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ABSTRACT 
 

In this paper, an efficient optimization algorithm is proposed based on Particle Swarm 
Optimization (PSO) and Simulated Annealing (SA) to optimize truss structures. The proposed 
algorithm utilizes the PSO for finding high fitness regions in the search space and the SA is 
used to perform further investigation in these regions. This strategy helps to use of information 
obtained by swarm in an optimal manner and to direct the agents toward the best regions, 
resulting in possible reduction of the number of particles. To show the computational 
advantages of the new PSO-SA method, some benchmark numerical examples are studied. 
The PSO-SA algorithm converges to better or at least the same solutions, while the number of 
structural analyses is significantly reduced compared to the standard PSO and some other 
existing algorithms in the literature.  
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1. INTRODUCTION 
 

Demand for lightweight, efficient and low cost structures seems mandatory because of 
growing realization of the rarity of raw materials and rapid depletion of convention energy 
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sources. This requires engineers to be aware of techniques for weight and cost optimization of 
structures [1]. Recently new design techniques for structural optimization have emerged [2-4]. 
These stochastic search techniques make use of the ideas inspired from nature and do not 
suffer the discrepancies of mathematical programming based optimum design methods [5] 
such as continuous objective function, requirement for the calculation of the gradients of the 
objective function and constraints, thus global optimum design (or near it) can be archived 
only with assessment of the objective function. 

Particle Swarm Optimization (PSO), as one of the successful algorithms, is based on 
simulation of the social behavior of bird flocking and fish schooling. The PSO is a population 
based technique which involves a population of particles that are randomly initialized in the 
search space. Each particle flies through search space by means of its velocity vector. The 
velocities determine particles flying direction and they are updated based on the best positions 
of individual particles and the best position across all others in each iteration. The best position 
of the population (swarm) is found by evaluating objective function of all the particles. This 
strategy increases the probability of migration to regions of high fitness. The PSO has some 
advantages such as few parameters implementation and simple programming in computers. 
Meanwhile, it does not require specific domain knowledge information, internal 
transformation of variables or other manipulations to handle the constraints [6].  

On the other hand, simulated annealing is another optimization technique that simulates the 
physical annealing process in the field of combinatorial optimization. The idea is based on a 
simulated annealing process that starts with heating up the metal very rapidly and then cooling 
it slowly in order to obtain a very pure crystal structures with a minimum energy. In the 
primary steps, the movement of particles is accelerated by high temperature and during the 
cooling period an optimal place within the crystal structure can be found [7]. The similarities 
between simulated annealing and optimization were first recognized by Kirkpatrick et al. [8] 
and Cerny [9] in which solutions in an optimization problem are equivalent to configurations 
of a physical system and the fitness of a solution is equivalent to the energy of a configuration. 
The main characteristic of the simulated annealing (SA) is to avoid the algorithm to be trapped 
in local optimum by uphill move. 

Recently, a few studies have been devoted to hybrid the PSO with SA in order to improve 
the features of the PSO in optimization of variety of problems. Idoumghar et al. [10] presented 
a hybrid algorithm that combines the exploration ability of the PSO with exploitation feature of 
the SA to avoide the premature convergence in the PSO algorithm. This hybrid algorithm was 
applied to well-known benchmark mathematical functions as well as a problem of reducing 
energy consumption in embedded systems memories. The results show that the hybrid 
algorithm works well in terms of accuracy, convergence rate, stability and robustness. Also, 
Zhao et al. [11] hybridized the PSO and SA to solve multi-objective problems of partner 
selection in virtual enterprise. The present hybrid algorithm combines the high speed of the 
PSO with the powerful ability of the SA to avoid being trapped in local minimum. The results 
show that this hybrid algorithm works quite efficiently in this field. In addition, Chaojun and 
Zulian [12] introduced Metropolis acceptance probability criterion to the particle swarm to 
update best position of each particle and the best position of the entire swarm. Simulation 
results on function benchmarks show the capability of the hybrid algorithm in overcoming the 
problem of getting trapped in the local best point.    
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The main drawback of the PSO and other non-gradient, probabilistic search algorithms is 
that they typically require numerous function evaluations in comparison to the gradient-based 
algorithms [13]. For structural optimization, this means a lot of finite elements analyses which 
is time consuming and the efficiency of aforementioned methods in optimal structural design 
is questionable [14]. This paper presents a new hybrid algorithm based on the PSO and SA to 
reduce the number of structural analysis while saving the reliability of achieving the optimum 
design. 

 
 

2. STATEMENT OF THE STRUCTURAL OPTIMIZATION PROBLEM 
 

Size optimization of truss structures includes finding optimum values for member cross-
sectional areas xi that minimize the structural weight W. This minimum design also has to 
satisfy inequality constraints that limit design variable sizes and structural responses. Thus, the 
optimal design of a truss is formulated as [15]: 
 

Minimize { }
1
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i i i
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where { }( )W x  is the weight of the structure; n is the number of members making up the 
structure; ( )}{xg  denotes the constraints considered for the structure containing stress of 
elements and nodal deflection; max and min denote upper and lower bounds, respectively. 

For the proposed method, it is essential to transform the constrained optimization problem 
to an unconstraint one. A detailed review of some constraint-handling approaches is available 
in [16,17]. In this study, a penalty function method is utilized for handling the design 
constraints which is calculated using the following formulas [2]: 
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The objective function that determines the fitness of each particle is defined as: 
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where Mer is the objective function (merit function); 1ε , 2ε  and 3ε  are the coefficients of 

merit function; )(i
gΦ  denotes the summation of penalties. In this study 1ε  and 2ε  are set to 1 

and W (weight of structure), respectively, while the value of 3ε  is considered as 0.85 in order 



A. Hadidi, A. Kaveh, B. Farahmand Azar, S. Talatahari and C. Farahmandpour 

 

380 

to achieve a feasible solution. 

 

 
3. REVIEW OF THE UTILIZED ALGORITHMS 

 
3.1. Particle Swarm Optimization 

The PSO algorithm, inspired by social behavior simulation, was initially proposed by Kennedy 
and Eberhart in 1995 [18,19]. The PSO is one of the evolutionary computation techniques 
such as genetic algorithms, evolutionary programming, evolution strategies, and genetic 
programming [20] that the main idea behind it is that the social sharing of information among 
members offers an evolutionary advantage. In fact,  in the PSO, instead of using more 
traditional genetic operators, each particle adjusts its flying according to its own flying 
experience and its companions’ flying experience [20]. 

The original PSO that was designed and developed by Kennedy and Eberhart based on the 
following two simple equations: 

 

1 1 2 2( 1) ( ) ( ( ) ) ( ( ) ))d d d d d d d d
i i i i i i iv k v k c rand pbest k x c rand gbest k x+ = + × × − + × × −   (4)  

 
( 1) ( ) ( 1)d d d

i i ix k x k v k+ = + +                                                   (5) 
 

 
Eq. (4) calculates the velocity of each particle according to three factors:  
(1) previous velocity ( ( )d

iv k );  

(2) direction of best position ( ( )d
ipbest k ) visited by each particle itself; 

(3) direction of the best position of swarm ( ( )dgbest k ) up to iteration k.  
Eq. (5) updates each particle's position in the search space. 

In these equations xi, vi represent the current position and the velocity of the ith particle, 
respectively; 1

d
irand  and 2

d
irand  represent random numbers between 0 and 1; gbestk(k) 

corresponds to the global best position in the swarm up to iteration k ; c1, c2 represent 
cognitive and social parameters, respectively. 

After many numerical simulations, Eberhart and Shi [21] added a weighting factor to Eq. 
(4) to control the trade-off between the global exploration and the local exploitation abilities of 
the flying particles as: 
 
   1 1 2 2( 1) ( ) ( ( ) ) ( ( ) ))d d d d d d d d

i i i i i i iv k w v k c rand pbest k x c rand gbest k x+ = × + × × − + × × −   (6) 
 

A larger inertia weight makes the global exploration easier while a smaller inertia weight 
tends to facilitate local exploration to fine-tune the current search area [20]. By using the 
linearly decreasing inertia weight, the PSO lacks global search ability at the end of run even 
when the global search ability is required to jump out of the local minimum in some cases. 
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Nevertheless the results shown in literature illustrate that by using a linearly decreasing inertia 
weight the performance of the PSO can be improved greatly and have better results than that 
of  both standard PSO and evolutionary programming as reported in [22,23]. 

 
3.2. Simulated Annealing 

Simulated Annealing is a probabilistic heuristic based on thermodynamics considerations. The 
technique is motivated by an analogy to the statistical mechanics of annealing in solids. A low 
energy state usually means a highly ordered state, such as crystal lattice. To accomplish this, 
the material is first melted, i.e. heated to a temperature that permits many random, disordered 
and high-energy atomic rearrangements. Then it is cooled slowly and as the temperature is 
reduced the atoms migrate to a more ordered state with lower energy. The final degree of 
order depends on the temperature cooling rate [24]. If the annealing process be fast and is not 
given enough time to complete the cooling process, the melting metal still solidifies but with 
higher disordered atomic arrangement. For slowly cooled process, on the other hand, system is 
able to reach lower energy configurations.  

A computational algorithm that simulates the annealing process was proposed by 
Metropolis et al. [25], and is referred to as the Metropolis algorithm. Then, the analogy 
between the simulated annealing and the optimization of functions with many variables was 
established by Kirkpatrick et al. [8] and Cerny [9]. By replacing the energy state with an 
objective function, and using variables for the configurations of the particles, the Metropolis 
algorithm can be applied to optimization problems [1]. Further details of the algorithm can be 
found in [26]. 

 
 

4. NEW HYBRID ALGORITHM 
 

In structural optimization with high complexity, the number of particles should be selected 
high in order to further investigation in the search space and accomplish better solutions. From 
structural optimization point of view, this means numerous finite element analyses should be 
performed which is both costly and time-consuming. On the other hand, if the number of 
particles is reduced, the probability of finding desired solutions will decrease the intensely and 
the algorithm may become trapped in local minimums. Therefore, in this study a hybrid 
algorithm is utilized to overcome this difficulty. In the present algorithm, in order to reduce the 
number of structural analyses, the number of required particles is decreased. However the 
quality of the solutions obtained by the new algorithm, called the PSO-SA, is saved compared 
to the PSO algorithm. Figure 1 shows the optimization procedure of the present algorithm, 
which consist of the following steps: 
 

Step 1: The PSO-SA has some parameters that must be adjusted in order to obtain optimal 
solution. These parameters are introduced and set in the following steps. In this step the 
position and velocity of the particles in the initial swarm are randomly generated and the best 
particle is determined. 

Step 2: The new positions and velocities of the particles are determined according to Eq. 
(5) and Eq. (6), respectively. Then comparing the merit value of each particle with the 
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previous best one, pbest and gbest are updated. 
Step 3: Due to the high convergence rate of the PSO in early iterations [22], the proposed 

algorithm utilizes only the PSO as the optimizer in early iterations and only if the difference 
between the best solutions obtained by the PSO in two successive iterations becomes smaller 
than a given value (shown by ε ), the SA is utilized along with the PSO.  To fulfill this aim, as 
a criterion to use the SA in cooperation with the PSO, the best obtained solutions is checked 
after each 10 iteration; here, the value of (ε ) is set to 0.01. 

Step 4: When the criterion in the step 3 is satisfied, the SA algorithm is used to further 
search around gbest point that obtained by the PSO. In order to generate candidate designs, in 
the neighborhood of gbest, a normal distribution is used as: 

 
(0, )a cgbest gbest N σ= +                                                           (7) 

 
where agbest  and cgbest represent candidate design and current design, respectively. 
(0, )N σ  is a random number corresponding to normal distribution with mean value 0 and 

standard deviation σ . The value of  σ  is obtained by: 
 

)( minmax xx −⋅=ησ                                                            (8) 
 

In which η  is set to 0.02. 
Each time a candidate design is generated, its merit function value ( Mer ) is computed and 

compared to the current design. If the new candidate provides a better solution, it is accepted 
automatically and it replaces the current design. Otherwise, the so-called Metropolis test is 
employed to determine the winner, in which case the probability of accepting a poor candidate 
(P) is assigned as follows: 

 
( )

( ) B

Mer
K TP Mer e
∆

−
∆ =  , where a cMer Mer Mer∆ = −                              (9) 

 
cMer  and aMer  are the merit function values of the current and candidate designs, 

respectively; T is the current temperature of the process; and K is the Boltzman parameter 
which is manipulated as the working average of positive Mer∆  values. 

In this procedure, each design variable is selected only once in a random order, until all 
design variables are selected. This is referred to as a single iteration of the cooling cycle. 
Generally, a cooling cycle is iterated a certain number of times in the same manner to ensure 
that the objectives function is reduced to a reasonably low value associated with the 
temperature of the cooling cycle. 
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Figure 1. The flowchart for the PSO-SA. 
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Having selected the iterations of the starting and final cooling cycles ( si  and fi ), the 
iteration of a cooling cycle ( ci ) at a given temperature T is determined by a linear 
interpolation between si  and fi  as follows: 

 

( )( )f
c f f s

f s

T Ti i i i
T T

−
= + −

−
                                                (10) 

 
where T is the current temperature of the process; sT , fT  referred to as starting temperature 
and final temperature, respectively. In order to set the cooling schedule for the SA algorithm, 
the approach suggested by Balling [27] is used as: 
 

1
ln( )s sT

P
= − , 1

ln( )f fT
P

= −                                             (11) 

 
In Eq. (11), sP , fP are starting acceptance probability and final acceptance probability, 
respectively. According to the recommendations given in [26], sP  and fP  are set to 0.5 and 
1E-7, respectively. In this paper, the si  and fi  are taken as 1 and 3, respectively [26]. This 
step has two unique features that are explained bellow. 

It should be noted that when the number of particles in the PSO algorithm is reduced, after 
some iteration the population diversity reduces remarkably and this leads to a premature 
convergence. In order to surmount this problem, after completing the application of the SA, 
regardless of havng better or worse than initial gbest, the solution obtained by the SA is 
applied to calculate the subsequent velocities of the particles as gbest. This strategy results in 
wandering the particles and can restore the diversity loss of the particles when the SA works 
in cooperation with the PSO and improves the global search capacity of the algorithm.    

Another feature of the algorithm is that the best obtained solution in the SA procedure is 
recorded in the Pbest matrix in the row corresponding to the gbest. Since the best solution 
obtained by the SA is stored in the pbest, in subsequent iteration the particles move and if a 
better result is not obtained, the best previous solution obtained by the SA is taken as the gbest 
and this helps the algorithm not to loose the good search direction. 

Step 5: If Step 4 is utilzed, the temperature should be then reduced by the ratio of the 
cooling factor α  as follows: 
 

1r rT Tα+ = ×                                                               (12) 
 
where rT and 1rT +  denote the temperature at the rth and (r+1)-th cooling cycles, 
respectively. The cooling factor α  is obtained by the following formula as in [27]: 
 

1
( 1)ln( )

ln( )
cs N

f
P
P

α
− 

=  
 

                                                       (13) 
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In Eq. (13), PS and Pf are starting and final acceptance probability respectively, and Nc is the 
number of cooling cycle. In this paper, the number of cooling cycle is set to Nc=150. 

Step 6: Depending to the condition satisfaction of each step, Step 2 to Step 5 are repeated. 
In the present algorithm, by means of cooperation and share of information among the 

particles, the PSO finds rich sectors of search space, and the SA searches the best region 
found by the PSO. Therefore, the main characteristic of the algorithm is that further analyses 
are taken place in the high fitness region of search space. This feature of the algorithm results 
in using few particles. Therefore, instead of using many particles to seek the search space, a 
few particles are used and the regions with high fitness are investigated with higher accuracy. 
 

 
5. NUMERICAL EXAMPLES 

 
In this section, truss optimization problems have been studied to demonstrate the efficiency of 
proposed algorithm. The algorithms are coded in Matlab and structures are analyzed using the 
direct stiffness method. For both algorithms, the inertia weight w decreases linearly from 0.9 
to 0.4; the value of acceleration constants c1 and c2 are both set to 2; the maximum velocity is 
set to the difference between the upper bound and lower bound of variables. The maximum 
number of iterations is limited to 500. For the standard PSO algorithm, the population of 50 
particles is used and this amount is reduced to 10 particles for the PSO-SA algorithm. It 
should be noted that since w is a function of iteration, therefore the total number of finite 
element analyses in 500 iterations is reported to demonstrate the number of analyses that are 
performed to achieve the best solution. 

 
5.1. A twenty-two-bar space truss 

The topology and nodal numbering of a 22-bar spatial truss structure are shown in Figure 2. 
The structure was previously studied by Khan and Willmert [28], Sheu and Schmit [29], Lee 
and Geem [30]. The detailed information of the examples is available in [30]. 
 

 
Figure 2. Twenty-two bar space truss 
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Table 1 lists the optimal values of the seven size variables obtained by the standard PSO 
and PSO-SA algorithms, and compares them with earlier results. For this spatial truss 
structure, the total number of finite element analyses to achieve the best solution is 7,618. This 
amount is significantly smaller than that for the PSO. Also, the HS algorithm in this example 
requires 10,000 analyses to obtain the best result.  Table 2 shows the results of 50 runs for 
both of algorithms in which the standard deviation of the PSO-SA is smaller than that of the 
PSO. Figure 3 provides a comparison of the convergence rates for the two algorithms. It can 
be seen that the convergence rate of the PSO-SA algorithm is obviously higher than PSO. 

 
Table 1. Comparison of the optimal designs for the 22-bar spatial truss structure 

Optimal cross-sectional areas (in2)  
PSO-SA PSO 

cm2 in2 cm2 in2 

Lee & 
Geem 
[30] 

Khan 
& 

Willert 
[28] 

Sheu & 
Schmit 

[29] 
 Element 

group 

16.75 2.5958 16.64 2.5799 2.588 2.563 2.629 A1~A4 1 
7.93 1.2290 7.30 1.1312 1.083 1.553 1.162 A5~A6 2 
2.23 0.3452 2.24 0.3472 0.363 0.281 0.343 A7~A8 3 
2.7 0.4187 2.72 0.4212 0.422 0.512 0.423 A9~A10 4 

18.14 2.8119 18.28 2.8330 2.827 2.626 2.782 A11~A14 5 
13.93 2.1591 13.51 2.0946 2.055 2.131 2.173 A15~A18 6 
12.59 1.9517 13.03 2.0205 2.044 2.213 1.952 A19~A22 7 

4555.20 1024.1 4554.75 1024 1022.23 1034.74 1024.80  Weight (lb) 

 
Table 2. Performance of the PSO and PSO-SA algorithms for 22-bar truss in 50 run 

Standard 
deviation 

Best-worst 
difference 

Best-average 
difference Worst Average Best Algorithm 

17.29 6.75 % 0.95 % 1093.12 1033.79 1024 PSO 
10.30 3.19 % 0.91 % 1056.74 1033.38 1024.1 PSO-SA 
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Figure 3. Comparing the convergence rates between the two algorithms for 22-bar spatial truss  
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5.2. Criterion of Success for the examples 

Figure 4 shows the topology and nodal numbering of a 25-bar spatial truss structure. More 
details can be found in [30].  
 

 
Figure 4. 25-bar spatial truss 

 
Table 3 provides a comparison between the optimal design results reported in the literature 

and the present works. Also, Table 4 presents the statistical results of 50 independent runs of 
the standard PSO and PSO-SA. Obviously, the PSO-SA leads to better solutions for both best 
and worst results. The average and the standard deviation of the solutions obtained by the 
PSO-SA are also remarkably less than those of the PSO. Comparison of the convergence rates 
between the PSO and PSO-SA algorithms for this truss is presented in Figure 5. The number 
of searches for the HS is 15,000 as provided in [30]. Also the ACO algorithm require 16,500 
analyses to obtain a solution [31]. The HBB-BC [32] algorithm achieves best solution after 
12,500 searches. However, the number of required structural analyses during the optimization 
process by the PSO-SA is 7,992. Hence, it can be seen that using the PSO-SA results in a 
high reduction of computational burden of optimization process compared to other algorithms 
in the literature.   
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Table 3. Comparison of optimal designs for the 25-bar spatial truss structure 

Optimal cross-sectional areas (in2)  

PSO-SA PSO 

cm2 in2 cm2 in2 

Camp et al. 
[31] 

Lee & 
Geem 
[30] 

Kaveh & 
Talatahari 

[32] 
 Element group 

0.06 0.0100 0.06 0.0100 0.010 0.047 0.010 A1 1 

12.86 1.9935 12.58 1.9503 2.000 2.022 1.993 A2~A5 2 

19.24 2.9819 19.62 3.0408 2.966 2.950 3.056 A6~A9 3 

0.06 0.0100 0.06 0.0100 0.010 0.010 0.010 A10~A11 4 

0.06 0.0100 0.06 0.0100 0.012 0.014 0.010 A12~A13 5 

4.39 0.6802 4.47 0.6929 0.689 0.688 0.665 A14~A17 6 

10.82 1.6772 10.88 1.6866 1.679 1.657 1.642 A18~A21 7 

17.22 2.6700 17.01 2.6362 2.668 2.663 2.679 A22~A25 8 

2424.92 
(N) 545.17 2425.14 

(N) 545.22 545.53 544.38 545.16  Weight (lb) 

 

Table 4. Performance of PSO and PSO-SA algorithms for 25-bar truss in 50 run 

Standard 
deviation 

Best-worst 
difference 

Best-average 
difference Worst Average Best Algorithm 

9.91 9.04% 0.87% 594.53 549.96 545.22 PSO 

1.04 0.97 % 0.21 % 550.44 546.3 545.17 PSO-SA 
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 Figure 5. Comparing the convergence rates between the two algorithms for 25-bar truss. 
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5.3. A seventy two-bar spatial truss 

The 72-bar spatial truss structure is shown in Figure 6. The detailed information of this 
example can be found in [30]. The minimum cross-sectional area of 0.01 in2 is considered.  
 

 
Figure 6. Seventy-two bar space truss. 

 
The computational performance of the PSO-SA and PSO in this example is investigated 

through 50 independent runs and the results are given in Table 5. Also, Table 6 compares the 
obtained results of this article with those of Ref. [30] for this example. It can be observed from 
this table that the average of results and worst weight obtained by the PSO is considerably 
reduced through using the PSO-SA algorithm. The percent difference between the best and 
average solution is decreased from 13.35% to 0.21%. Also the difference between the best 
and the worst solution is decreased from a high value of 81.96% to 0.46%. Moreover, the 
standard deviation of solutions has decreased remarkably. It can be seen from Table 5 that the 
optimal designs obtained by the PSO and PSO-SA are slightly better than the previous design 
results. For this case the number of structural analyses reported for the HS is 20,000 while the 
number of finite element analyses for the PSO-SA in optimization process is 10,984. Figure 7 
compares the convergence rate for the PSO and PSO-SA methods. 
 

Table 5. Performance of PSO and PSO-SA algorithms for 72-bar truss in 50 run 

Standard 
deviation 

Best-worst 
difference 

Best-average 
difference Worst Average Best Algorithm 

64.9 81.96 % 13.35 % 662.34 412.61 364 PSO 

0.43 0.46 % 0.21 % 365.7 364.77 364 PSO-SA 
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Table 6. Comparison of optimal designs for the 72-bar spatial truss structure  

Optimal cross-sectional areas (in2)  

PSO-SA PSO 

cm2 in2 cm2 in2 

Lee & Geem 
[30]  Element 

group 

12.22 1.8946 12.3 1.9067 1.963 A1~A4 1 

3.33 0.5156 3.43 0.5311 0.481 A5~A12 2 

0.064 0.0100 0.064 0.0100 0.010 A13~A16 3 

0.064 0.0100 0.064 0.0100 0.011 A17~A18 4 

8.25 1.2784 8.49 1.3154 1.233 A19~A22 5 

3.34 0.5173 3.33 0.5168 0.506 A23~A30 6 

0.064 0.0100 0.64 0.0100 0.011 A31~A34 7 

0.064 0.0100 0.64 0.0100 0.012 A35~A36 8 

3.70 0.5733 3.45 0.5345 0.538 A37~A40 9 

3.38 0.5245 3.26 0.5055 0.533 A41~A48 10 

0.064 0.0100 0.07 0.0114 0.010 A49~A52 11 

7.06 0.1095 0.68 0.1055 0.167 A53~A54 12 

1.08 0.1668 1.08 0.1672 0.161 A55~A58 13 

3.38 0.5234 3.43 0.5322 0.542 A59~A66 14 

2.93 0.4546 2.85 0.4422 0.478 A67~A70 15 

3.63 0.5631 3.61 0.5591 0.551 A71~A72 16 

1619.07 (N) 364 1619.07 (N) 364 364.33  Weight (lb) 
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 Figure 7. Comparing the convergence rates between the two algorithms for 72-bar truss 
5.4. One hundred twenty-bar dome truss 

Figure 8 shows the topology and group numbers of a 120-bar dome truss. In this example, 
two cases of constraints are considered: with stress constraints and displacement constraints of 
0.1969 in both x and y directions (Case 1), with stress constraints and displacement limitations 
of 0.1969 in. (5 mm) imposed on all nodes in x-, y- and z directions (Case 2). For Case 1, the 
maximum cross-sectional area is 5.0 in (32.26 cm2) and for Case 2, it is taken as 20.0 in 
(129.03 cm2).  

Table 7 provides the best solution vectors and the corresponding weights for the cases 
and Figure 9 shows the convergence histories. In both cases, the PSO-SA needs 7618 
analyses to obtain a result which is less than 125,000, 10,000, 10,000 and 35,000 for the 
PSOPC, HPSACO [33], HBB-BC [32], and HS [30], respectively. Table 8 shows the 
computational performance of the PSO-based and other heuristic algorithms for this 
example. It can be seen that the PSO-SA algorithm achieves clearly better results than the 
PSO.  

 
Table 7. Comparison of optimal designs for the 120-bar truss (Cases 1 and 2) 

Optimal cross-sectional areas (in2)  

Case1 

PSO-SA PSO Kaveh & Talatahari [33] 

cm2 in2 cm2 in2 HPSACO PSOPC PSO 

Lee & 
Geem 
[30] 

Element 
group 

21.41 3.3183 21.41 3.3183 3.799 3.235 3.147 3.296 1 
15.97 2.4749 15.97 2.4749 3.377 3.370 6.376 2.789 2 
27.67 4.2899 27.67 4.2899 4.125 4.116 5.957 3.872 3 
18.13 2.8110 18.13 2.8110 2.734 2.784 4.806 2.570 4 

5 0.7750 5 0.7750 1.609 0.777 0.775 1.149 5 
22.73 3.5241 22.73 3.5241 3.533 3.343 13.798 3.331 6 
15.38 2.3833 15.38 2.3833 2.539 2.454 2.452 2.781 7 

88082.7 19802.77 88082.7 19802.77 20078.0 19618.7 32432.9 19893.34 Weight (lb) 

Case 2 

PSO-SA PSO Kaveh & Talatahari [33]  

cm2 in2 cm2 in2 HPSACO PSOPC HBB-BC  

19.51 3.0249 19.52 3.0252 3.095 3.040 3.037 1 
95.42 14.7900 95.55 14.8108 14.405 13.149 14.431 2 
33.06 5.1240 33.24 5.1531 5.020 5.646 5.130 3 
20.22 3.1342 20.22 3.1345 3.352 3.143 3.134 4 
54.34 8.4236 54.18 8.3977 8.631 8.759 8.591 5 
21.35 3.3095 21.25 3.2933 3.432 3.758 3.377 6 
16.10 2.4957 16.10 2.4955 2.499 2.502 2.500 7 

147899.9(N) 33250.88 147904.7(N) 33251.95 33248.9 33481.2 33287.9 Weight (lb) 
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Figure 8. One-hundred-twenty-bar dome truss 

 

Table 8. Performance of PSO and PSO-SA algorithms for 120-bar truss in 50 run 

Standard 
deviation 

Best-worst 
difference 

Best-average 
difference Worst Average Best Algorithm 

Case 1 

1521.73 24.93 % 9.80 % 25513.43 22423.18 20422 PSO 

46.68 1.06 % 0.07 % 20013.57 19817.86 19802.77 PSO-SA 

Case 2 

1031.26 21 % 1.24 % 40231.33 33666.04 33251.96 PSO 

36.54 0.66 % 0.16 % 33469.8 33303.47 33250.88 PSO-SA 
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Figure 9. Comparing the convergaence rates between the two algorithms for 120-bar truss: a) 
Case 1; b) Case 2 

 
 

6. CONCLUSION 
 

In this paper an efficient optimization algorithm based on the PSO and SA is proposed for 
optimal design of structures. The new developed optimization algorithm, called the PSO-SA, 
has capability of finding global optima using few structural analyses. The PSO has high 
convergence rate, in early iteration. The proposed algorithm makes use of this feature of the 
PSO algorithm in such a way that in early iterations only the PSO works as a single optimizer 
and with this strategy the number of structural analyses is reduced further. After that when the 
optimization process proceeds, the PSO and SA work together. In this stage the PSO finds 
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optimum region of search space by using the information sharing among its particles and the 
SA seeks a better solution in this high fitness region. Therefore, instead of using numerous 
particles to seek the search space, a few numbers of particles is used and the regions with high 
fitness are identified for more searches. This results in reducing the required number of finite 
element analyses considerably due to reduction in the number of agents. In order to assess the 
robustness and effectiveness of the PSO-SA algorithm, some structural optimization problems 
are presented. The results show that the PSO-SA has efficiency and computational 
advantageous in comparison with the standard PSO and some other heuristic algorithms. In 
addition, it should be noted that the reliability of the algorithm to achieve the best solution is 
increased remarkably in comparison to the PSO algorithm. 
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