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ABSTRACT 
 

In this paper, the discrete method of eigenvectors of covariance matrix has been used to 

weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) 

algorithm is a robust and iterative method for solving optimization problems and is inspired 

by the CMA-ES method. Both of these methods use covariance matrix in the optimization 

process, but the covariance matrix calculation and new population generation in these two 

methods are completely different. At each stage of the ECM algorithm, successful 

distributions are identified and the covariance matrix of the successful distributions is 

formed. Subsequently, by the help of the principal component analysis (PCA), the scattering 

directions of these distributions will be achieved. The new population is generated by the 

combination of weighted directions that have a successful distribution and using random 

normal distribution. In the discrete ECM method, in case of succeeding in a certain number 

of cycles the step size is increased, otherwise the step size is reduced. In order to determine 

the efficiency of this method, three benchmark steel frames were optimized due to the 

resistance and displacement criteria specifications of the AISC-LRFD, and the results were 

compared to other optimization methods. Considerable outputs of this algorithm show that 

this method can handle the complex problems of optimizing discrete steel frames. 
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1. INTRODUCTION 
 

Optimal design of structures is a difficult and challenging task for designers and 

engineers. In practical cases, the complexity of the problems and related constraints makes 
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classical methods less efficient in the field of engineering issues. The meta-heuristic 

methods have great potential for solving engineering problems and the efficiency and 

practicality of these methods in optimal design of structures is undeniable. In the past 

decade, many metaheuristic techniques have been used for optimal design of structures, 

Kaveh [1,2]. In the following, some of the techniques which have been utilized to optimize 

steel frame structures are mentioned. Kaveh and Ilchi Ghazaan used CBO and ECBO [3], 

Azad and Hasancebi employed GSS [4], Kaveh and Farhoudi used Dolphin Echolocation 

[5], and Kaveh and Talatahari utilized BB-BC [6], HPSACO [7], CSS [8], ICA [9] and 

IACO [10] for optimal design of steel frames. Carraro et al with the help of SGA [11]. 

Fernandez-Caban and Masters used particle swarm and big bang-big crunch [12], Kaveh et 

al. employed MDM [13], and Talatahari et al. employed the technique of ES–DE [14] to 

optimize steel frames. 

ECM is one of the powerful meta-heuristic optimization methods [15] derived from the 

CMA-ES technique [16]. The ECM initially generates a population at random. It then 

evaluates the population using a penalty function, and selects and stores top responses 

among them. Afterwards, the covariance matrix is calculated based on the superior 

solutions. The covariance matrix defines the dependency between the two variables, this 

algorithm then obtains the eigenvectors and eigenvalues of the covariance matrix. After that, 

with the help of the PCA, ECM identifies the directions that contain the largest number of 

superior responses, and then generates a new population using these directions and random 

normal distribution. This increases the chance of finding better solutions. In this paper, to 

evaluate the capability of ECM algorithm in optimum design of frames, three benchmark 

steel frameworks have been evaluated through this method with AISC-LRFD specifications.  

 In Section two of this paper, the ECM algorithm is briefly described and the 

relationships required for optimal design of steel frames are presented. Section three 

introduces the AISC-LRFD requirements and specifications for steel frame design. In 

Section four, the three benchmark steel frames are optimized by using the ECM method and 

the results are compared to other studies. The final section gives an overview of the ECM 

optimization technique and its results in the optimal frame design. 

 

2. ECM OPTIMIZATION ALGORITHM 
 

The main idea behind the ECM method is to use principal component analysis to increase 

the chance of finding successful steps. The ECM algorithm is an iterative method that 

generates and evaluates a number of populations at each stage. It then selects a number of 

good results and, determines how they are distributed through PCA and obtains their 

distribution directions. By the weighted combination of the larger dispersed directions, a 

new step or direction is achieved. By adding the step of the new stage to the best response to 

that stage, and using the random normal distribution, a new population is generated. To 

make the ECM algorithm more consistent to solve discrete problems, minor modifications 

have been made to this method. The details of the ECM discrete optimization method used 

for optimal design of steel frames are summarized below. 

At first, the ECM algorithm generates the initial population randomly with respect to the 

upper band and lower band. A penalty function is used to evaluate the produced responses 

and transform the unconstrained optimization problems into constrained problems. The 
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following penalty function is used for this purpose. 

 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) = 𝑊(𝑿)(1 + 𝜀1𝐶)
𝜀2 (1) 

 

𝑓𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) is the penalty function and 𝑿 is design variables vector. 𝜀1 is a constant 

coefficient and is considered to be 50. 𝜀2 is 1.5 at the beginning, and 4 eventually. 𝐶 is the 

sum of the absolute value of the constraint violations, which will be discussed how to be 

calculated in the next section. 𝑊(𝑿) is the weight of the frame obtained as following. 

 

𝑊(𝑿) =∑𝐿𝑗𝑊𝑛𝑗

𝑁𝑒

𝑗=1

 (2) 

 

In this regard, 𝐿𝑗 is the length of the member 𝑗, 𝑊𝑛𝑗 is the nominal weight of the member 

𝑗 and 𝑁𝑒 is the number of frame members. To determine the distribution of good results 

from all the population produced, some will be chosen as good results. Different criteria can 

be chosen for good results, but the criteria used by this method are as follows; Good results 

include two superior solutions and the solutions which allocated value from equation 1 is at 

most three times greater than the value assigned to the best response. By this criterion those 

responses that have no or minor violations will be chosen. Then by duplicating the vectors 

of the design variables the good results are columned into a square matrix 𝑁 × 𝑁. For 

example, if the number of design variables is 10 and the number of good responses is 4, we 

will yield a matrix of 10×8 dimensions by repeating of good solutions twice. Now two more 

vectors from the top answers are randomly selected and added to the previous matrix to 

obtain a 10×10 square matrices. The covariance matrix of this matrix is then calculated. 

After that, the eigenvectors and eigenvalues of the covariance matrix are obtained. The 

eigenvector corresponding to the largest eigenvalue, represents the largest direction of 

dispersion of good solutions. The covariance matrix eigenvectors are arranged in ascending 

order according to their eigenvalues. Covariance matrix eigenvectors with larger eigenvalues 

are used to generate the new population. The number of eigenvectors used to generate the 

new population is suggested as following. 

 

𝜇 = 3 + floor(3 Ln(𝑁)) (3) 

 

Here 𝜇 is the number of eigenvectors used to generate the new population and 𝑁 is the 

number of design variables. Floor is an operator which its output is the smallest integer, less 

than or equal to the input. The following weight vector is used for further contribution of the 

directions on which the more successful results are distributed. 

 

𝑾𝑽 = (

Ln(3 + floor(3 Ln(𝑁))/2 + 1/3) − Ln(1)

Ln(3 + floor(3 Ln(𝑁))/2 + 1/3) − Ln(2)
⋮

Ln(3 + floor(3 Ln(𝑁))/2 + 1/3) − Ln(𝜇)

)

𝜇×1

 (4) 
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𝑾𝑽 is the weight vector. All the components of the weight vector are subdivided by the 

sum of the values of this vector to normalize the weight vector. Thus, the sum of the weight 

vector components is equal to one. 

 

𝑾𝑽𝒏 = 𝑾𝑽/sum(𝑾𝑽) (5) 

 

𝑾𝑽𝒏 is the normal weight vector. It should be noted that as the response vectors 

approach each other, the eigenvector corresponding to the largest eigenvalue converges to a 

fixed vector, so it is not used to define the next step. Now we can define the direction of 

displacement to generate a new population by using the normal weight vector and 

covariance matrix eigenvectors. This direction will be added to the best response produced 

until step 𝑖 and is defined as follows. 

 

𝑺𝒊 =∑𝑊𝑉𝑗
𝑛 

𝜇

𝑗=1

𝑽𝒋+𝟏
𝒊  (6) 

 

In this equation, 𝑺𝒊 is the step or direction created in the 𝑖 th stage and 𝑊𝑉𝑗
𝑛 is the 𝑗 th 

normalized weight vector component. 𝑽𝒋+𝟏
𝒊  represents the 𝑗 + 1 th eigenvector of covariance 

matrix in the 𝑖 th stage. It is mentioned that, the covariance matrix eigenvectors have been 

ascending downward according to their respective eigenvalues. The step size in the first step 

of the implementation of the algorithm is given as following. 

 

𝜎1 = (𝑢𝑏 − 𝑙𝑏)/20 (7) 

 

𝜎1 is the initial step size and 𝑢𝑏 and 𝑙𝑏 are upper bound and lower bound, respectively. If 

the calculated best response from the beginning of the optimization process improves at a 

certain number of iterations, the step size will be increased by 15%, otherwise the step size 

will be reduced by 5%. The number of iterations after which the step size change is 

suggested between 3 and 7 steps. In order to avoid random search, the maximum step size is 

limited to the following value. 

 

𝜎1 = (𝑢𝑏 − 𝑙𝑏)/3 (8) 

 

At the end, the new population is produced by the following equation: 

 

(𝑿𝒊+𝟏)𝑁×1 = (𝑿𝒃)𝑁×1 + ( 𝒉𝒊)𝑁×𝑁 (𝜎𝑖𝑺𝒊) 𝑁×1 (9) 

 

In this equation, 𝑿𝒃 is the best answer to the 𝑖 th stage, 𝜎𝑖 and 𝑺𝒊 are the step size and the 

direction produced in the 𝑖 th stage, respectively. 𝒉𝒊 is a diagonal matrix in the 𝑖 th stage 

where the elements have a standard normal distribution. As previously mentioned, the ECM 

algorithm is iterative and the criterion chosen to stop duplicates in the examples in this 

article is as follows. If the step size falls below 1.5, the optimization process is terminated. 
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3. STEEL FRAME OPTIMIZATION CONSTRAINTS 
 

In this paper, frame members are selected from 267 W-shape profile list of AISC 

database, as shown in Table 1. These sections are arranged in ascending order according to 

the cross section. 

 

Table 1. 267 AISC steel W-shape database. 

 
AISC 

Label 
wn 

(lb/ft) 

A 

(in2) 
Ix 

(in4) 
Iy 

(in4) 
rx 

(in) 

ry 

(in) 
J (in4) 

Sx 

(in3) 
Zx 

(in3) 
Cw (in6) 

1 W6×8.5 8.5 2.51 14.8 1.99 2.43 0.889 0.033 5.08 5.71 15.8 

2 W6×9 9 2.68 16.4 2.2 2.47 0.905 0.0405 5.56 6.23 17.7 

3 W80×10 10 2.96 30.8 2.09 3.22 0.841 0.0426 7.81 8.87 30.9 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
266 W36×798 798 235 62600 4200 16.3 4.23 1050 2980 3580 1490000 

267 W14×808 808 237 16000 5550 8.2 4.82 1840 1400 1830 434000 

 

According to the AISC-LRFD specifications [17], inter-story drift and strength 

constraints are applied. 𝐶 is constraint violation function and expressed as following. 

 

𝐶 = (∑𝐶𝑗
𝑑

𝑁𝑠

𝑗=1

  +∑𝐶𝑗
𝑠

𝑁𝑏𝑐

𝑗=1

) (10) 

 

where 𝐶𝑗
𝑑 and 𝐶𝑗

𝑠 are the constraint violation for inter-story drift, and strength. 𝑁𝑠 and 𝑁𝑏𝑐 

are the number of stories, and the number of beam columns. 𝐶𝑗
𝑑 is defined as follows. 

 

𝐶𝑗
𝑑 = 𝑚𝑎𝑥 ((|𝑑𝑗| − ℎ𝑗/300); 0)      .        𝑗 = 1; 2; … ; 𝑁𝑠 (11) 

 

𝑑 and ℎ are respectively inter-story drift of story, and story height. The LRFD strength 

constrains is calculated as [17] 

 

{
 

 𝐶𝑗
𝑠 =

𝑃𝑢
2 ∅𝑐𝑃𝑛

+ (
𝑀𝑢𝑥

∅𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

∅𝑏𝑀𝑛𝑥
) − 1 for     

𝑃𝑢
∅𝑐𝑃𝑛

< 0.2

𝐶𝑗
𝑠 =

𝑃𝑢
∅𝑐𝑃𝑛

+
8

9
(
𝑀𝑢𝑥

∅𝑏𝑀𝑛𝑥

+
𝑀𝑢𝑦

∅𝑏𝑀𝑛𝑥
) − 1 for     

𝑃𝑢
∅𝑐𝑃𝑛

≥ 0.2

  (12) 

 

where 𝑃𝑢 is the required tensile or compressive strength; 𝑃𝑛 is the nominal tensile or 

compressive strength; ∅𝑐 is the resistance factor (∅𝑐 = 0.9 for tension, ∅𝑐 = 0.85 for 

compression); 𝑀𝑢𝑥 and 𝑀𝑢𝑦 are respectively required flexural strengths in 𝑥 and 𝑦 

directions; 𝑀𝑛𝑥 and 𝑀𝑛𝑦 are respectively the nominal flexural strengths in 𝑥 and 𝑦 

directions; and ∅𝑏 is the flexural resistance reduction factor (∅𝑏 = 0.9). The nominal 

strengths 𝑃𝑛 is calculated by [17]: 
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{
𝑃𝑛 = 𝐴𝑔 𝐹𝑦 for tensile strength

𝑃𝑛 = 𝐴𝑔 𝐹𝑐𝑟 for compressive strength
  (13) 

 

where 𝐴𝑔 is the gross section area of member; 𝐹𝑦 is the yield stress of steel; and 𝐹𝑐𝑟 is 

calculated as [17] 

 

{

𝐹𝑐𝑟 = (0.658
𝜆𝑐
2
) 𝐹𝑦                for  𝜆𝑐  ≤ 1.5

𝐹𝑐𝑟 = (
0.877

𝜆𝑐
2
) 𝐹𝑦                for  𝜆𝑐 > 1.5

 (14) 

 

𝜆𝑐 =
𝐾𝐿

𝑟𝜋
√
𝐹𝑦
𝐸

 (15) 

 

where 𝐿 is the member length; 𝑟 is the radius of gyration; 𝐸 is the modulus of elasticity; and 

𝐾 is the effective length factor which is calculated as [18] 

 

𝐾 = √
1.6𝐺𝐴𝐺𝐵 + 4(𝐺𝐴 + 𝐺𝐵) + 7.5

𝐺𝐴 + 𝐺𝐵 + 7.5
  (16) 

 

where 𝐺𝐴 and 𝐺𝐵 are stiffness ratios of columns and girders at two end joints. The 𝐺 ratio at 

each end is computed as following. 

 

𝐺 =
∑(𝐼/𝐿)𝑐𝑜𝑙𝑢𝑚𝑛
∑(𝐼/𝐿)𝑏𝑒𝑎𝑚

 (17) 

 

where 𝐼 is the moment of inertia. 𝑀𝑛𝑥 and 𝑀𝑛𝑦 in Eq.(12) are calculated as follows [17]. 

 

{
 
 

 
 𝑀𝑃            𝐿𝑏 ≤ 𝐿𝑝

𝐶𝑏  [𝑀𝑃 − (𝑀𝑃 −𝑀𝑟) (
𝐿𝑏 − 𝐿𝑝
𝐿𝑟 − 𝐿𝑝

)]          𝐿𝑝 < 𝐿𝑏 ≤ 𝐿𝑟

𝑀𝑐𝑟 ≤ 𝑀𝑃          𝐿𝑏 > 𝐿𝑟

 (18) 

 

where 𝐿𝑏 is the laterally unbraced length of the member; 𝐿𝑝 is the limiting laterally unbraced 

length for full plastic bending capacity; 𝐿𝑟 is the limiting laterally unbraced length for 

inelastic lateral–torsional buckling; 𝑀𝑟 is the limiting buckling moment; 𝑀𝑐𝑟 is the critical 

elastic moment for the lateral-torsional buckling. These parameters are defined in reference 

[17]. 𝑀𝑃 is defined as follows. 

 

𝑀𝑃 = Z 𝐹𝑦 ≤ 1.5 S 𝐹𝑦 (19) 

where Z and S are respectively the plastic section modulus and the elastic section modulus.  
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4. TEST PROBLEMES 
 

In this section, the ECM algorithm is applied to optimize three benchmark steel frames 

with AISC-LRFD specifications. These include: 1- Two-bay three-story frame 2- Three-bay 

fifteen-story frame 3- Three-bay twenty four-story frame. These frames before this, have 

already been optimized by a number of researchers. The results of applying this algorithm to 

optimal design of these frames have been compared to those of a number of studies. 

According to the number of design variables, in the first problem, the population size equals 

6, in the second problem equals 15, and the last is 20. As previously mentioned, the criterion 

for terminating the program is when the step length is less than 1.5. To collect the statistical 

results, each problem was designed 30 times independently with the ECM algorithm. Due to 

the discretization of the design variables, the continuous design variables is replaced with 

one of the sections in Table 1 which has the largest cross-sectional area of less than or equal 

to the continuous design variable. This algorithm is coded in Matlab and the frames are 

analyzed using direct stiffness method. 

 

4.1 Two-bay three-story frame  

The first example is a two-bay three-story frame that comprises 9 columns and 6 beams. 

The topology and loading conditions of this frame are shown in Figure 1. The cross sections 

of all columns are the same and are selected among the eighteen W10 sections. The cross 

sections of all beams are the same and are selected among all 267 W-shaped sections. This 

problem involves two design variables, the modulus of elasticity of the material is 𝐸 =
29000 𝑘𝑠𝑖 and the yield stress is 𝐹𝑦 = 36 𝑘𝑠𝑖. The effective length factor of frame members 

is calculated by the sway-permitted frame from the simplified transcendental equations of 

reference [18] and 𝐾𝑥 ≥ 1.0. The out of plane effective length factor of members is defined 

as 𝐾𝑦 = 1.0. All columns are unbraced throughout their length and unbraced length of 

beams are 1/6 of span length. According to the LRFD specification, the only constraint to 

design this frame is the strength constrain. 

 

 

Figure 1. Schematic of the two-bay three-story frame. 

Table 2 contains the optimal design variables, the best weight, mean, standard deviation 

of the responses, and the number of analysis for the two-story three-bay frame. The ECM 
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algorithm resulted in two responses. The first result is similar to other studies in Table 2 and 

the second result is in Table 2. As shown in the table, the best weight is the same in all 

methods. Although the ECM method has been stopped after 3120 analyzes, it achieved an 

optimal response after 264 analyses. The reason for non-stop algorithm after finding the 

optimal solution is that the stopping criterion is not met. All of the optimal solutions in 

Table 2 have no violation, and in Fig. 2 the convergence history has been shown for this 

frame. Since all iterations of the algorithm result in the same response, the standard 

deviation for this frame is zero. Figure 3 shows the stress ratio of all members of the two-

story three-bay frame along with the maximum allowable stress ratio. 

 
Table 2. Optimal design for the two-bay three-story frame. 

Element group SBO [19] ACO [20] DDHS [21] GA [22] Present study 

Beam W24×62 W24×62 W24×62 W24×62 W21×62 

Column W10×60 W10×60 W10×60 W10×60 W10×60 

Best weight (Ib) 18,792 18,792 18,792 18,792 18,792 

Mean (Ib) 18,792 19,163 18,792 22,080 18,792 

Standard deviation (Ib) 0 1,693 0 5,818 0 

Number of analyses 502 880 N/A 900 3,120 

 

 
Figure 2. Convergence history of the two-bay three-story frame. 
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Figure 3. Stress ratios for the best designs of the two-bay three-story frame. 

 

4.2 Three-bay fifteen-story frame  

The second example is a three-bay fifteen-story frame, comprising 60 columns and 45 

beams. The topology and loading conditions of this frame are shown in Figure 4. The 

columns of this frame are divided into 10 groups with the same cross-sectional area as 

shown in Fig. 4 and all the beams of this frame have the same cross-sectional area. The 

beams and columns are selected from all 267 W-shape sections. This issue involves eleven 

design variables and the material has a modulus of elasticity 𝐸 = 29000 𝑘𝑠𝑖 and yield stress 

𝐹𝑦 = 36 𝑘𝑠𝑖. The effective length factor of members for the frame with the sway-permitted 

frame is calculated from simplified transcendental equations of reference [18] and 𝐾𝑥 ≥0. 

The out of plane effective length factor members is defined as 𝐾𝑦 = 1.0. All columns are 

unbraced throughout their length, and unbraced length for all beams are 1/5 of span length. 

Based on the AISC-LRFD specification, the design constraints used to design this frame are 

strength constraint and inter-story drift. 
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Figure 4. Schematic of the three-bay fifteen-story frame. 

 

Table 3 contains the optimal design values for 11 design variables of the three-bay 

fifteen-story frame, the best weight and the mean, standard deviation of responses, and the 

number of analyses. As shown in Table 3, although the number of analyses of the ECM 

method is greater than most of the methods, this algorithm has led to the lightest design. 

Figure 5 shows the convergence history of the best and average designs for this frame. 

Figure 6 shows the stress ratio of all members of three-bay fifteen-story frame along with 

the maximum allowable stress ratio. Figure 7 shows the inter-story drift of all the stories 

with the maximum permitted drift. 
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Table 3. Optimal design for the three-bay fifteen-story frame. 

Element 

group 
ECBO [3] 

EWOA 

[23] 
CSS [24] ICA [9] 

HPSACO 

[7] 

AWEO 

[25] 

Present 

study 

1 W14×99 W14×99 W21×147 W24×117 W21×111 W14×99 W14×90 

2 W27×161 W27×161 W18×143 W21×147 W18×158 W27×161 W36×170 

3 W27×84 W27×84 W12×87 W27×84 W10×88 W27×84 W14×82 

4 W24×104 W24×104 W30×108 W27×114 W30×116 W24×104 W24×104 

5 W14×61 W21×68 W18×76 W14×74 W21×83 W14×61 W16×67 

6 W30×90 W18×86 W24×103 W18×86 W24×103 W30×90 W18×86 

7 W14×48 W21×48 W21×68 W12×96 W21×55 W16×50 W21×48 

8 W14×61 W14×68 W14×61 W24×68 W27×114 W21×68 W14×61 

9 W14×30 W8×31 W18×35 W10×39 W10×33 W14×34 W12×30 

10 W12×40 W10×45 W10×33 W12×40 W18×46 W8×35 W10×39 

11 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 W21×44 

Best 

weight 

(Ib) 

86,986 88,090 92,761 93,850 95,850 87,538 86,917 

Mean 

(Ib) 
88,410 90,784 N/A N/A N/A 88,893 91385 

Standard 

deviation 

(Ib) 

N/A N/A N/A N/A N/A N/A 2041 

Number 

of 

analyses 

9,000 19,940 5,000 6,000 6,800 10,670 15,585 

 

 
Figure 5. Convergence history of the three-bay fifteen-story frame. 
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Figure 6. Stress ratios for the best designs of the three-bay fifteen-story frame. 

 

 
Fig. 7. The inter-story drift for the best designs of the three-bay fifteen-story frame. 
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4.3. Three-bay twenty four-story frame 

The third design example is a three-bay twenty four-story frame comprising 96 columns 

and 72 beams. The topology and loading conditions of this frame are shown in Figure 8. The 

columns and beams of this frame, according to Fig. 8, are divided into 16 groups with the 

same cross section and 4 groups with the same cross section respectively. The beams are 

selected from all 267 W-shape sections and columns from the thirty-seven W14 sections. 

This issue includes twenty design variables and has a modulus of elasticity of material 𝐸 =
29732 𝑘𝑠𝑖 and yield stress 𝐹𝑦 = 33.4 𝑘𝑠𝑖. The effective length factor of members for the 

frame with the sway-permitted frame is calculated from simplified transcendental equations 

of reference [18] and 𝐾𝑥 ≥ 0. The out-of-plane effective length factor of member is defined 

as 𝐾𝑦 = 1.0. All columns and beams are unbraced throughout their length. Based on the 

AISC-LRFD specification, the constraints used for designing this frame are strength 

constraint and inter-story drift. 
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Figure 8. Schematic of the three-bay twenty four-story frame. 
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Table 4 contains the optimal design values for twenty design variables of the three-bay 

twenty four-story frame, the best weight and the mean, standard deviation of responses and 

the number of analyses. Although the number of analyses of the ECM method is higher than 

that of the other methods, it has led to the lightest weight. Figure 9 shows the convergence 

history of the best design and average designs for this frame. Figure 10 shows the stress ratio 

of all members of the three-bay twenty four-story with the maximum allowable stress ratio. 

Figure 11 shows the inter-story drift of all the stories with the maximum permitted drift. 
 

Table 4. Optimal design for the three-bay twenty four-story frame. 

Element 

group 
SBO [19] ECBO [3] CSS [24] ICA [9] TLBO [26] HS [27] EWOA [23] Present study 

1 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 W30×90 

2 W8×18 W6×15 W21×50 W21×50 W8×18 W10×22 W10×30 W6×15 

3 W21×48 W24×55 W21×48 W24×55 W24×62 W18×40 W24×55 W24×55 

4 W6×8.5 W6×8.5 W12×19 W8×28 W6×9 W12×16 W6×8.5 W6×8.5 

5 W14×152 W14×145 W14×176 W14×109 W14×132 W14×176 W14×159 W14×159 

6 W14×120 W14×132 W14×145 W14×159 W14×120 W14×176 W14×99 W14×132 

7 W14×109 W14×99 W14×109 W14×120 W14×99 W14×132 W14×120 W14×109 

8 W14×74 W14×90 W14×90 W14×90 W14×82 W14×109 W14×74 W14×74 

9 W14×82 W14×74 W14×74 W14×74 W14×74 W14×82 W14×74 W14×53 

10 W14×43 W14×38 W14×61 W14×68 W14×53 W14×74 W14×43 W14×43 

11 W14×34 W14×38 W14×34 W14×30 W14×34 W14×34 W14×30 W14×38 

12 W12×19 W14×22 W14×34 W14×38 W14×22 W14×22 W14×22 W14×22 

13 W14×109 W14×99 W14×145 W14×159 W14×109 W14×145 W14×90 W14×90 

14 W14×109 W14×99 W14×132 W14×132 W14×99 W14×132 W14×120 W14×99 

15 W14×99 W14×99 W14×109 W14×99 W14×99 W14×109 W14×90 W14×90 

16 W14×99 W14×82 W14×82 W14×82 W14×90 W14×82 W14×99 W14×90 

17 W14×68 W14×68 W14×68 W14×68 W14×68 W14×61 W14×68 W14×82 

18 W14×61 W14×61 W14×43 W14×48 W14×53 W14×48 W14×61 W14×61 

19 W14×34 W14×30 W14×34 W14×34 W14×34 W14×30 W14×43 W14×30 

20 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 W14×22 

Best 

weight 

(Ib) 

202,422 201,618 212,449 212,725 203,008 214,860 203,490 201,330 

Mean 

(Ib) 
209,560 209,644 215,313 N/A N/A 222,620 208,648 211,115 

Standard 

deviation 

(Ib) 

7,052 N/A 2,448 N/A N/A 5,800 N/A 6,774 

Number 

of 

analyses 

14,572 15,360 5,500 7,500 12,000 14,651 18,820 21,400 
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Figure 9. Convergence history of the three-bay twenty four-story frame. 

 

 
Figure 10. Stress ratios for the best designs of the three-bay twenty four-story frame. 
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Figure 11. The inter-story drift for the best designs of the three-bay twenty four-story frame. 

 

 

5. CONCLUSION 
 

In this study, the discrete ECM technique was used to optimize discrete steel frames. The 

objective function is to minimize the weight of the steel frames under constraints, the 

strength and the inter-story drift of the AISC-LRFD specification. The ECM algorithm 

identifies the successful results at each stage and, by the help of the PCA, determines how 

they are distributed and utilizes the successful distributions to create a new population. 

Using this method of statistical concepts increases the chance of finding successful steps. 

Three benchmark steel frame were examined to evaluate the efficiency and usefulness of 

this technique. In the two-bay three-story frame, the best response obtained with the ECM, 

was the same as the best of the other methods. In the three-bay fifteen-story frame and the 

three-bay twenty four-story frame, the results of this method were lighter than other 

algorithms. It may be possible to consider the number of further analyses of this technique as 

a weak point of this algorithm in comparison with other methods, but the good results of this 

algorithm partially offsets this shortcoming. According to the received statistical results, 

ECM is a robust and suitable method and it can be utilized for optimal design of steel frame 

problems. 
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