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ABSTRACT 
 

Over the past decades, several techniques have been employed to improve the applicability of 

the metaheuristic optimization methods. One of the solutions for improving the capability of 

metaheuristic methods is the hybrid of algorithms. This study proposes a new optimization 

algorithm called HPBA which is based on the hybrid of two optimization algorithms; Big 

Bang-Big Crunch (BB-BC) inspired by the theory of the universe evolution and Artificial 

Physics Optimization (APO) which is a physical base optimization method. Finally, the 

performance of the proposed optimization method is compared with the originated methods. 

Moreover, the performance of the proposed algorithm is evaluated for truss optimization as 

an applied constrained optimization problem. 
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1. INTRODUCTION 
 

Mathematical programming and metaheuristic techniques are two types of conventional 

methods that can be used for finding the optimal solution of problem. Due to the gradient-

based of the mathematical programming methods the convergence ability of these methods is 

better than metaheuristic techniques but these methods are applicable only for problems with 

continuous objective function. This is an essential drawback because there are a lot of 

problems that have discontinuous objective function especially in engineering fields. As an 
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alternative, the metaheuristic methods have not this limitation, these methods can be used for 

all of the problems with continuous or discontinuous objective function limited by linear and 

nonlinear constrained. 

Metaheuristic optimization methods are inspired by the natural phenomena happen around 

the world, for instance, genetic algorithm [1, 2] inspired from survival of the fittest theory 

which was proposed by Darwin, artificial bee colony [3-5] and water strider optimization [6] 

methods used the behavior of honey bees and water striders in nature, charged system search 

[7] and gravitational search algorithm [8] have physical base, billiards-inspired optimization 

algorithm [9] inspired from billiards game and so on. Over the past decades, some of these 

metaheuristic optimization methods have been modified by various techniques to improve 

them for more types of problems such as modified versions of the genetic algorithm [10-15], 

modified teaching-learning optimization method [16] as well as some of them have reasonable 

performance only for a specific problem like truss optimization [17], steel frame optimization 

[18], topology optimization problems [19] and so on. It is clear that all of the metaheuristic 

algorithms and their modified versions do not have enough ability to find the optimum 

solution of different types of problems. Accordingly, knowing about the capability of each 

metaheuristic algorithm is useful for choosing an appropriate optimization method and helps 

to improve the ability of the algorithms by hybridizing them with each other. This study 

proposes a new optimization algorithm which obtained by hybridizing big bang-big crunch 

[20] method and artificial physic optimization [21] algorithm then the performance of the 

proposed hybrid method is compared with originated ones. 

 

1.1 Big bang-big crunch (BB-BC) 

Cosmologists present two exciting theories about the universe; theory of universe creation 

(big bang theory) and theory of universe ending (big crunch). Big bang theory says that the 

universe created from a single point by incredible energy, big crunch theory says that the 

universe contracted back to a single point. Big bang-big crunch [20] optimization algorithm 

inspired by these theories, this method consists of two phases; big bang phase and big crunch 

Phase. 

Big bang phase: similar to the big bang theory, in this phase N initial particles in n-

dimensional space are created by Eq. (1). 

 

  ,  , ,  rand 0,1                  i i
j j min j max j minx x x x   (1) 

 

where, ,j maxx and ,j minx  are the maximum and the minimum values for the 𝑗th variable. 

Big Crunch phase: according to the big crunch hypothesis, the universe contracted back to 

a single point called center of mass. In the big crunch phase this point denoted by cx  that can 

be computed by using Eq. (2). 
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where 𝑥𝑖⃗⃗  ⃗ is the position of the 𝑖th particle in search space and if is the objective function of 

the 𝑖th particle, then the new particles are generated by using Eq. (3) for next iteration, as 

follows 

 

 new c lr
x x

k
   (3) 

 

where 𝑙 is the upper limit of parameter, r is random numbers generated according to a normal 

distribution with mean zero and standard deviation equal to one and k is the iteration steps. 

 

 

2.1 Artificial physics optimization algorithm (APO) 

The artificial physics optimization (APO) algorithm is a metaheuristic optimization method 

proposed based on the physicomimetics framework. This method constructs virtual attraction-

repulsion force among the particles to move them in search space for computing the optimum 

solution. APO method consists of four phases including initialization phase, force calculation 

phase, movement phase and local search phase. 

Initialization phase: primary properties of the APO method are determined in this phase, 

including; number of particles in n-dimensional search space, the position and velocity of each 

particle and the objective function of each particle. In this phase the position of each particle 

computed by Eq. (4) and the velocity (𝑣) and the force (𝐹) of each particle are considered 

zero. 

 

  ,  , ,  rand 0,1      i i
j j min j max j minx x x x    (4) 

 

 

where, ,j maxx and ,j minx are the maximum and the minimum of the jth variable, respectively.  

Force calculation phase: based on the gravity law, each particle in nature exerts a force on 

other particles, this force is directly proportional to its mass and inversely proportional to its 

distance. In APO method the mass of each particle denoted by im that can be computed 

according to Eq. (5), in each iteration. 
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where K is a positive constant. To determine the force direction between two particles, each 

one has better objective function attracts the other one, the magnitude of this attraction force 

can be computed by Eq. (6), in this equation the gravity constant G=1. 
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(6) 

 

Movement phase: movement of each particle in APO method computes according to the 

second newton law. To this end, the velocity caused by exerted force to each particle should 

be computed by Eq. (7). 

 

     1 rand 0,1      i
i i

i

F
v t wv t

m

 
    

 
 (7) 

 

where the exerted force to each particle iF  and inertia weight of each particle w are computed 

by Eq. (8) and (9).  

 

1
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i ij
i
j i
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    (8) 

0.9 0.5 
iteration

w
MAXITER

    (9) 

 

It can be seen that the variable w is decreased by iteration increasing, in first steps 𝑤 has 

the biggest magnitude so APO method has global exploration and in final steps 𝑤 has smallest 

magnitude so APO has local exploration. Finally the new position of each particle can be 

computed by Eq. (10). 

 

     1 1   i i ix t x t v t     (10) 

 

Local search phase: local search is used to carefully exploit the neighborhood of the best 

particle. The algorithm of this phase is similar to simulated annealing [22] optimization 

method. In each iteration, the position of the best particle is the input position of the local 

search phase, as follows 

 

   ,  ,    rand 0,1 2      ,  1,2, ,number of variablelocal search k best kx x p p k       (11) 

 

where p is the neighborhood size. If the new particle has better objective function or its 
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Boltzman equation has bigger than a random value in the interval [0,1], it is replaced. The 

Boltzman coefficient (Bl) is computed by Eq. 12. 

 

    local search best

k

f x f x
Bl exp

T

 
  

 
 (12) 

 

Where, 𝛾 is the temperature descending coefficient that is restricted in the interval [0.3, 

0.7] and kT is the temperature which is started from 100, kT is decreased by coefficient to 

10-10. It means that   determines the number of local search phase done for the best particle 

in each iteration. 

 

 

2. HYBRID OPTIMIZATION ALGORITHM 
 

One of the solutions to improve the performance of the optimization methods is hybridizing 

them with each other. In artificial physics optimization method, the best particle in each 

iteration is modified by the local search phase. This phase exploits the best solution in the 

neighborhood of the best particle. In big bang-big crunch optimization method does not exist 

any phase to explore the neighborhood of the best particle. Accordingly, hybrid of the artificial 

physics optimization algorithm and big bang-big crunch optimization methods (HPBA) can 

be a significant incorporation. The pseudo code of this hybrid algorithm is shown in Fig. 1. 

 

# Big bang phase 

For i=1:number of particles 

       For j=1:number of variable 

              xj
i← xj, min

i +rand[0,1](xj,max-xj,min)     

       End For 

End for 

F(Xi): objective function of Xi 

 

# Big crunch 

Computed xc 

For i=1:number of particles 

       xnew=xc+ 
lr

k
 

End for 

 

xbest= arg min{F(Xi), ∀i} 

 

# Local search 

Tk=T0 

While Tk > Tf 

         For i=1:LISTER 
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               For j=1:number of variable 

                      ,    ,    - rand 0,1 2local search j best jx x p p      

               End for 

         End for 

D=   F ( )  Flocal search bestx x  

H=Violation (x
local search

)- Violation(xbest) 

If  D<0  & H<=0 

xbest=  xlocal search 

End if 

Tk= γ Tk 

End while 

Figure 1. Pseudo code of proposed optimization method 
 

where x is the position of each particle in search space, cx  is the center of mass which 

computed by using Eq. (2), fT is the terminate temperature (usually is equal to 100), γ is 

temperature descend coefficient and 0T  is the initial temperature (usually is equal to 10-10). 

The flowchart of the proposed optimization method is shown in Fig. 2. 
 

 
Figure 2. Flowchart of the proposed optimization method 
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3. VALIDATION OF THE PROPOSED OPTIMIZATION METHOD FOR 

UNCONSTRAINED PROBLEMS 
 

To investigate the capability of the proposed hybrid optimization method, some unconstrained 

benchmark functions used in artificial physics optimization and big bang-big crunch methods 

are selected to analyze the convergence ability of the proposed optimization method.  

In the study which was conducted on the artificial physics optimization method two groups 

of low-dimensional and high-dimensional optimization problems were used. Table 1 shows 

the properties of the selected functions and number of objective function evaluation to find 

the optimum solution for APO, BB-BC and proposed optimization methods, more details 

about these functions are presented in reference [23, 24]. 

 
Table 1: The properties of the unconstrained functions selected 

Function n m Search range P γ LISTER 
APO: function 

evaluations [21] 

BB-BC: 
function 

evaluations [22] 

HPBA: 

Function 
evaluations 

Known 

optimum 

Complex 2 10 [-2, 2] 0.01 0.5 10 9500 - 4000 0.0 

Davis 2 20 [-100, 100] 1 0.5 10 10000 - 9700 0.0 

Himmel-Blau 2 10 [-6, 6] 0.05 0.5 10 8300 - 5500 0.0 

Kearfort 4 10 [-3, 10] 0.05 0.3 10 1200 - 700 0.0 

Sine 
Envelope 

2 20 [-100, 100] 1 0.3 10 9000 - 3000 0.0 

Stenger 2 10 [-1, 4] 0.05 0.5 10 5500 - 2000 0.0 

Griewank 2 30 [-100, 100] 1 0.5 10 14500 - 9800 0.0 

Tablet 30 20 [-100, 100] 0.5 0.7 3 4.7107 - 3.9107 0.0 

Quadric 30 20 [-100, 100] 0.5 0.5 3 3.3107 - 2.9107 0.0 

Rosenbrock 30 20 [-50, 50] 0.01 0.5 3 2.4107 - 2.2107 0.0 

Griewank 30 20 [-300, 300] 0.5 0.3 3 1.4107 - 1.1107 0.0 

Rastrigin 30 20 [-5.12, 5.12] 0.5 0.5 3 1.4107 - 1.2107 0.0 

Schaffer,s f7 30 20 [-100, 100] 1 0.3 3 1.4107 - 9.6106 0.0 

Sphere 30 10 [-10, 10] 0.01 0.3 3 - 50000 15000 0.0 

Rosenbrock 30 10 [-10, 10] 0.01 0.3 3 - 60000 45000 0.0 

Step 30 10 [-10, 10] 1 0.3 3 - 1600 1500 0.0 

Ellipsoid 30 10 [-10, 10] 0.01 0.3 3 - 45000 20000 0.0 

Rastrigin 30 10 [-10, 10] 1 0.3 3 - 300000 200000 0.0 

Ackley 30 10 [-10, 10] 1 0.3 3 - 130000 100000 0.0 

Shifted 
Sphere 

30 20 [-100, 100] 0.01 0.5 3 1.0107 1.3107 8.1106 -450 

Shifted 

Rosenbrock 
30 20 [-100, 100] 0.01 0.5 3 1.5107 1.8107 1.3107 390 

Shifted 

rotated 

Griewank 

30 20 [0, 600] 0.5 0.3 3 1.6107 1.9107 1.5107 -180 

Shifted 

rotated 

Rastrigin 

30 20 [-5, 5] 0.5 0.3 3 1.4107 1.7107 1.2107 -330 

 

In Table 1, n is the space dimension, m is the number of particles and P, T0, Tf, γ and 

LISTER are the local search coefficients, the values of T0 and Tf are 100 and 10-10, 

respectively. The presented results in Table 1 prove the reasonable performance of the 
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proposed hybrid method. It can be seen that the proposed method estimates the optimum 

solution with less number of objective function evaluations in comparison with APO and BB-

BC methods.  

 

 

4. VALIDATION OF THE PROPOSED OPTIMIZATION METHOD FOR 

CONSTRAINED PROBLEMS 
 

Truss optimization is a conventional constrained problem in civil engineering, to evaluate the 

performance of the proposed hybrid optimization method. To this end, four truss optimization 

benchmark problems including ten bar- planar truss, seventeen bar- planar truss, twenty five-

bar planar truss and seventy two-bar planar truss are selected. 

 

4.1 Ten-bar planar truss 

As shown in Fig. 3, a ten-bar planar truss under tow types of load cases is considered; case 1, 

in which P1 = 100 kips and P2 = 0; and case 2, in which P1 = 150 kips and P2 = 50 kips. For 

both cases the modulus of elasticity is 10000 ksi and the material density is 0.1 lb/in
3
.  

 

 
Figure 3. Ten-bar planar truss 

 

Two kinds of limitations are considered for truss optimization; the stress limitation of 

members is ±25 ksi and the displacement limitation for each node is 2 in. To handle these 

limitations the constraint handling method which was proposed by Deb [25] is used.  

For both considered cases results of the three optimization methods namely; big bang-big 

crunch (BB-BC), artificial physics optimization (APO) and the proposed optimization method 

are shown in Table 2. The number of initial particles for each optimization method are 100.  
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Table 2: Comparison results for ten-bar planar truss 

Variables 
Case 1 Case 2 

BB-BC APO HPBA  BB-BC APO HPBA 

A1 29.685 30.196 30.363 24.9690 23.596 24.004 

A2 0.100 0.100 0.100 0.1000 0.100 0.100 

A3 25.975 24.527 23.803 25.5606 26.662 25.125 

A4 14.998 14.843 14.804 13.6425 14.327 14.332 

A5 0.100 0.100 0.100 0.1000 0.100 0.100 

A6 0.100 0.603 0.556 2.3826 2.009 1.974 

A7 8.269 7.440 7.424 12.5984 12.243 12.515 

A8 20.625 20.956 21.128 13.0452 12.686 12.978 

A9 20.704 21.269 21.472 19.3217 19.760 19.883 

A10 0.100 0.100 0.100 0.1000 0.100 0.100 

Best Weight 

(lb) 
5084.691 5066.956 5062.010 4697.518 4684.874 4678.112 

Average 

Weight (lb) 
5085.421 5067.265 5062.194 4698.253 4685.332 4678.481 

Std Dev (lb) 0.611 0.491 0.261 0.577 0.462 0.301 

Number of 

analysis 
9000 8500 8000 10500 9000 8000 

 

For artificial physics optimization and proposed methods the coefficients of local search 

phase namely; P, T0, Tf, γ and LISTER are 0.05, 100, 1.0e-10, 0.5 and 10, respectively. To 

evaluate the performance of the proposed method the results of the similar studies which were 

done on the selected truss problem are used including: Schmit and Farshi [26], Schmit and Miura 

[27], Venkayya [28], Gellatly and Berke [29], Dobbs and Nelson [30], Khan and Willmert [31] 

and Kaveh and Talatahari [32]. Results of these studies on case 1 are shown in Table 3. 

 
Table 3: Results of ten-bar planar truss problem (Case 1) 

Variables 

(in2) 

Schmit 

and Farshi 
Venkayya 

Gellatly 

and Berke 

Dobbs and 

Nelson 

Khan and 

Willmert 

Kaveh and 

Talatahari 
HPBA 

A1 33.43 30.42 31.35 30.50 30.98 30.307 30.363 

A2 0.10 0.128 0.10 0.10 0.10 0.100 0.100 

A3 24.26 23.41 20.03 23.29 24.17 23.434 23.803 

A4 14.26 14.91 15.60 15.43 14.81 15.505 14.804 

A5 0.10 0.101 0.14 0.10 0.10 0.100 0.100 

A6 0.10 0.101 0.24 0.21 0.406 0.5241 0.556 

A7 8.38 8.696 8.35 7.64 7.547 7.4365 7.424 

A8 20.74 21.08 22.21 20.98 21.05 21.079 21.128 

A9 19.69 21.08 22.06 21.82 20.94 21.229 21.472 

A10 0.10 0.186 0.10 0.10 0.10 0.100 0.100 

Best 

Weight 

(lb) 

5089.0 5084.9 5112.0 5080.0 5066.98 5056.56 
5062.0

10 
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Average 

Weight 

(lb) 

N/A N/A N/A N/A N/A N/A 
5062.1

94 

Std Dev 

(lb) 
N/A N/A N/A N/A N/A N/A 0.261 

Number of 

analysis 
N/A N/A N/A N/A N/A N/A 8000 

 

For case 1 the proposed hybrid method has better performance in comparison with some 

previous studies which were mentioned in literature. Moreover, the proposed algorithm is 

more accurate than the originated ones. Results of similar studies that were done on case 2 are 

shown in Table 4. 

 
Table 4: Results of ten-bar planar truss problem (Case 2) 

Variables (in2) 
Schmit and 

Farshi 
Venkayya 

Dobbs and 

Nelson 

Khan and 

Willmert 

Kaveh and 

Talatahari 
HPBA 

A1 24.29 25.19 25.81 24.72 23.194 24.004 

A2 0.10 0.363 0.10 0.10 0.100 0.100 

A3 23.35 25.42 27.23 26.54 24.585 25.125 

A4 13.66 14.33 16.65 13.22 14.221 14.332 

A5 0.10 0.417 0.10 0.108 0.100 0.100 

A6 1.969 3.144 2.024 4.835 1.969 1.974 

A7 12.67 12.08 12.78 12.66 12.489 12.515 

A8 12.54 14.61 14.22 13.78 12.925 12.978 

A9 21.97 20.26 22.14 18.44 20.952 19.883 

A10 0.10 0.513 0.10 0.10 0.101 0.100 

Best Weight 

(lb) 
4691 4895.60 5059.7 4792.52 4675.78 4678.112 

Average 

Weight (lb) 
N/A N/A N/A N/A N/A 4678.481 

Std Dev (lb) N/A N/A N/A N/A N/A 0.301 

Number of 

analysis 
N/A N/A N/A N/A N/A 8000 

 

As shown in Table 4 the proposed hybrid method presents reasonable performance in 

comparison with studies mentioned in literature. It can be seen that the proposed algorithm 

has effective performance in comparison with originated ones. For both cases of ten-bar truss 

optimization problem, Fig. 4 shows the convergence history of the proposed hybrid 

optimization method. The reported results show that the best optimum solution for both cases 

of ten-bar truss optimization problem have been found by Kaveh and Talatahari [32].  
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Figure 4. Convergence histories for the optimum solutions of both cases of the ten-bar planar 

truss 

 

4.2 Seventeen-bar planar truss 

The other truss optimization problem is a seventeen-bar planar truss, as shown in Fig. 5. In 

this problem the material density is 0.268 lb/in
3
 and the modules of elasticity is 30000 ksi. 

For this optimization problem the considered limitations are stress ( ±50 ksi ) and nodal 

displacement (±2 in) limitations, the minimum area of cross-sections is 0.1 in2. 

 

 
Figure 5. Seventeen-bar planar truss 

 

Table 5 shows the optimum solution of seventeen-bar planar truss obtained by three 

optimization methods, namely; big bang-big crunch (BB-BC), artificial physics optimization 

(APO) and hybrid of artificial physics optimization and big bang-big crunch methods (hybrid 

method). Moreover, some studies were done on seventeen bar planar truss by Adeli and 

Kumar [33] and Kaveh and Ghazaan [34] that are listed in Table 5. 

 
 

Table 5: Results for seventeen-bar planar truss 

Variables Adeli and Kumar Kaveh and Ghazaan BB-BC APO HPBA 

A1 16.029 15.9158 14.4156 16.00 15.80 

A2 0.107 0.1001 0.5150 0.10 0.11 

A3 12.183 12.0762 13.1706 12.28 12.12 

A4 0.110 0.1000 0.1034 0.10 0.10 

Case 1 Case 2 
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A5 8.417 8.0527 8.8999 7.91 8.05 

A6 5.715 5.5611 5.1549 5.52 5.60 

A7 11.331 11.9470 11.4214 12.78 11.97 

A8 0.105 0.1000 0.1101 0.10 0.10 

A9 7.301 7.9425 7.9223 7.45 7.88 

A10 0.115 0.1000 0.1782 0.10 0.10 

A11 4.046 4.0589 4.4553 3.96 4.07 

A12 0.101 0.1000 0.1389 0.10 0.10 

A13 5.611 5.6644 5.8455 5.82 5.66 

A14 4.046 4.0057 4.1933 3.61 4.05 

A15 5.152 5.5565 5.1536 5.63 5.52 

A16 0.107 0.1000 0.4065 0.10 0.10 

A17 5.286 5.5740 5.4519 5.59 5.61 

Best Weight (lb) 2594.42 2581.89 2598.40 2588.98 2582.00 

Average Weight 

(lb) 
N/A 2597.11 2599.03 2589.41 2582.74 

Std Dev (lb) N/A 22.41 0.542 0.391 0.214 

Number of 

analysis 
N/A N/A 13000 11000 10500 

 

The coefficients of local search phase consist of; P, T0, Tf, γ and LISTER that are equal to 

0.05, 100, 1.0e-10, 0.5 and 10, respectively. As shown in Table 5 and Fig. 6, the obtained 

results prove the effectiveness and reasonable convergence of the proposed optimization 

method. Up to now, the best optimum solution for the seventeen bar planar truss has been 

computed by Kaveh and Ghazaan [34].  

 

 
Figure 6. Convergence history for the optimum solution of the Seventeen-bar planar truss 

 

4.3 Twenty five-bar spatial truss 

Fig. 7 shows the topology of the twenty five-bar spatial truss with the material density is 0.1 

lb/in3 and modulus of elasticity is 10000 ksi.  
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Figure 7. Twenty five-bar spatial truss 

 

The elements of this problem are categorized into eight groups with considering specific 

displacement and stress limitations. The displacement limitation of each node is 0.35 in each 

direction and the compressive/tensile stress limitations of each member are shown in Table 6. 

 
Table 6: Stress limitation for the twenty five-bar spatial truss 

Element group 
Compressive stress 

limitations ksi 

Tensile stress 

limitations ksi 

1 A1 35.092 40 

2 A2 ~ A5 11.590 40 

3 A6 ~ A9 17.305 40 

4 A10 ~ A11 35.092 40 

5 A12 ~ A13 35.092 40 

6 A14 ~ A17 6.759 40 

7 A18 ~ A21 6.959 40 

8 A22 ~ A25 11.082 40 
 

 

The minimum and maximum permitted cross section area are 0.01 and 3.4 in2, respectively. 

As shown in Table 7, two load conditions are selected for this spatial truss. 

 
Table 7: The applied load conditions to the twenty five-bar spatial truss 

Node 
Case 1 Case 2 

𝑃𝑥 kips 𝑃𝑦 kips 𝑃𝑧 kips 𝑃𝑥 kips 𝑃𝑦 kips 𝑃𝑧 kips 

1 0.0 20.0 -5.0 1.0 10.0 -5.0 

2 0.0 -20.0 -5.0 0.0 10.0 -5.0 

3 0.0 0.0 0.0 0.5 0.0 0.0 

6 0.0 0.0 0.0 0.5 0.0 0.0 
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Table 8 compares the performance of the proposed HPBA method with some well-known 

metaheuristic optimization methods presented by Rajeev and Venkayya [28], Adeli and 

Kamal [35], Saka [36], Farshi and Ziazi [37] and Kaveh and Talatahari [38]. 

 
Table 8: Comparison results for twenty five-bar spatial truss 

Variable 

group 

Rajeev and 

Venkayya 

Adeli and 

Kamal 
Saka 

Farshi 

and Ziazi 

Kaveh and 

Talatahari 
APO BB-BC HPBA 

A1 0.028 0.010 0.010 0.0100 0.010 0.0100 0.3029 0.0100 

A2 ~ A5 1.964 1.986 2.085 1.9981 1.993 2.0136 2.0389 1.9931 

A6 ~ A9 3.081 2.961 2.988 2.9828 3.056 2.9483 3.0208 2.9784 

A10 ~ A11 0.010 0.010 0.010 0.0100 0.010 0.0347 0.0246 0.0100 

A12 ~ A13 0.010 0.010 0.010 0.0100 0.010 0..0100 0.0100 0.0100 

A14 ~ A17 0.693 0.806 0.696 0.6837 0.665 0.7021 0.6276 0.6788 

A18 ~ A21 1.678 1.680 1.670 1.6750 1.642 1.6746 1.6363 1.6798 

A22 ~ A25 2.627 2.530 2.592 2.6668 2.679 2.6570 2.7398 2.6726 

Best 

Weight (lb) 
545.45 545.66 545.23 545.37 545.16 545.85 548.58 545.22 

Average 

Weight (lb) 
N/A N/A N/A N/A N/A 546.43 549.31 545.69 

Std Dev 

(lb) 
N/A N/A N/A N/A N/A 0.491 0.553 0.288 

Number of 

analysis 
N/A N/A N/A N/A 28850 9000 10000 7000 

 

As shown in Table 8 and Fig. 8, in comparison with originated methods, the proposed 

hybrid method has acceptable estimation for twenty five-bar spatial truss. Moreover, the 

results of similar studies prove the reasonable performance and convergence of this method. 

 

 
Figure 8. Convergence history for the optimum solution of the twenty five-bar spatial truss 

 

4.4 Seventy two-bar spatial truss 

Details of the 72-spatial truss problem are shown in Fig. 9. In this example, the modulus of 

elasticity is 10000 ksi and the material density is 0.1 lb/in3. 
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Figure 9. Seventy two-bar spatial truss 

 

For the 72-bar spatial truss problem, the minimum allowable cross-sectional area is 0.1 in2 

and the allowable displacements of uppermost nodes are limited to 0.25 in. The structural 

members of this spatial truss are sorted into 16 groups with considering specific stress 

limitation, as detailed in Fig. 9. 

 
Table 9: Stress limitation for the Seventy two-bar spatial truss 

Element group 
Stress 

limitations ksi 
Element group 

Stress 

limitations ksi 

1 A1 ~ A4 25 9 A37 ~ A40 25 

2 A5 ~ A12 25 10 A41 ~ A48 25 

3 A13 ~ A16 25 11 A49 ~ A52 25 

4 A17 ~ A18 25 12 A53 ~ A54 25 

5 A19 ~ A22 25 13 A55 ~ A58 25 

6 A23 ~ A30 25 14 A59 ~ A66 25 

7 A31 ~ A34 25 15 A67 ~ A70 25 

8 A35 ~ A36 25 16 A71 ~ A72 25 

 

Table 10 shows the direction of the two load cases applied to the 72-bar spatial truss. 

 
Table 10: The applied load conditions to the Seventy two-bar spatial truss 

Node 
Case 1 Case 2 

𝑃𝑥 kips 𝑃𝑦 kips 𝑃𝑧 kips 𝑃𝑥 kips 𝑃𝑦 kips 𝑃𝑧 kips 

1 5.0 5.0 -5.0 0.0 0.0 -5.0 

2 0.0 0.0 0.0 0.0 0.0 -5.0 

3 0.0 0.0 0.0 0.0 0.0 -5.0 

4 0.0 0.0 0.0 0.0 0.0 -5.0 

 

Table 11 compares the performance of the proposed hybrid optimization algorithm with 

the results of some well-known metaheuristic optimization methods presented by Erbatur et 
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al. [39], Camp and Bichon [40], Perez and Behdinan [41] and Kaveh and Talatahari [38]. 

 
Table 11: Comparison results for seventy two-bar spatial truss 

Variable 

group 
Erbatur et al. 

Camp and 

Bichon 

Perez and 

Behdinan 

Kaveh and 

Talatahari 
APO BB-BC HPBA 

A1 ~ A4 1.755 1.948 1.7427 1.9042 1.7156 1.7405 1.8035 

A5 ~ A12 0.505 0.508 0.5185 0.516 0.5111 0.5396 0.5190 

A13 ~ A16 0.105 0.101 0.1000 0.1000 0.1001 0.1000 0.1000 

A17 ~ A18 0.155 0.102 0.1000 0.1000 0.1000 0.1000 0.1000 

A19 ~ A22 1.155 1.303 1.3079 1.2582 1.2979 1.1876 1.2206 

A23 ~ A30 0.585 0.511 0.5193 0.5035 0.5085 0.5117 0.5128 

A31 ~ A34 0.100 0.101 0.1000 0.1000 0.1000 0.1000 0.1000 

A35 ~ A36 0.100 0.100 0.1000 0.1000 0.1000 0.1000 0.1000 

A37 ~ A40 0.460 0.561 0.5142 0.5178 0.6109 0.6765 0.5399 

A41 ~ A48 0.530 0.492 0.5464 0.5214 0.5295 0.5257 0.5217 

A49 ~ A52 0.120 0.100 0.1000 0.1000 0.1000 0.1028 0.1000 

A53 ~ A54 0.165 0.107 0.1095 0.1007 0.1265 0.1000 0.1000 

A55 ~ A58 0.155 0.156 0.1615 0.1566 0.1536 0.1559 0.1558 

A59 ~ A66 0.535 0.550 0.5092 0.5421 0.5551 0.5250 0.5529 

A67 ~ A70 0.480 0.390 0.4967 0.4132 0.3998 0.3854 0.4363 

A71 ~ A72 0.520 0.592 0.5619 0.5756 0.5736 0.6704 0.5580 

Best Weight 

(lb) 
385.76 380.24 381.91 379.66 380.69 381.87 379.85 

Average 

Weight (lb) 
N/A 383.16 N/A 381.85 381.12 382.61 380.21 

Std Dev (lb) N/A 3.66 N/A 1.201 0.501 0.607 0.289 

Number of 

analysis 
N/A 18500 N/A 13200 15000 18000 11800 

 

As shown in Table 11 and Fig. 10, the results demonstrate a reasonable convergence and 

accuracy of the proposed HPBA optimization method. “In the study carried by Kaveh and 

Talatahari [38], a hybrid Big Bang–Big Crunch algorithm was introduced. Although for the 

spatial truss problems the aforementioned optimization method showed a better accuracy, the 

proposed HPBA optimization method exhibited a satisfactory accuracy as well as a substantial 

reduction on the computational cost comparatively.” 

 

 
Figure 10. Convergence history for the optimum solution of the Seventy two-bar spatial truss 
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5. CONCLUSION 
 

This study proposes a new optimization method named HPBA which is a hybrid of big bang-

big crunch (BB-BC) and artificial physics optimization (APO) methods. To investigate the 

performance of the proposed hybrid method for unconstraint problems some benchmark 

functions which were used for evaluation of APO and BB-BC algorithms are selected, these 

functions consist of many low-dimensional and high-dimensional functions. The computed 

results show that the proposed hybrid optimization method finds the optimum solution with 

lower number of objective function evolution in comparison with APO and BB-BC methods. 

To evaluate the performance of the proposed hybrid method for constraint problems, truss 

optimization is selected as a conventional structure in civil engineering. Three benchmark 

truss optimization problems with various constraints under different types of loads are 

selected; ten-bar planar truss with different type of loads, seventeen-bar planar truss, twenty 

five-bar spatial truss and seventy two-bar spatial truss, for all of them the optimum solutions 

which are obtained by the proposed hybrid method are more accurate in comparison with BB-

BC and APO optimization methods.  

As shown for constraint and unconstraint problems the proposed hybrid method which is 

a hybrid of BB-BC and APO methods has more ability to find the optimum solution among 

the feasible search space in comparison with originated methods. 
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