. Optimal analysis for

optimal design of cyclic symmetric structures subject to frequency constraints, Structure,

in print, 2021.

46. Kaveh A. Applications of Metaheuristic Optimization Algorithms in Civil Engineering,

Springer, 1st edition, Cham, Switzerland, 2017.

47. Kaveh A, Ghazaan MI. Vibrating particles system algorithm for truss optimization with

multiple natural frequency constraints, Acta Mech 2017; 228: 307-22.

https://doi.org/10.1007/s00707-016-1725-z.

A. Kaveh, K. Biabani Hamedani, M. Kamalinejad and A. Joudaki

356

48. Kaveh A, Ilchi Ghazaan M. Meta-heuristic algorithms for optimal design of real-size

structures, Springer, 1st edition, Cham, Switzerland, 2018.

49. Kaveh A, Ilchi Ghazaan M. A new hybrid meta-heuristic algorithm for optimal design of

large-scale dome structures, Eng Optim 2018; 50: 235-52.

https://doi.org/10.1080/0305215X.2017.1313250.

50. Degertekin SO, Bayar GY, Lamberti L. Parameter free Jaya algorithm for truss sizing-

layout optimization under natural frequency constraints, Comput Struct 2021; 245:

106461. https://doi.org/10.1016/j.compstruc.2020.106461.

51. Carvalho JP, Lemonge AC, Carvalho ÉC, Hallak PH, Bernardino HS. Truss optimization

with multiple frequency constraints and automatic member grouping, Struct Multidiscip

Optim 2018; 57: 547-77. https://doi.org/10.1007/s00158-017-1761-x.

52. Degertekin SO, Yalcin Bayar G, Lamberti L. Jaya algorithm for sizing and layout

optimization of truss structures with natural frequency constraints. In: Topping BHV,

Ivany P, editors, Proceedings of the sixteenth international conference on civil, structural

& environmental engineering computing, Civil-Comp Press, Stirlingshire (UK); 2019.

