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ABSTRACT 
 

An ensemble method is introduced to solve optimization problems efficiently. The method is 

mainly based on using the gradient directions along which, the function is reduced at most. 

Large step sizes are employed for exploration in the first phase. The use of smaller step sizes 

in subsequence phases will allow for more accurate exploration. To increase the efficiency 

of the gradient techniques, some enhancements such as mutation, crossover and fly-back 

operations are introduced to explore the entire design space. The efficiency and the 

reliability of the multi-phase gradient approach are examined by solving 29 complicated 

multimodal functions introduced in CEC 2017 and a structural shape optimization problem 

under frequency constraints. The results are compared with several well-known population-

based algorithms. 
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1. INTRODUCTION 
 

The optimization methods are divided into two main categories. The first category is known 

as mathematical programming (MP) [1-3]. The MP methods generally require the gradient 

of objective functions. For this purpose, a sensitivity analysis of the function should be 

performed. These methods are suitable for convex problems and are efficient in problems 

with a large number of variables. Steepest descent, sequential linear programming (SLP or 

gradient descent), Newton-Raphson, Broyden-Fletcher-Goldfarb-Shanno (BFGS) are the 

most well-known gradient-based methods [1-3]. In recent years, some other MP methods are 

presented such as momentum [4], adaptive gradient (AdaGrad) [5], root mean square 

propagation (RMSProp) [6], adaptive moment estimation (Adam) [7], Kalman-based 
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stochastic gradient descent (kSGD) [8]. These algorithms are modifications of the classical 

MP methods and they are known as stochastic gradient descent. 

The second category is the metaheuristic algorithms. In these methods, there is no need to 

calculate the gradient directions. In other words, they are gradient-free techniques. A group 

(swarm) of particles is distributed in the design domain. The particles exchange information 

and update their variables to get a better solution. The metaheuristic methods perform well 

in multimodal problems but require more function evaluations than MP algorithms. Some 

well-known metaheuristic methods are particle swarm optimization (PSO) [9], gravitational 

search algorithm (GSA) [10], firefly algorithm (FA) [11], crow search algorithm (CSA) 

[12], bat algorithm (BA) [13], gray wolf optimization (GWO) [14], whale optimization 

algorithm (WOA) [15], krill herd (KH) [16], artificial bee colony (ABC) [17], differential 

evolution (DE) [18], backtracking search optimization algorithm (BSO or BSA) [19], sine 

cosine algorithm (SCA) [20], genetic algorithm (GA) [21] and tabu-scatter search (TS) [22]. 

These methods are inspired by natural phenomena, swarm intelligence (e.g. animal 

behaviors) and genetic subjects. Because of the robustness of metaheuristic methods, the 

number of these algorithms and their variants are increasing [23-27]. Their ability to 

optimize multimodal problems attracted great attention of researchers. 

Attempts have been made to improve the performance of the MP methods for global 

optimization. A multi-start model is one of these ideas [28-30]. A random initial population 

is distributed in the design domain, then a local search will be performed around the 

population. The process of generating random populations and local searches will be 

repeated to find the global optimum. Another strategy is choosing proper step sizes for 

classical gradient methods [31]. Combination of gradient directions and metaheuristic 

methods is another way to make powerful optimization algorithms. For example, 

combination of simulated annealing and gradient [32, 33], gradient tabu search [34], 

gradient-based cuckoo search [35] and PSOG [36]. In most of the hybrid methods, global 

search (exploration) is performed by metaheuristic methods and gradient-based approaches 

are responsible for local search (exploitation) [37-41]. Another method for global 

optimization is NOVEL [42] which is a two-phase supervised learning method that has 

exploration and exploitation phases and applied for neural network training. It should be 

noted that stochastic gradient methods have a possible ability to escape from near local 

optima. 
In this study, a multi-phase gradient method is presented and some well-known 

techniques are applied to achieve a better exploration. In the proposed method, the gradient 

direction is considered as the basis of the search and the pure ideas from metaheuristic 

methods will help for better exploration. In the next step, its performance for optimization of 

multimodal problems is investigated. For this purpose, 29 functions of CEC 2017 [43] are 

optimized by the proposed method. Moreover, a truss structure is optimized under frequency 

constraints. The results are compared with several metaheuristic methods.  
In the next section, a brief explanation of the gradient methods is provided. Section 3 

presents the proposed algorithm. Numerical examples are optimized in Section 4 and the 

results are compared with other methods. Eventually, the conclusion is presented in Section 5. 
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2. GRADIENT METHODS 
 

Gradient-based methods are suitable for exploitation. In other words, they are generally 

useful for optimization of unimodal functions. The algorithms of MP methods are simple. A 

starting point should be selected. Then, the design variables are updated using a velocity 

vector (Eq. 1). This velocity vector has different formulations in each gradient-based method 

[1-3]. In this study, Eq. (2) is employed as updating-direction which is a modification of the 

momentum gradient method [4]. In the momentum, the gradient of each step is added to the 

velocity of the previous steps. In Eq. (2), the gradient direction is scaled by its maximum 

values and then it is multiplied by a predefined factor. As a result, step sizes are more 

controllable. 

 

𝒙𝑘+1 = 𝒙𝑘 + 𝒗𝑘 (1) 

𝒗𝑘 = 𝛽𝒗𝑘−1 + 𝛼𝑘
−𝛁𝑭𝑘

max⁡(|𝛁𝑭𝑘|)
 (2) 

 

where 𝒙 is a vector that includes design variables and 𝒗 is the velocity vector. Parameter k is 

the iteration number. 𝛼 and 𝛽 are scaling factors that should be defined by the user. 𝛁𝑭𝑘 is 

the gradient vector at 𝒙𝑘. In order to optimize the objective function F, Eqs. (1) and (2) must 

be run in succession iterations. Gradient methods converge very fast and usually trap in a 

near local optimum. Therefore, the method should be powered which is described in the 

following sections. 

 

 

3. PROPOSED METHOD: MPG 
 

Iterative global-optimization methods should have several vital features. First, they should 

update the design variables to reach promising areas. Promising area means spaces in the 

domain design where the optimal solutions are likely to exist. For this purpose, the direction 

of the search and the step size must be taken into account. The negative-gradient directions 

are generally directed to areas where the objective function is less than the current location. 

From the mathematical point of view, the gradient direction is one of the best directions that 

causes the steepest decrease for the objective function. In addition, the step size of the 

directions must be specified. Considering large step sizes, the changes to the design 

variables are large. In this case, many spaces will be left unchecked. Taking small steps 

sizes, only close spaces can be searched. In other words, small and large values for step sizes 

lead to local and global searches, respectively. The ability to exit from the local minima and 

search other areas is the second important feature for global search methods. 

The next essential feature for optimization methods is local search capability. Gradient-

based methods alone are highly capable of this duty. These methods are efficient for 

unimodal optimization problems. Their exploitation is strong despite their poor exploration. 

In this paper, the capability of exploration is added to the method by using a multi-phase 

strategy and some other techniques. In order to explore the design domain, large step sizes 

for gradient-directions, mutation, moving toward the best result and fly-back techniques are 
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employed. On the other hand, gradient directions with small step sizes are used for 

exploitation.  

In the proposed method, unlike the metaheuristic methods, only one particle is employed 

to search the design domain. Although in hybrid metaheuristic-gradient methods, 

exploration has been performed by metaheuristic and exploitation is carried out by gradient, 

in the proposed method the gradient plays an important role in both responsibilities. In the 

following, the phases and techniques of the presented method are described. 

 

3.1 Exploration using gradient directions and phases 

Since the gradient of a function is the steepest descent direction, it can be used as a 

searching-path for exploration (Eq. 3). For this purpose, exploration can be accomplished by 

using constant or variable step sizes (𝛼). In the initial iterations, a large value is chosen for 

the step size (Fig. 1a). This results in an inaccurate domain search which is a global search. 

After exploration using long distances, the step size can be chosen smaller to allow for a 

more accurate search around the best-obtained answer (Gbest) (Fig. 1b). 

In the proposed method, the area around Gbest is searched several times by different step 

sizes. Each of these search around the best-obtained result with predefined 𝛼 is called a 

“phase”. Applying this method alone cannot create a complete search in the design domain. 

Therefore, there is a need for techniques to make the method to search in other areas. This 

process will be described in the subsequent sections. 

 

𝒗𝑘 = 𝛽𝒗𝑘−1 + 𝛼𝑘
−𝛁𝑭𝑘

max⁡(|𝛁𝑭𝑘|)
⁡𝑤ℎ𝑖𝑐ℎ⁡𝛼

= {
𝑙𝑎𝑟𝑔𝑒⁡𝑛𝑢𝑚𝑏𝑒𝑟𝑠⁡𝑖𝑛⁡𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛⁡𝑝ℎ𝑎𝑠𝑒𝑠
𝑠𝑚𝑎𝑙𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑖𝑛⁡𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛⁡𝑝ℎ𝑎𝑠𝑒

⁡⁡⁡ 
(3) 

 

3.2 Mutation 

Gradient-based approaches have the great potential to be trapped in a local minimum. 

Therefore, there is a need to use techniques in order to exit the local points and search in the 

solution domain. One of these techniques is mutation. Mutation is a well-known operation in 

the metaheuristic approaches [21]. In order to explore the design domain, decision variables 

can be changed randomly. In other words, the search-particle flies to another point. With this 

action, spaces that were difficult to access are more accessible.  

There are various ways to implement this technique. Generally, mutation only changes 

one random design variable in each of its activations. By mutation of only one variable, 

metaheuristic methods can converge with proper speed. Since the gradient has a very good 

convergence rate, a different pattern can be used for mutation. In this study, all the design 

variables are randomly mutated. Then the gradient direction comes to help the mutated 

particle to reach a promising location in those areas. Also in this paper, the mutation method 

is proposed as a velocity vector. With this method, all subsequent search directions are also 

affected. In other words, all updating-velocities will be a combination of random and 

gradient directions. This step can be performed using the following equation; 
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𝒗𝑘 =

{
 

 𝛾𝑘(𝒙max − 𝒙min)(−1 + 2𝒓𝒂𝒏𝒅𝒐𝒎), 𝛾 = {
𝑙𝑎𝑟𝑔𝑒⁡𝑛𝑢𝑚𝑏𝑒𝑟𝑠⁡𝑓𝑜𝑟⁡𝑙𝑎𝑟𝑔𝑒⁡𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
𝑠𝑚𝑎𝑙𝑙⁡𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑓𝑜𝑟⁡𝑠𝑚𝑎𝑙𝑙⁡𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

⁡⁡𝑖𝑓⁡⁡𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛⁡𝑖𝑠⁡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑

𝛽𝒗𝑘−1 + 𝛼𝑘
−𝛁𝑭𝑘

max⁡(|𝛁𝑭𝑘|)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

which 𝛾 is a factor that determines the size of a mutation. These changes can be defined 

as large or small mutations (Fig. 1c). Small and large mutations rescue the trapped search-

particle in order to explore near and far spaces, respectively. Small mutations are more likely 

to occur than large mutations. The parameter random is a vector with uniform random 

variables between [0,1]. 𝒙max and 𝒙min are the upper and lower bounds of the design 

variables, respectively. Each element of the mutation vector, 𝒗𝑘, can be randomly positive or 

negative. This strategy occurs in random iterations of exploration phases. Although these 

random mutations resulted in appropriate exploration, some regions might remain 

unsearched. In the next section, some simple techniques are introduced to tackle this 

difficulty. 

 
3.3 Moving toward the best result 

Due to random mutations, spaces in the domain may not be well searched. Different 

algorithms can be used to fill these gaps around the best solution (Gbest). Among these 

algorithms, three simple approaches are used for this purpose. First, a velocity vector that 

connects xk to Gbest is employed (Eq. 5 and Fig. 1e). Therefore, the flown particle 

gradually attempts to return to the best-obtained position. Second, the crossover (random 

recombination) is applied to combine xk and Gbest (Eq. 6 and Fig. 3e). Crossover is a well-

known technique in GA and DE algorithms. Using this technique, the position of the search 

particle is changed and moved to the near Gbest. For the third method, x returns to Gbest 

and continue to search (Eq. 7). Using this action, the search will be restarted. Then, with 

smaller step sizes, the method begins to search more accurately in those areas. After a closer 

search, the near and far regions are searched again by small and large mutations. As 

mentioned before, each return to Gbest and accurate research is referred to as "Phase". 
 

𝒗𝑘 = 𝜃(𝑮𝒃𝒆𝒔𝒕𝑘 − 𝒙𝑘) (5) 

𝒙𝑘+1 = random⁡combination⁡of⁡(𝒙𝑘, 𝑮𝒃𝒆𝒔𝒕𝑘) (6) 

𝒙𝑘+1 = 𝑮𝒃𝒆𝒔𝒕𝑘 (7) 

 

where 𝜃 is a factor that scales the velocity vector. These techniques are performed randomly 

through exploration phases. After exploration, the exploitation phase should be 

accomplished to find the best result. 

 

3.4 Exploitation 

In the exploration phases, different points are explored in the design domain. After many 

searches, it is very likely that the global optimum is near Gbest. So in the final phase, a local 

search should be performed in the areas near Gbest. Gradient-based methods are adequate 

for exploitation. By choosing small 𝛼𝑘 exploitation can be performed around Gbest. In other 
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words, a unimodal region is optimized in the last phase (Fig. 1g). 

 

3.5 Enhancement 

In many cases, decision variables are limited to a defined interval. Since mutation is 

performed using random vectors, many solutions may be moved out of the permissible range 

(permissible range: 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥). In this situation, x is usually moved to the nearest 

boundary (x=xmin or x=xmax). In the proposed method, x enters the solution domain by Eqs. 

(8). This process is a kind of fly-back technique (Fig. 1f). 

 

𝑖𝑓⁡𝑥𝑘+1 > 𝑥𝑚𝑎𝑥; 𝑥𝑘+1 = 𝑥𝑚𝑎𝑥 − 𝜌∆;⁡∆= 𝑥𝑘+1 − 𝑥𝑚𝑎𝑥 (8a) 

𝑖𝑓⁡𝑥𝑘+1 < 𝑥𝑚𝑖𝑛; 𝑥𝑘+1 = 𝑥𝑚𝑖𝑛 + 𝜌∆;⁡∆= 𝑥𝑚𝑖𝑛 − 𝑥𝑘+1 (8b) 

 

where 𝜌 is a scaling parameter that compels the exited x to return into the design domain. In 

order to summarize this Section, the pseudocode of the proposed method is presented in 

Pseudocode 1. In the next section, complex and multimodal problems are optimized by the 

proposed method and the results will be compared with several other approaches. 

 

 

(a)   (b)   (c)   (d) 

 

(e)  (f)   (g) 

Figure 1. Exploration using gradient directions by: (a) large steps in the first phase (b) small 

steps in subsequent phases; (c) mutation; (d) exploration after mutation; (e) moving toward 

Gbest; (f) fly-back; (g) exploitation 
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Pseudocode 1 

Proposed algorithm 

phase_number=1 

Set a large step size for the first phase 

Set an initial x (xk=1), Gbest= xk=1 

for k=1: max_iteration 

Calculate objective function: F(xk) 

Calculate gradient of the function: 𝛁𝑭𝑘 

if F(xk)<=min(F(xi=1:k)) and k>=2 

  Gbest= xk %Updating Gbest 

end if 

Based on the parameter k, specify phase number 

if it is the start of a phase 

 xk= Gbest %turning back to the best-found solution 

end if 

Based on phase number, specify 𝛼𝑘 (a large number for the first phase, smaller numbers 

for next phases, a small number for exploitation phase) 

Calculate the velocity vector: 𝒗𝑘 = 𝛽𝒗𝑘−1 + 𝛼𝑘
−𝛁𝑭𝑘

max⁡(|𝛁𝑭𝑘|)
 

if random1<=ε1, in exploration phases 

 Small mutation: 𝒗𝑘 = 𝛾𝑘(𝒙max − 𝒙min). (−1 + 2𝒓𝒂𝒏𝒅𝒐𝒎) %(small value for 0 <
𝛾 < 1) 

end if 

if random2<=ε2, in exploration phases % ε2< ε1 

 Large mutation: 𝒗𝑘 = 𝛾𝑘(𝒙max − 𝒙min). (−1 + 2𝒓𝒂𝒏𝒅𝒐𝒎) %(large value for 0 <
𝛾 < 1) 

end if 

if random3<=ε3 and k>=2, in exploration phases  

 Travel to Gbest gradually: 𝒗𝑘 = 𝜃(𝑮𝒃𝒆𝒔𝒕𝑘 − 𝒙𝑘) %(⁡0 < 𝜃 < 1) 

end if 

If random4<=ε4 and k>=2, in exploration phases  

 %Crossover with Gbest: 

 𝒗𝑘 = 𝑧𝑒𝑟𝑜𝑠⁡𝑣𝑒𝑐𝑡𝑜𝑟 

a= a random integer number< number of design variables 

 if random5<=0.5 

  xk+1(1:a)= xk(1:a), xk+1(a+1:end)= Gbest(a+1:end) 

 else 

  xk+1(1:a)= Gbest(1:a), xk+1(a+1:end)= xk(a+1:end) 

 end if 

end if 

Update the design variables: 𝒙𝑘+1 = 𝒙𝑘 + 𝒗𝑘 

% Fly back: 

for j=1:noe %(noe=number of design variables) 

 if xk+1(j)>xmax 
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  delta= xk+1(j)-xmax 

  xk+1(j)= xmax-⁡𝜌 delta 

 end if 

 if xk+1(j)<xmin 

  delta= xmin –xk+1(j) 

  xk+1(j)= xmin +⁡𝜌 delta 

 end if 

end 

%k=k+1 and go to the next iteration 

end 

%: Comments 

 

 

4. NUMERICAL EXAMPLES 
 

To evaluate the performance of the proposed method, functions of CEC 2017 [43] have been 

investigated and the outcomes are compared with the results of several metaheuristic 

algorithms. CEC 2017 includes 3 unimodal, 7 simple multimodal, 10 hybrid and 10 

composition benchmark problems. CEC 2017 benchmarks are shifted, rotated and hybrid of 

well-known test functions such as; Bent Cigar, Zakharov, Rosenbrock, Rastrigin, Schaffer, 

Lunacek bi-Rastrigin, Non-Continuous Rastrigin, Levy, Schwefel, Discuss, Ackley, 

Weierstrass, Griewank, Katsuura, HappyCat and HGBat [43]. Some basic equations of CEC 

2017 are presented in Table 1. These functions are single objective problems with bounded 

constraints on design variables. CEC benchmarks vastly have been optimized by researchers 

to check and rate their algorithms in dealing with real problems. 
In order to visualize the performance of the presented method, several CEC functions are 

optimized in two-dimensional space. In the next step, the benchmarks with 10, 30 and 50 

variables are compared with other well-known methods. 

 
Table 1: Some basic functions of CEC 2017 [43] 

Functions Equations 

Bent Cigar 𝑓(𝒙) = 𝑥1
2 + 106∑𝑥𝑖

2

𝑛

𝑖=2

 

Zakharov 𝑓(𝒙) =∑𝑥𝑖
2

𝑛

𝑖=1

+ (∑0.5𝑖𝑥𝑖
2

𝑛

𝑖=1

)2 + (∑0.5𝑖𝑥𝑖
2

𝑛

𝑖=1

)4 

Rosenbrock 𝑓(𝒙) = ∑[100⁡(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑛−1

𝑖=1

 

Rastrigin 𝑓(𝒙) =∑(𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10)

𝑛

𝑖=1
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Expanded 

Schaffer 

𝑓(𝒙) = (∑𝑔(𝑥𝑖 , 𝑥𝑖+1)

𝑛−1

𝑖=1

) + 𝑔(𝑥𝑛 , 𝑥1) 

𝑔(𝑥, 𝑦) = 0.5 +
sin2(√𝑥2 + 𝑦2) − 0.5

(1 + 0.001(𝑥2 + 𝑦2))2
 

Lunacek bi-

Rastrigin 
𝑓(𝒙) = min

(

 
 
 

{
 
 

 
 ∑(𝑥𝑖 − 𝜇0)

2

𝑛

𝑖=1

𝑑 · 𝑛 + 𝑠∑(𝑥𝑖 − 𝜇1)
2

𝑛

𝑖=1 )

 
 
 
+ 10(𝑛 −∑cos(2𝜋𝑧𝑖)

𝑛

𝑖=1

) 

Non-Continuous 

Rastrigin 
𝑓(𝒙) =∑𝑧𝑖

2 − 10 cos(2𝜋𝑧𝑖) + 10

𝑛

𝑖=1

 

Levy 

𝑓(𝒙) = sin2(𝜋𝑤1) +∑(𝑤𝑖 − 1)
2[1 + 10sin2(𝜋𝑤𝑖 + 1)] +

𝑛−1

𝑖=1

(𝑤𝑛

− 1)2[1 + sin2(2𝜋𝑤𝑛)]⁡ 

𝑤𝑖 = 1 +
𝑥𝑖 − 1

4
 

Modified 

Schwefel 
𝑓(𝒙) = 418.9829𝑛 −∑𝑔(𝑧𝑖)

𝑛

𝑖=1

 

High Conditioned 

Elliptic Function 
𝑓(𝒙) =∑(106)

𝑖−1
𝑛−1⁄ ⁡𝑥𝑖

2

𝑛

𝑖=1

 

Discus Function 𝑓(𝒙) = 106𝑥1
2 +∑𝑥𝑖

2

𝑛

𝑖=2

 

Griewank 𝑓(𝒙) = 1 +∑
𝑥𝑖
2

4000
−∏cos (

𝑥𝑖

√𝑖
)

𝑛

𝑖=1

𝑛

𝑖=1

 

 
4.1 2D problems 

In this section, some of the 2D problems of CEC 2017 are investigated by three gradient-

based methods: SLP, momentum and MPG (Fig. 2). It is obvious that the proposed method 

is capable of leaving local minima and have much better exploration capability. It should be 

noted that the initial point and the number of function evaluations are chosen the same for all 

methods. 
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(a) SLP: F4=400.01  (b) Momentum: F4=400.00 (c) MPG: F4=400.00 

 
(d) SLP: F6=727.96  (e) Momentum: F6=713.43 (f) MPG: F6=600.09 

 
(g) SLP: F21=2335.32  (h) Momentum: F21=2313.07 (i) MPG: F21=2100.00 

 
(j) SLP: F24=2500.01  (k) Momentum: F24=2500.01  (l) MPG: F24=2426.32 
Figure 2. Optimization of some 2D functions by SLP, momentum and the proposed method with 

the same initial point and number of function evaluations 

 

4.2 Other dimensions of CEC 2017 

CEC benchmarks are optimized for 10, 30 and 50 variables. The outcomes of the proposed 

method are compared with the results of several metaheuristic approaches. The number of 

function evaluations (FE) is chosen as 10000D. Where D is the number of design variables 
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and the number of FE is specified by the benchmark paper [43]. Each function is optimized 

30 times independently. In each run, 4/5 of the FEs are assigned for exploration and 

performed in 4 phases. 1/5 of the final iterations are dedicated to exploitation. 𝛼 is selected 

as 5 in the first phase and 2 in the other three phases and 0.005 in the final phase. The small 

and large mutation’s probabilities are 10% and 1%, respectively. Each method of “moving 

toward the best result” is expected to be performed once in every 100 iterations. 

The results are presented in Tables 2, 3 and 4 and Fig. 3. As mentioned before, the 

proposed algorithm is run 30 times and the average results are compared with several well-

known metaheuristic methods. The outcomes of other algorithms are achieved from Refs 

[36, 44-47].  

To evaluate the performance of the proposed method, the average results of PSO (1995), 

DE (1997), ABC (2007), FA (2009), BA (2010), KH (2012), BSA (2013), GWO (2014), 

CSA (2016), SCA (2016), WOA (2016) and PSOG (2019) are compared with the average 

results of the proposed method. In 10D problems, the proposed method found better or equal 

results in 90% of functions in comparison with PSO, FA and PSOG methods. In the mean 

ranking of 10, 30 and 50-dimensional problems, the proposed method obtained the first rank 

among all mentioned metaheuristic algorithms. It should also be noted that in some 

functions, large differences in the optimal solutions show the robustness of the proposed 

method. Overall, Numerical results from Tables 2-4 and Fig. 3 show that the presented 

method converges faster than the other methods and achieved better results. 

The better performance of the proposed method is due to the novel use of exploration 

ideas with the help of gradient directions. It is important to note that the presented algorithm 

is simple and can be easily coded. The necessary parameters are selected the same for all the 

problems under investigation, so the approach is not sensitive to the predefined parameters. 

The optimal solution of function Fi is 100i which i is the number of CEC function. 

 
Table 2: Comparing the results of the proposed method (MPG) with some metaheuristic 

approaches (10D) 

 
PSO FA PSOG MPG 

Fi [9] [11] [36] Average Best  

1 3.22E8 1.63E9 613 1518.81 101 

3 1.79E4 3.04E4 300 300 300 

4 547.87 510.21 400 400 400 

5 572.48 561.42 511 500.47 500 

6 630.32 616.87 601 602.18 600.68 

7 781.46 792.02 719 718 707.58 

8 860.55 858.22 810 800.38 800 

9 1109.9 1184.3 900 900.21 900.05 

10 3008.0 2628.5 1340 1259.09 1006.95 

11 1675.9 3540.6 1140 1101.27 1100 

12 1.86E7 7.71E6 5780 2508.32 1673.1 

13 4.95E5 1.82E4 8190 1486.33 1358.78 
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14 7642.8 1.04E4 2670 1462.23 1432.36 

15 4.83E4 1.88E4 1.58E4 1620.62 1525.77 

16 2120.1 1987.3 1610 1602.41 1601.18 

17 1865 1803.5 1750 1723.93 1709.39 

18 7.05E5 2.17E4 1.04E4 2403.62 1932.4 

19 3.59E4 1.46E4 7210 1947.28 1914.71 

20 2266.8 2149.8 2050 2024.58 2007.03 

21 2355.3 2353.2 2300 2193.33 2100 

22 2668.4 2429.7 2300 2255.22 2200 

23 2690.6 2665.6 2610 2584.44 2300 

24 2797.2 2777.8 2690 2491.18 2413.22 

25 2964.8 2986.8 2930 2661.15 2500.04 

26 3454.5 3510.2 2890 2734.06 2600 

27 3152.9 3122.1 3090 3087.81 3086.89 

28 3345 3476.8 3100 2955.42 2800.02 

29 3429.9 3329.9 3180 3142.94 3128.66 

30 4.15E6 2.64E6 3.95E5 4490.52 3581.5 

Avg. 

Rank 
3.69 3.31 1.83 1.10 - 

Rank 4 3 2 1 - 

Bold numbers: the best solution  

 
Table 3: Comparing the results of the proposed method (MPG) with some metaheuristic 

approaches (30D) 

 
CSA GWO KH ABC DE BSA SCA PSOG MPG 

Fi [12] [14] [16] [17] [18] [19] [20] [36] Average Best 

1 2540 8.87E8 1.72E9 435 4334.44 492 1.18E+10 2340 4442.51 126.53 

3 475 2.50E4 4.48E4 1.10E5 2.21E4 2.86E4 3.50E4 462 300.03 300 

4 502 536 505 431 519.42 495 1400 419 400 400 

5 616 587 644 585 737.79 556 771 563 508.94 504.97 

6 620 603 639 600 652.58 600 649 610 616.19 603.85 

7 824 822 827 807 962.59 802 1120 810 790.92 768.71 

8 894 873 905 895 967.25 861 1050 870 806.75 802.98 

9 1330 1230 3160 2110 7878.78 901 5520 900 900.3 900 

10 4480 3850 5230 3510 4536.99 5490 8120 3680 2094.27 1404.12 

11 1250 1330 1620 1750 1184.63 1150 2190 1230 1203.79 1141.8 

12 1.60E6 2.52E7 4.27E8 9.47E5 3.18E5 1.57E5 1.21E9 3.26E4 4806.77 2828.16 

13 2.34E4 4.67E6 2.71E8 3.65E4 1.88E4 9220 4.07E8 8.43E4 1.73E4 4904.64 

14 1580 1.16E5 3.15E5 1.41E5 5502.16 1470 1.19E5 7390 1836.12 1571.95 

15 4520 1.90E5 1.90E4 9560 2484.69 1630 1.56E7 4.36E4 1.56E4 4562.41 

16 2380 2350 3190 2210 2827.01 2220 3640 1860 1979.66 1642.18 

17 1960 1940 2220 1890 2604.53 1820 2420 1870 1760.27 1733.27 
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18 1.74E4 5.33E5 5.26E5 3.39E5 9.42E4 7840 2.80E6 8.68E4 2.19E4 6361.6 

19 7180 2.42E5 3.33E5 1.78E4 3010.24 2030 2.48E7 3.17E4 8360.76 2260.64 

20 2330 2330 2540 2250 2864.83 2150 2610 2330 2134.7 2032.77 

21 2400 2380 2430 2300 2504.78 2360 2560 2360 2296.86 2200 

22 2300 4420 2710 2320 5655.57 2500 8250 2300 2722.93 2300 

23 2840 2740 3020 2720 3572.97 2710 2990 2720 2662.12 2639.74 

24 2950 2890 3250 2710 3290.70 2890 3160 2860 2737.71 2600 

25 2910 2940 2920 2890 2946.71 2890 3200 2890 2883.49 2883.39 

26 3190 4450 5920 2900 6756.37 4030 6870 3590 3021.27 2800.02 

27 3360 3230 3460 3210 3998.88 3210 3390 3220 3178.56 3158.57 

28 3230 3340 3250 3220 3326.26 3390 3780 3100 3100 3100 

29 3860 3590 4230 3530 4115.19 3490 4620 3820 3434.75 3286.12 

30 1.49E5 3.97E6 1.98E8 2.26E4 3900.83 7200 7.44E7 6.47E4 1.22E4 8773.51 

Avg. 

Rank 
4.66 5.69 7.24 3.79 6.34 2.79 8.48 3.38 2.17 - 

Rank 5 6 8 4 7 2 9 3 1 - 

 
Table 4: Comparing the results of the proposed method (MPG) with some metaheuristic 

approaches (50D) 

 
CSA BA GWO WOA KH ABC DE PSOG MPG 

Fi [12] [13] [14] [15] [16] [17] [18] [36] Average Best 

1 3.55E5 5.58E+10 3.63E9 5.27E7 2.41E6 2.40E4 3.67E8 2430 3356.58 179.32 

3 1.24E4 3.67E5 6.95E4 8.68E4 1.19E5 2.17E5 6.22E4 1.90E4 301.37 300.82 

4 630.2 1.26E4 798.5 748 581.1 481.6 801.38 463 402.17 400 

5 745.4 873 673.2 938.8 753.4 713.7 843.26 654 519.28 509.95 

6 633.3 661.7 608.8 679.9 650.8 600.1 655.79 623 626.71 613.9 

7 1003 1882 982.9 1687 1065 941.1 1263.04 957 882.91 828.64 

8 1048 1183 980.6 1219 1069 1023 1175.89 929 819.73 812.93 

9 3829 1.36E4 4089 2.30E4 1.00E4 1.06E4 2.92E4 900 901.32 900.36 

10 6972 8828 7183 1.02E4 7840 5936 7289.18 5230 2895.7 1983.33 

11 1452 22150 2393 1699 6483 4821 1258.52 1260 1344.36 1248.6 

12 2.85E7 1.67E+10 2.33E8 2.38E8 2.72E9 6.98E6 1.70E7 3.47E5 1.92E4 5013.5 

13 5.13E4 3.43E9 7.13E7 3.33E5 1.84E9 9.90E4 1.69E4 7.59E4 2.82E4 1.46E4 

14 8667 7.05E6 5.09E5 8.73E5 3.41E6 1.31E6 1.74E5 2.15E4 1887.74 1688.13 

15 1.23E4 2.95E7 3.89E6 8.79E4 3.92E8 2.77E4 2.70E4 2.69E4 2.06E4 9025.72 

16 3065 4796 2833 4811 3753 2854 3176.92 2000 2059.99 1806.86 

17 2952 4669 2696 3910 3431 2731 3289.62 2520 2179.44 1893.77 

18 1.03E5 3.69E7 1.94E6 6.96E6 4.62E6 2.14E6 8.72E5 1.13E5 1.29E4 5271.47 

19 7.47E4 1.34E7 2.30E6 3.27E6 4.52E5 4.85E4 2.04E4 3.13E4 2166.02 2015.1 

20 2802 3666 2858 3639 3314 2943 3274.33 2620 2421.83 2141.51 

21 2514 2776 2469 2889 2557 2529 2689.69 2430 2321.89 2315.71 
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22 3346 1.04E4 8885 1.16E4 9809 6447 1.08E4 6520 4281.21 2921.21 

23 3206 3991 2901 3588 3633 2956 4200.17 2880 2760.65 2733.91 

24 3290 4191 3094 3668 3888 3412 3682.85 2970 2807.69 2700 

25 3114 7997 3299 3190 3104 3055 3292.30 2980 2923.47 2900 

26 4144 1.38E4 5727 1.27E4 9828 3896 7989.49 4710 3538.49 2900 

27 4132 3200 3466 4364 4880 3375 3792.65 3400 3216.2 3181.93 

28 3413 3300 3741 3570 3509 3336 3431.57 3280 3256.6 3212.16 

29 5025 1.15E4 4186 7318 5576 4040 4605.35 4380 3662.99 3369.14 

30 3.41E7 3.74E8 8.18E7 9.34E7 7.25E7 1.02E6 5813.17 4.56E6 9.55E5 6.69E5 

Avg. 

Rank 
4.07 8.10 5.00 7.48 6.69 4.07 5.59 2.55 1.45 - 

Rank 3 9 5 8 7 3 6 2 1 - 

 

 
(a)     (b) 

 
(c)     (d) 

Figure 3. Comparison of iteration histories for (a) F7 (b) F8 (c) F16 (d) F28 

 

4.3 Structural example 

In this example, a truss with 120 members is optimized under frequency constraints (Fig.4). 
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The cross-section of the members and the coordinates of the nodes are considered as 

variables. In this shape optimization problem, 7 size variable and 5 node coordinates are 

optimized for the minimum weight. The constraint is only structural frequency. The first and 

second frequencies must be greater or equal to 9 and 11 Hz, respectively. The modulus of 

elasticity of the material is 2.1E + 11 N/m2 with material density of 7971.81 kg /m3. 

Concentrated weights of 3000, 500 and 100 kg are located at points 1, 2:13 and the other 

nodes, respectively. Optimization is performed by three algorithms of PSO, PSOG and MPG 

and the results are presented in Table 5 which show that the presented method performs well 

even in complicated structural optimization problems. 

 

 
Figure 4. Truss example with 120 elements 
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Table 5: Weights, cross sections and node positions for structural shape optimization. 

Tip PSO PSOG MPG 

1 8.536 9.358 9.126 

2 13.461 17.13 18.61 

3 2.088 6.453 3.647 

4 8.868 7.586 6.926 

5 9.828 4.946 4.72 

6 10.017 6.793 4.415 

7 9.466 8.187 6.101 

x2 7.84 9.215 9.926 

x14 11.519 12.061 13.084 

z1 9.03 8.392 9.09 

z2 6.795 5.88 6.312 

z14 2.545 3.805 3.519 

Weight (kg) 4510.512 4169.111 3828.783 

 

 

5. CONCLUSIONS 
 

A multi-strategy approach is presented for the optimization of continuous and differentiable 

functions with several local optima. The main idea is based on choosing the gradient 

directions which is the steepest descent direction. To increase the exploration of the method, 

several techniques are in cooperated. Some basic ideas from metaheuristic methods are 

employed to explore most of the design media. To enhance the search directions for 

advanced global search in the defined design space, the ideas of mutation, crossover and fly-

back operations are employed. The design points that are directed outside of the space are 

flown back to the permissible design space. For the search directions, move limits are 

imposed and the step lengths are gradually reduced as the approach is progressed. At the 

final stage, around the best optimum, the process is repeated for final better exploitation. 

Thus a multi-phase gradient technique is outlined for optimization of multimodal functions. 

To evaluate the efficiency of the presented approach, the functions presented in CEC 

2017 and a structural example are examined. CEC benchmark functions are multimodal that 

is difficult to find the global optima. The results of the presented method are compared to 

some of the existing approaches in the literature. The average results and the efficiency 

ranks are compared and the superiority of the method is observed. The iteration histories of 

some of the functions are also presented in a graphical manner and compared with other 

available results. In the structural example under frequency constraints, the proposed method 

finds a better optimal structure compared to several swarm-based methods. 
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