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ABSTRACT 
 

A modified dolphin monitoring (MDM) is used to augment the efficiency of particle swarm 

optimization (PSO) and enhanced vibrating particle system (EVPS) for the numerical crack 

identification problems in plate structures. The extended finite element method (XFEM) is 

employed for modeling the fracture. The forward problem is untangled by some cycle 

loading phase via dynamic XFEM. Furthermore, the inverse problem is solved and 

compared via two PSO and EVPS algorithms. All the problems are also dissolved by means 

of fine and coarse meshing. The results illustrate that the function of XFEM-PSO-MDM and 

XFEM-EVPS-MDM is superior to XFEM-PSO and XFEM-EVPS methods. The algorithms 

coupled via MDM offer a higher convergence rate with more reliable results. The MDM is 

found to be a suitable tool which can promotes the ability of the algorithms in achieving the 

optimum solutions. 
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1. INTRODUCTION 
 

Concerning medical imaging, quality detection, and structural health monitoring (SHM), is 

essential to locate and examine flaws within elastic settings. Cracking is a frequently-

occurring flaw, for eliminating which various techniques have been proposed, e.g., electrical 
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tomography, radiographic analysis methods, and ultrasonic tests [1]. Despite the regarding 

of such techniques in specific conditions and their extensive utilization in the study of 

structural damage, they are limited to particular flaws and laboratory settings. Furthermore, 

the use of non-destructive tests (NDTs) with structural responses subjected to dynamic 

excitation in the absence of a systematic inverse model cannot be a good approach for crack 

locating, particularly for composites where turbulence is induced by shared surface return 

waves and the corresponding boundaries. Since these problems are complicated in nature, it 

is required to adopt reliable computational approaches. In general, it is required to 

consecutively analyze forward problems by various initial suggestions, e.g., different 

geometric sites and sizes, in the process of locating cracks until an agreement is found 

between the analytical and measured quantities. Also, optimization algorithms are utilized to 

investigate such an agreement.  

Researchers have increasingly employed the extended finite element method (XFEM) in 

recent decades. XFEM is grounded on the partition of unity method (PUM) [2, 3] and was 

introduced by Belytschko et al. [4, 5]. Also, it was proposed as a substitution for earlier 

techniques, including the boundary element method (BEM) and the finite element method 

(FEM). Studies further accepted XFEM as a competent approach to solve forward problems 

in inverse engineering [6,7]. XFEM provides several advantages. For example, it can model 

discontinuities such as holes and cracks on any heterogeneous surfaces [8] and does not 

require re-meshing at each step of analysis in solving forward problems. The latter can add 

to the capabilities of XFEM in comparison to the classical FEM since this characteristic can 

bring a significant decline in the computational cost. 

Optimal design is an essential application of optimization approaches in knowledge 

engineering. This allows for properly coping with limitations in engineering [9]. The use of 

structural optimization produces an economical design with lower material requirements, a 

shorter computation time, and smaller effort [10]. As a robust approach, researchers employ 

metaheuristic optimization algorithms for structural purposes. Some of the metaheuristic 

optimization algorithms include Genetic Algorithms (GAs) [11], Charged System Search 

(CSS) [12], Ray Optimization (RO) [13, 14], Particle Swarm Optimization (PSO) [15], 

Colliding Bodies Optimization (CBO) [16], Enhanced Colliding Bodies Optimization 

(ECBO) [17], Dolphin Echolocation Optimization (DEO) [10, 18], Natural Forest 

Regeneration (NFR) [19], Tug of War Optimization (TWO) [20], Water Evaporation 

Optimization (WEO) [21], Simplified Dolphin Echolocation Algorithm (SDEA) [22], Ant 

Lion Optimizer (ALO) [23]. Some of the above topics can be found in Kaveh [24]. 

Studies adopted a large number of optimization algorithms to solve inverse problems. 

Rabinovich et al [6, 7] employed a GA and XFEM to study two-dimensional cracking under 

both dynamic and static excitation conditions. Waisman et al. [25] performed a performance 

evaluation on the model proposed by Rabinovich et al. [6,7] concerning elastostatic 

problems under various damage conditions. They studied a variety of damages, such as 

cracking, irregularly-shaped holes, and circular holes. Chatzi et al. [26] adopted various GAs 

with convergence acceleration to detect such flaws by using XFEM. Using multilevel 

coordinate search (MCS), Nanthakumar et al. [27] performed the flaw detection and 

measurement of piezoelectric plates by XFEM in order to solve forward problems in all 

iterations. Sun et al. [28-30] exploited optimization algorithms, e.g., the Broyden-Fletcher-
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Goldfarb-Shahno (BFGS) algorithm and a discrete artificial bee colony algorithm, in 

combination with XFEM to propose several flaw detection techniques. Likewise, Jung et al. 

[31-33] developed an approach for arbitrary-shaped (i.e., holes, voids, or cracks) scatterer 

detection and locating within elastic solids with heterogeneity by gradient-based 

optimization approaches and implicit dynamic XFEM. Nanthakumar et al. [34] employed 

XFEM and topography optimization to locate holes and cracks. Concerning static and 

dynamic loading, Zhang et al. [35] adopted the Nelder Mead (NM) [36], quasi-Newton (QN) 

[37], and dynamic XFEM approaches as local search techniques for the crack tip detection 

of plates. Livani et al. [38] detected several damages by exploiting active-inactive flaw 

(AIF) tactics, PSO, and the extended spectral finite element method (XSFEM). Khatir et al. 

[39] employed extended isogeometric analysis (XIGA) and XFEM coupled with Jaya 

optimization and PSO to detect cracks of plates. They found XIGA-Jaya to outperform the 

other approaches. Finally, Fathi et al. [40] presented a new method showed the superiority of 

the XFEM-EVPS against XFEM-PSO for crack detection in plate structures. They combined 

a dynamic XFEM with EVPS algorithm for solving an inverse problem. The efficiency and 

accuracy of the proposed method in recognizing the damage was well presented.  

Kaveh and Farhoudi [41] recently introduced the dolphin monitoring (DM) method for 

convergence control in optimization. Later, Kaveh et al. [42] proposed the modified dolphin 

monitoring (MDM) for efficient population dispersion control and enhancing algorithms. 

This work adopts the MDM operator for the performance improvement of the enhanced 

vibrating particle system (EVPS) [43] and PSO in detecting damages by the dynamic 

XFEM. It is a novel approach to adopt the MDM operator in order to enhance algorithm 

capability as it has not been practiced in detecting damages by XFEM and optimization 

algorithms. Controlling the convergence speed of algorithm and preventing from being 

trapped in local optima is performed by MDM. At each stage of algorithm's implementation, 

the purposefully standard aberration is regulated. As a result, PSO-MDM and EVPS-MDM 

exhibited improved performance as compared to PSO and EVPS. Furthermore, the dynamic 

XFEM with cycle loading play an essential role in accelerating the forward problem solving. 

This is a unique procedure which improves the whole process of damage detection. 

Ultimately, this study is pioneer for using MDM operator in damage detection, and the best 

and average results illustrate the efficiency of this method against the common method.  

The present work pioneers the utilization of the MDM operator via PSO and EVPS 

coupled with dynamic XFEM for solving inverse problems. A number of new MDM 

procedures are employed to improve the ability of DM to obtain global search and avoid 

local minima trapping. The proposed dynamic XFEM functions in the form of a forward 

solver within elastic settings. The Newmark-Beta method [44] is exploited for the modeling 

of the acceleration, velocity, and displacement field. Eventually, the XFEM-EVPS and 

XFEM-PSO techniques were exploited to perform the efficiency assessment of the XFEM-

EVPS-MDM and XFEM-PSO-MDM combined approaches. 
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2. DYNAMIC XFEM 
 

2.1 Governing equation 

Consider a body   with an initial traction-free crack in state of dynamic balance, as shown 

in Fig. 1. One can write the fundamental elasto-dynamic expression as: 

 

.      bf u     (1) 

 

The boundary conditions are: 
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Furthermore, the initial conditions were met as: 
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 (3) 

 

in which 
u  is the displacement boundary, 

t  is the tension boundary, 
c is the 

crack face boundary,  denotes the stress tension, .  represents the divergence 

operator, bf  stands for the body force, and   denotes the mass density. Also, u  is the 

displacement vector, u  is the velocity vector, u  is the acceleration vector, n denotes the 

external unit normal vector, tf  stands for the tension in 𝛤𝑡, and u  and u represent the 

displacement and velocity in 𝛤𝑢, respectively.  
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Figure 1. Domain of cracks and boundary conditions [24] 

 

It is possible to represent the weak form of Eq. (1) as:  

 

 + .  =  +   b tu ud d f ud f ud               
 (4) 

 

in which u is the virtual displacement, and  is the virtual strain.  

 

2.2 Discontinuity 

2.2.1 XFEM discretization 

XFEM enabled the FE mesh-independent representation of discontinuity. Generally, the 

approximation displacement domain is shown as 
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     (5) 

in which L denotes the set of the entire nodes, LS is the set of completely crack-cut 

elements, k is the set of crack tip-restricting nodes, and Ni(x) stands for the FE shape 

function of node i. In addition, aj and 
l

kb  represent additional degrees of freedom (DOF). In 

Eq. (5) H(x) is the Heaviside enrichment function, proposed by Moёs [3]. Also, (x)l are 

crack tip enrichment, represented by Fleming et al. [45]. 

 



A. Kaveh, S. R. Hoseini Vaez, P. Hosseini and H. Fathi 

 

236 

2.2.2 Motion equation 

Generally, a differential equation is utilized to define elastodynamic structural behavior as:  

 

Mu Ku f   (6) 

 

where M is the mass matrix, K is the stiffness matrix, and f denotes the external force vector. 

The mass matrix, stiffness matrix, and force vector are defined as:  
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(9) 

where u is the usual-enriched node index, a is the step-enriched node index, and b is the tip-

enriched node index. 

 

2.2.3 Time discretization 

The present work adopted Newmark’s time integral method, or the Newmark-Beta method 

[44]: 

 

 1 1(1 ) ( )i i i iU U t U t U        (10) 
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           

(11) 

 

where 
1

4
   and 

1

2
   denote variations in acceleration in a time step. They determine 

the stability and validation of method characteristics.  

 

 

3. OPTIMIZATION ALGORITHMS 
 

3.1 Modified dolphin monitoring method 

Kaveh and Farhoudi proposed DM for convergence rate control [41]. It was later modified 

in the form of MDM by Kaveh et al. [42] for efficient population dispersion control and 

algorithm enhancement. MDM not only induces no structural alternations in algorithms but 

also includes features. MDM should be applied at the loop ends. It is defined as the average 

locations for each of the variables at a particular radius factor from the standard deviation. 

This factor equals to 15%. That is, a variable range equals the average value ± 15% of the 

standard deviation. It is required that the population percentage of a variable in a loop and 

the corresponding range (i.e., the dispersion index of the available population) equals to: 
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where MPi denotes the mandatory dispersion of the population in loop i, and the current 

population dispersion index should remain below MPi in all the loops. Also, LoopNumber 

refers to the total number of loops. It is worth noting that MP cannot become equal to 1, and 

the maximum MP is 0.7. This brings higher flexibility to the algorithm. Also, at an MP of 1, 

it is necessary to maintain the total population in the aforementioned range. An MP of 0.7, 

however, keeps a maximum search chance. The main MDM stages include: 

1) MP calculation in all loops by Eq. (12); 

2) Population calculation in the aforementioned range for all variables in all loops and 

utilizing it as the dispersion index of the available population; 

3a) If the dispersion index of the available population is larger than the mandatory 

dispersion of the population, the algorithm is found to be running toward optimality (the 

same range) more rapidly than expected, and it is required to reduce the dispersion index of 

the population. For this purpose, MDM provides two mechanisms, including 

Variable of interest replacement from the in-range population by: 

3a.1) Variable of interest from the available out-of-range population 

3a.2) Randomly-produced values in the allowed range for all variables. MDM makes use 

of both mechanisms simultaneously, at a probability of 50%.  

3b) For a dispersion index of the available population below the mandatory dispersion, it 

is found that the algorithm has an unexpectedly slower convergence rate to optimality. In 

such a case, it is required to raise the dispersion index of the available population. For this 

purpose, MDM involves likewise two mechanisms, including 

Variable of interest replacement from the out-of-range population by: 

3b.1) the most desirable optimal variable to the stage. 

3b.2) Values in a desirable range. These two mechanisms are likewise employed at a 

probability of 50% simultaneously. The former mechanism prevents the distancing of the 

algorithm from the best solution and optimizes the range up to that point while continuing 

seeking the obtained optimal solution up to the point. 

 

3.2 Particle swarm optimization 

PSO is based on flocking behavior among birds. It was introduced by Kennedy [46] as a 

general optimization approach and is employed to solve optimization problems. A large 

number of independent particles (entities) are generated randomly within the search space 

where each particle represents a solution and suggest a suitable location via a velocity. A 

swarm contains N particles moving in a d-dimensional search space, and the memory of 

each particle facilitates the remembering of the best previous position. Neighborhood i refers 

to a set of particles that have topographical connections with particle i. It may comprise the 

entire or some of the population. In order to detect other particles that affect individuals, 

several topologies are exploited. Also, initialization is performed randomly for every 

individual. In each stage of exploration, particles are updated by using two values, the first 

of which is Pi
⃗⃗  that belongs to the best ever-experienced position, which is known as personal 
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best. The second value, on the other hand, is Pg
⃗⃗  ⃗ as the best ever-achieved position within the 

population, which is known as the global best. Once these two values have been identified, 

the position Xi
⃗⃗  ⃗ and velocity Vi

⃗⃗⃗   of the entity, which represent the particle location and 

direction, respectively, undergo an improvement: 

 

1 1 2 2( 1) ( ( ) ( ( ) ( )) ( ( ) ( )))id id id id gd idV t V t C r P t X t C r P t X t       (13) 

( 1) ( ) ( 1)id id idX t X t V t     (14) 

 

in which i=1, 2, …, N, N represents the size of the swarm, r1 and r2 are random 

uniformly-distributed numbers ranging from 0 to 1. Also, C1 and C2 are acceleration factors 

representing entity attraction toward the success of the same entity and the neighbors, 

respectively. As the constriction factor, χ is calculated as [47]: 

 

2

2

2 4


  


  
 (15) 

 

where φ=2.05, and φ = φ1 + φ2 > 4. Fig. 2 demonstrates the general architecture of PSO.  

 

3.3 Enhanced vibrating particles system 

As a metaheuristic optimization algorithm, the vibrating particle system (VPS) [48] was 

developed based on vibrating systems with one DEF and viscose damping. Also, the 

enhanced VPS (EVPS) [43] makes use of a number of processes contributing to 

convergence rate enhancement, global search capability enhancement of standard VPS, and 

local optimal avoidance. The production of initial factors in the permissible range is 

performed as: 

 

min max min.(x x )j

ix x rand    (16) 

 

in which 𝑥𝑖
𝑗
 represents variable j of particle i, 𝑥𝑚𝑖𝑛 stands for the starting point of the 

permissible search space for variable i, 𝑥𝑚𝑎𝑥 is the ending point of the permissible search 

space for variable i, and rand refers to a random quantity ranging from 0 to 1. EVPS 

involves: 

(i) HB (historically best position within the population): It is the best candidate until the 

corresponding iteration. 

(ii) GP (a good particle): It is randomly chosen among partially best solutions in every 

iteration. 

(iii) BP (a bad particle): It is randomly chosen among partially worst solutions in every 

iteration. 

(iv) OHB (one of the historically best positions within the population): It is a randomly-

chosen row of the “memory.” 

Memory in EVPS serves as the HB and saves the memorysize number of the GB from the 
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population. The best solution that is better than the worst Memory value in iteration replaces 

it within the memory. A descending function is defined as: 

 

max

( )
iter

D
iter

  (17) 

 

in which iter represents the number of the current iteration, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 denotes the total 

number of iterations, and α is a constant. The generation of the next agents is updated at a 

probability of ω1,2 and ω3 by one of: 
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where ω1,2 and ω3 have relative importance to GB, GP, and BP, while rand1, rand2, 

and rand3 are random uniformly-disseminated numbers within the range of [0, 1]. In 

addition, +1 and -1 are randomly utilized, and it is worth mentioning that BP, GP, and 

OHB are autonomously determined for all the agents. 
 

4. NUMERICAL PROBLEMS 
 

The proposed methods are compared in two numerical examples in terms of effective crack 

coordinate detection. The examples were a 1×1 plate. Also, a plane-stress setting was 

assumed. The modulus of elasticity was set to 2e11 N/m, while Poisson’s ratio was selected 

to be 0.3. According to Fig. 3, the top plate edge was subjected to uniform dynamic traction 

loading. Furthermore, two joint supports hinged the bottom edge at the rollers and corners 

between the joints. To calculate the displacement in a forward XFEM analysis, it is required 

to uniformly arrange sensors along the edge range (excluding the bottom edge). There are 

fourteen nodes in the edge space in the sensors. The two-dimensional displacements of the 

nodes are measured in each of the loading phases, being recorded in the A-Matrix. Then, the 

A-Matrix is treated to be the plate node displacement pattern under cracking after the 

completion of loading. The entire problems are addressed by a consistent series of 20×20 

and 60×60 uniform structural meshes.  

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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Figure 3. Traction-loaded plate 

 

The top plate edge is subjected to an impulsive load of P=3×104 in 0.4s. The alternating 

loading cycle has a time step of 0.05s. The maximum load occurs by a rising step of 0.25 at 

0.2s, before reducing at the same step to zero at 0.4s. Such XFEM dynamic loading is of 

high effectiveness and accelerates the solving of forward problems.  

Additionally, to solve inverse problems in an optimization algorithm, a maximum of 500 

iterations are applied, while the random population is 30. Twenty repetitions are performed 

on each of the optimization problems to prevent statistical simulation uncertainties. 

Ultimately, the optimal solution with the smallest objective function quantity of the two 

approaches is selected to represent the responses. 

To solve the optimization problems, the present work employed an objective function 

defined as [49]: 

 

2

1

1
(U) (A (U) A (U))

n
a c

i i

i

F
n 

   (19) 

 

in which U denotes the loading-induced displacement under cracking, n is the loading 

step, 𝐴𝑖
𝑎 is the matrix i of measured displacements, and 𝐴𝑖

𝑐 is the matrix i of the computed 

displacements. 

 

4.1 XFEM-PSO-MDM versus XFEM-PSO 

In order to perform the performance evaluation of XFEM-PSO-MDM and XFEM-PSO, it is 

required to identify the crack parameters (x1, y1) = (0, 0.25) and (x2, y2) = (0.4, 0.5) under 

tensile loading. Fig. 4 illustrates the crack and plate. It should be noted that (xi, yi) ϵ [0, 1], 

i= 1, 2. 

Such problems are analyzed to evaluate the dynamic XFEM and proposed approaches in 
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terms of convergence. XFEM-PSO-MDM showed higher performance than XFEM-PSO as 

it could carry out more rapid crack detection under both mesh sizes. Fig. 6 shows the real 

crack versus the detected ones of the fine and coarse meshes. Tables 1 and 2 provide the 

inverse analysis results. In these tables, the proposed approaches found the locations in the 

optimal scenario of both mesh sizes. The XFEM-PSO-MDM results were observed to 

converge to the real quantities within 18 and 31 iterations for 20×20 and 60×60 meshes in 

the in best situation, respectively. Furthermore, the XFEM-PSO results converged to the real 

quantities by 55 iterations under 20×20 meshes and by 33 iterations under 60×60 meshes. As 

can be inferred, XFEM-PSO was not close to XFEM-PSO-MDM in terms of the 

convergence rate. Also, Fig. 5 demonstrates the convergence histories of the problem for the 

two mesh sizes.  

 

 
Figure 4. Crack within the plate 

 

Table 1: Crack locating results for 20×20 meshes XFEM-PSO-MDM & XFEMPSO 

Result 
Nodes and damage extents 

Result 
Nodes and damage extents 

𝑥1 𝑦1 𝑥2 𝑦2 𝑥1 𝑦1 𝑥2 𝑦2 

XFEM-

PSO-

MDM 

Actual 0 0.250 0.400 0.500 

XFEM-

PSO 

Actual 0 0.250 0.400 0.500 

Mean 0.197183 0.339806 0.240002 0.38561 Mean 0.143718 0.316212 0.285739 0.414243 

Best 0 0.25 0.400003 0.500001 Best 0 0.25 0.400003 0.500001 
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Table 2: Crack locating results for 60×60 meshes XFEM-PSO-MDM & XFEMPSO 

Result 
Nodes and damage extents 

Result 
Nodes and damage extents 

𝑥1 𝑦1 𝑥2 𝑦2 𝑥1 𝑦1 𝑥2 𝑦2 

XFEM-

PSO-

MDM 

Actual 0 0.250 0.400 0.500 

XFEM-

PSO 

Actual 0 0.250 0.400 0.500 

Mean 0.140684 0.325343 0.266668 0.666648 Mean 0.188083 0.340261 0.250012 0.366637 

Best 0 0.25 0.400003 0.500001 Best 0 0.25013 0.400009 0.499999 

 
 

 
(a) 20×20 element 

 

 
(b) 60×60 element 

Figure 5. Convergence histories for (a) 20×20 meshes, (b) 60×60 meshes (the blue lines 

represent the XFEM-PSO-MDM results, while the red lines stand for the XFEM-PSO results) 
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                    (a) 20×20 meshing   (b) 60×60 meshing 

Figure 6. Crack locating results for (a) Fine and (b) Coarse meshes. Black line: Real crack; Blue 

line: Identified crack with XFEM-PSO-MDM; Red line: Identified crack with XFEM-PSO 

 

4.2 XFEM-EVPS-MDM versus XFEM-EVPS 

XFEM-EVPS-MDM and XFEM-EVPS were evaluated in terms of internal crack locating 

capability. The actual defect parameters included (x1, y1) = (0.7, 0.5) and (x2, y2) = (0.8, 

0.602). Fig. 7 depicts the internal inclined crack in the plate. Likewise, XFEM-EVPS-MDM 

was observed to outperform XFEM-EVPS since it could perform an accurate detection of 

cracks under both mesh sizes. Fig. 9 compares the actual and detected cracks at two mesh 

sizes. In addition, Tables 3 and 4 provide the inverse analysis results of the fine and coarse 

mesh sizes, respectively. The XFEM-EVPS-MDM results for the best coarse gridding 

scenario converged to the real quantity in 5 and 15 iterations for the coarse and fine meshes 

sizes in the best condition, respectively. On the other hand, the XFEM-EVPS results 

converged to the real quantity in 42 and 63. As can be seen, XFEM-EVPS-MDM had a 

larger convergence rate under fine and coarse meshes. Fig. 8 represents the convergence 

histories at the two mesh sizes. 

 

 
Figure 7. Crack within the plate 
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Table 3: Crack locating results for 20×20 meshes XFEM-EVPS-MDM & XFEM-EVPS 

Result 
Nodes and damage extents 

Result 
Nodes and damage extents 

𝑥1 𝑦1 𝑥2 𝑦2 𝑥1 𝑦1 𝑥2 𝑦2 

XFEM-

EVPS-

MDM 

Actual 0.700 0.500 0.800 0.602 
XFEM-

EVPS 

Actual 0.700 0.500 0.800 0.602 

Mean 0.685117 0.280446 0.699223 0.28828 Mean 0.763375 0.456309 0.7085 0.392571 

Best 0.785337 0.577892 0.803233 0.449297 Best 0.746949 0.556516 0.815109 0.461497 

 

 
Table 4: Crack locating results for 60×60 meshes XFEM-EVPS-MDM & XFEM-EVPS 

Result 
Nodes and damage extents 

Result 
Nodes and damage extents 

𝑥1 𝑦1 𝑥2 𝑦2 𝑥1 𝑦1 𝑥2 𝑦2 

XFEM-

EVPS-

MDM 

Actual 0.700 0.500 0.800 0.602 
XFEM-

EVPS 

Actual 0.700 0.500 0.800 0.602 

Mean 0.685385 0.618349 0.710251 0.609488 Mean 0.769643 0.550228 0.747001 0.506383 

Best 0.729311 0.455981 0.845812 0.538678 Best 0.707735 0.502841 0.806927 0.605468 

 

 

 
(a) 20×20 element 

 
(b) 60×60 element 

Figure 8. Convergence histories for (a) 20×20 meshes, (b) 60×60 meshes, (the blue lines 

represent the XFEM-EVPS-MDM results, while the red lines stand for the XFEM-EVPS results) 
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    (a) 20×20 meshing   (b) 60×60 meshing 

Figure 9. Crack locating results for (a) 20×20 meshes and (b) 60×60 meshes. Black line: Real 

crack; Blue line: Identified crack with XFEM-EVPS-MDM; Red line: Identified crack with 

XFEM-EVPS 

 

 

5. CONCLUSIONS 
 

The integration of optimization algorithm and the MDM operator yielded a proper numerical 

crack detection technique in plates. It is worth noting that MDM results in no alternations in 

the main optimization phases and solely functions as an operator in ultimate solutions of 

loops to improve the optimization algorithm in behavior. The proposed technique was 

employed to solve a time-limited forward problem by loading cycles via dynamic XFEM. 

Furthermore, PSO, EVPS, and the combined algorithms of PSO-MDM and EVPS-MDM 

were employed to solve an inverse problem. It was observed that MDM improved the 

performance of PSO and EVPS in crack tip coordinate detection. PSO-MDM and EVPS-

MDM exhibited larger convergence rates and higher reliability in comparison to PSO and 

EVPS. Eventually, the findings revealed that the MDM-coupled approaches outperformed 

the individual optimization algorithms, and this technique can seemingly enhance the 

capability of these algorithms in finding optimal solutions. 
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