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ABSTRACT 
 

This study focuses on using an artificial neural network (ANN) based model for predicting 

the performance of high strength concrete (HSC) beams strengthened with surface mounted 

FRP laminates. Eight input parameters such as geometrical properties of the beam and 

mechanical properties of FRP laminates were considered for this study. Back propagation 

network with Lavenberg-Marquardt algorithm has been chosen for the proposed network, 

which has been implemented using the programming package MATLAB. In the present 

study, comparison has been made between the experimental results and those predicted 

through neural network modeling. The amount of MAPE and RMSE were predicted and 

were found to be acceptable range. The statistical indicators such as correlation co-efficient 

(r) and co-efficient of determination (R2) were also predicted to estimate the accuracy of 

results obtained through ANN modeling. The results predicted through ANN modeling 

exhibit good correlation with the experimental results. 
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1. INTRODUCTION 
 

Now-a-days, strengthening of high strength concrete members with surface mounted fibre 

reinforced polymer laminates (FRP) has proved to be an effective and appropriate technique 

to improve their performance under service loads or ultimate loads [1]. This technique has 

several advantages because of the inherent characeteristics of FRP material such as high 

strength-to-weight ratio, low maintenance cost and higher corrosion resistance [2]. Fibre-

reinforced polymer (FRP) is a composite material made of a polymer matrix reinforced with 

fibres. FRP composites are becoming an alternative material for rehabilitation and 

retrofitting projects around the world [3]. Depending on the design objectives, these 
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materials can be used to improve one or more of the structural member characteristics such 

as load capacity, ductility and durability [4,5]. Design of structural strengthening 

applications using surface mounted FRP composites is usually based on conventional design 

approaches with improvements to account for the presence and characteristics of the FRP 

material. In the meantime, soft computing and artificial intelligence techniques like artificial 

neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and optimization 

algorithms (GA) have also been used in various civil engineering applications. An effort has 

been taken by some researchers in the area of soft computing and artificial intelligence 

techniques [5-8]. Shanmugavelu et al [5] proposed an ANN based model for predicting the 

performance characteristics of reinforced concrete beams strengthened with glass fibre 

reinforced polymer laminates. The model was developed using general regression neural 

network (GRNN) to predict different target parameters such as yield load, deflection at yield 

load, ultimate load, deflection at ultimate load and ductility ratio respectively. The authors 

reported that the proposed artificial neural network based model performed well to predict 

the target parameters. Metwally [6] predicted the flexural capacity of reinforced concrete 

beams using artificial neural network. The feed-forward back-propagation neural network 

was applied to predict the flexural load capacity. The author reported that the proposed ANN 

model provides accurate results in calculating the ultimate flexural load. Amani and Moeini 

[7] predicted the shear strength of reinforced concrete (RC) beams using ANN and ANFIS 

based model. Back-Propagation (BP) algorithm was used to predict the shear strength of RC 

beams. The authors reported that the ANN based model was better than that of ANFIS based 

model and the two models provide better prediction when compared to ACI and ICI 

empirical codes. Pannirselvam et al [8] developed an ANN based model for predicting the 

effectiveness of glass fibre reinforced polymer laminates on the performance of RC beams. 

The results of fifteen reinforced concrete beams with an ANN based model were reported in 

this study. The authors reported that the ANN based model provided a reasonable prediction 

of the target parameters. The predicted results are in good agreement with the experimental 

results. This study has been taken up for predicting the performance of high strength 

concrete (HSC) beams strengthened with surface mounted FRP laminates using an artificial 

neural network (ANN) based model. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Artificial neural network (ANN) 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired 

by the way biological nervous systems such as brain and process information. The key 

element of this paradigm is the novel structure of the information processing system. It is 

composed of a large number of highly interconnected processing elements (neurons) 

working in unison to solve specific problems. There are other ANNs which are adaptive 

systems used to model things such as environments and population. The ANN attempts to 

recreate the computational mirror of the biological neural network, although it is not 

comparable since the number and complexity of neutrons used in a biological neural 

network is many times more than those in an artificial neutral network. An ANN is 

comprised of a network of artificial neurons (also known as "nodes"). These nodes are 
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connected to each other and the strength of their connection to one another is assigned a 

value based on their strength: inhibition (maximum being -1.0) or excitation (maximum 

being +1.0). If the value of the connection is high, then it indicates that there is a strong 

connection. Within each node's design, a transfer function is built in. There are three types 

of neutrons in an ANN, input nodes, hidden nodes, and output nodes. The neural network 

architecture is shown in Fig. 1. 

 

 
Figure 1. Architecture of Neural Network 

 

2.2 Human nervous system versus artificial neural network 

Artificial neuron is a basic building block of every artificial neural network. Its design and 

functionalities are derived from observation of a biological neuron that is basic building 

block of biological neural networks (systems) which includes the brain, spinal cord and 

peripheral ganglia. Similarities in design and functionalities can be seen in Fig. 2. Fig. 2(a) 

represents a biological neuron with its soma, dendrites and axon and Fig. 2(b) represents an 

artificial neuron with its inputs, weights, transfer function, bias and outputs. 

 

  
(a) Biological neural network (b) Artificial neural network 

Figure 2. Structure of Biological Neural Network and Artificial Neural Network 
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In case of biological neuron, information comes into the neuron via dendrite; soma 

processes the information and passes it on via axon. In case of artificial neuron, information 

comes into the body of an artificial neuron via inputs that are weighted (each input can be 

individually multiplied with a weight). The body of an artificial neuron then sums the 

weighted inputs, bias and “processes” the sum with a transfer function. At the end, an 

artificial neuron passes the processed information via output(s).  

 

2.3 Data used in ANN modeling 

The geometrical properties of the beam such as length (L), breadth (B) and depth (D) of the 

section, reinforcement ratio (ρ), characteristic compressive strength of concrete (fck) and the 

mechanical properties of FRP laminates such as tensile strength (ffrp) and elasticity modulus 

(Efrp) were considered as the input parameters. The experimental results of all the test beams 

such as yield load (Py), deflection at yield load (Δy), service load (Ps), deflection at service load 

(Δs), ultimate load (Pu), deflection at ultimate load (Δu) and deflection ductility (DD) were 

considered as the target parameters. The input and target parameters for ANN modeling are 

presented through Tables 1 and 2. 

 
Table 1: Input parameters for ANN modeling 

Beam 

designation 

L 

(mm) 

B 

(mm) 

D 

(mm) 

T 

(mm) 

ffrp 

(MPa) 

Efrp 

(GPa) 

ρs 

(%) 

fck 

(MPa) 

RA 3000 150 250 0.00 0.0 0.00 0.419 64.0 

RAC3 3000 150 250 3.00 126.2 7.47 0.419 64.0 

RAC5 3000 150 250 5.00 156.0 11.39 0.419 64.0 

RAU3 3000 150 250 3.00 446.9 13.97 0.419 64.0 

RAU5 3000 150 250 5.00 451.5 17.37 0.419 64.0 

RB 3000 150 250 0.00 0.00 0.00 0.628 64.0 

RBC3 3000 150 250 3.00 126.2 7.47 0.628 64.0 

RBC5 3000 150 250 5.00 156.0 11.39 0.628 64.0 

RBU3 3000 150 250 3.00 446.9 13.97 0.628 64.0 

RBU5 3000 150 250 5.00 451.5 17.37 0.628 64.0 

 
Table 2: Target parameters for ANN modeling 

Beam 

designation 
Py (kN) Δy (mm) Ps (kN) Δs (mm) Pu (kN) Δu (mm) DD 

RA 29.42 7.91 27.79 14.03 41.68 21.05 2.66 

RAC3 36.77 9.02 34.32 22.31 51.48 33.46 3.70 

RAC5 46.58 10.10 44.13 31.21 66.19 46.81 4.63 

RAU3 51.48 11.42 47.39 35.50 71.09 53.26 4.66 

RAU5 53.70 10.74 52.30 38.14 78.45 57.21 5.32 

RB 39.22 8.11 35.95 20.85 53.93 31.28 3.86 

RBC3 51.48 11.35 40.86 24.15 61.29 36.23 3.19 

RBC5 53.24 12.41 42.49 37.94 63.74 56.91 4.59 

RBU3 58.80 12.85 58.83 40.69 88.25 61.04 4.75 

RBU5 63.00 12.69 67.00 43.73 100.51 65.59 2.66 
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2.4 Steps involved in ANN modeling 

In this stage, the input data are divided into three groups which are train data, validate data 

and test data. The step-wise procedure for ANN modeling is presented through Figs. 3 to 10. 

 

2.4.1 Building the network  

This stage, specifies the number of hidden layers, neurons in each layer, transfer function in 

each layer, training function, weight/bias learning function and performance function as 

shown in Figs. 3 and 4. 

 

 
Figure 3. Architecture of proposed NN model 

 

 
Figure 4. Neural network architecture 

 

2.4.2 Training the network 

Back propagation algorithms are used to developing the artificial neural network. The 

training processes are shown through Figs. 5 and 6. The weights are adjusted to make the 

actual outputs (predicted) close to the target (measured) outputs of the network.  
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Figure 5. Training Network Wizards 

 

 
Figure 6. Neural Network Training 

 

2.4.3 Test performance of model 

The fitness of the developed model is shown through Figs. 7 to 10. At this stage, unseen 

data are exposed to the model. 
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Figure 7. Neural Network Regression Plot 

 

 
Figure 8. Neural Network Training Performance Plot 

 

 
Figure 9. Neural Network Training State 
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Figure 10. Neural Network Error Histogram State 

 

2.5 Data used for validating the ANN results 

The experimental results pertinent to this problem from other researchers published work 

were used for the purpose of validating the ANN model. Data such as length of the section 

(L), breath of the section (B), depth of the section (D), thickness of FRP laminates (tfrp), 

tensile strength of FRP laminates (ffrp), elasticity modulus of FRP laminates (Efrp), 

reinforcement ratio (ρ) and characteristic strength of concrete at 28 days (fck) taken from the 

research works [] are presented through Tables 3 to 4.  

 
Table 3: Input parameters for ANN modeling 

Authors name 
Beam 

designation 

L 

(mm) 

B 

(mm) 

D 

(mm) 

T 

(mm) 

ffrp 

(MPa) 

Efrp 

(GPa) 

ρs 

(%) 

fck 

(MPa) 

Hashemi et al. 

(2009) 

AH0 3000 150 250 0.00 0.0 0.00 0.107 77.0 

AH1 3000 150 250 0.05 3850.0 230.00 0.107 77.0 

AH4 3000 150 250 0.18 3850.0 230.00 0.107 77.0 

ACG3 3000 150 250 0.48 3850.0 230.00 0.107 77.0 

BHO 3000 150 250 0.00 0.0 0.00 0.203 77.0 

BH1 3000 150 250 0.05 3850.0 230.00 0.203 77.0 

BH4 3000 150 250 0.18 3850.0 230.00 0.203 77.0 

BCG3 3000 150 250 0.48 3850.0 230.00 0.203 77.0 

Phalguni 

Mukhopadhyaya 

et al. 

(1998) 

SAB1 3000 150 250 0.00 0.0 0.00 0.565 66.7 

FS1 3000 150 250 2.50 786.5 152.70 0.565 53.3 

FS2 3000 150 250 3.50 786.5 229.00 0.565 54.0 

FS3 3000 150 250 3.50 786.5 229.00 0.565 66.5 

FS4 3000 150 250 3.50 786.5 229.00 0.565 79.7 

FS5 3000 150 250 3.50 786.5 229.00 0.565 66.6 
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Rabinovith 

et al. 

(2003) 

A1 2500 200 200 0.00 0.0 0.00 0.482 76.3 

 A2 2500 200 200 1.20 2800.0 165.00 0.482 76.3 

 A3 2500 200 200 1.20 2800.0 165.00 0.482 76.3 

 B1 2500 200 200 0.00 0.0 0.00 0.482 76.3 

 B2 2500 200 200 1.20 2800.0 165.00 0.482 76.3 

Grace et al. 

(2002) 
C 2744 152 254 0.00 0.0 0.00 0.521 65.2 

 C-1 2744 152 254 0.13 2413.0 231.00 0.521 65.2 

 C-2 2744 152 254 1.30 2413.0 231.00 0.521 65.2 

 C-3 2744 152 254 1.90 2413.0 231.00 0.521 65.2 

 H-50-2 2744 152 254 1.00 1324.0 379.00 0.521 65.2 

 H-75-2 2744 152 254 1.50 1324.0 379.00 0.521 65.2 

Mahfuz ud darain 

et al. 

(2016) 

CB 3300 125 250 0.00 0.0 0.00 0.724 60.5 

 CBC8P1 3300 125 250 0.17 4900.0 230.00 0.724 60.5 

 CBC8P2 3300 125 250 0.34 4900.0 230.00 0.724 60.5 

 CBC10P1 3300 125 250 0.17 4900.0 230.00 0.724 60.5 

 CBC10P2 3300 125 250 0.34 4900.0 230.00 0.724 60.5 

 CBC10PA 3300 125 250 0.34 4900.0 230.00 0.724 60.5 

Maghsoudi 

et al. (2009) 
AH0 3000 150 250 0.00 0.0 0.00 1.200 77.0 

 AHF 3000 150 250 0.94 2800.0 165.00 1.200 77.0 

 AHD 3000 150 250 0.67 2800.0 165.00 1.200 77.0 

 BH0 3000 150 250 0.00 0.0 0.00 2.400 77.0 

 BHF 3000 150 250 0.94 2800.0 165.00 2.400 77.0 

 BHD 3000 150 250 0.67 2800.0 165.00 2.400 77.0 

Fanning et al. 

(2001) 
F1 3000 155 240 0.00 0.0 0.00 0.912 80.0 

 F2 3000 155 240 0.00 0.0 0.00 0.912 80.0 

 F3 3000 155 240 1.20 2400.0 155.00 0.912 80.0 

 F4 3000 155 240 1.20 2400.0 155.00 0.912 80.0 

 F5 3000 155 240 1.20 2400.0 155.00 0.912 80.0 

 F6 3000 155 240 1.20 2400.0 155.00 0.912 80.0 

 F7 3000 155 240 1.20 2400.0 155.00 0.912 80.0 

 F8 3000 155 240 1.20 2400.0 155.00 0.912 80.0 

Gopinathan et al. 

(2016) 
CBHSC 3000 150 250 0.00 0.0 0.00 0.603 67.0 

 C3HSC 3000 150 250 3.00 126.2 7.47 0.603 67.0 

 C5HSC 3000 150 250 5.00 156.0 11.39 0.603 67.0 

 W3HSC 3000 150 250 3.00 147.4 6.86 0.603 67.0 

 W5HSC 3000 150 250 5.00 178.1 8.99 0.603 67.0 

 U3HSC 3000 150 250 3.00 446.9 13.97 0.603 67.0 
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Table 4: Source Data used for Validation of Predicted Results 
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Hashemi et 

al.(2009) 

AH0 63.93 21.00 54.17 68.00 81.25 102.00 4.35 

AH1 69.50 13.00 59.93 33.61 89.90 50.42 3.88 

AH4 64.70 9.83 78.20 21.90 117.30 32.85 3.34 

ACG3 67.33 10.37 69.33 17.47 104.66 26.20 2.53 

BH0 122.22 13.33 99.68 63.80 149.52 95.70 7.18 

BH1 130.00 14.11 100.00 42.16 150.00 63.24 4.48 

BH4 118.00 12.86 111.33 20.61 167.00 30.92 2.40 

BCG3 130.66 13.80 108.22 17.33 162.33 26.00 1.88 

Phalguni et 

al. (1998) 

SAB1 170.50 22.17 133.26 19.07 199.90 28.60 1.29 

FS1  190.25 25.92 140.93 18.32 211.40 27.48 1.06 

FS2 179.00 30.60 131.27 20.61 196.90 30.91 1.10 

FS3 199.90 27.14 146.53 22.61 219.80 33.92 1.52 

FS4 215.35 20.63 155.53 26.40 233.30 39.60 2.16 

FS5 214.70 19.24 154.6 24.2 231.90 36.36 1.58 

Rabinovith 

et al. (2003) 

A1 65.00 9.90 50.28 33.33 75.42 50.00 5.05 

A2 140.00 10.50 104.40 11.33 156.60 17.00 1.62 

A3 135.00 11.00 118.67 12.67 178.00 19.00 1.72 

B1 109.00 12.00 73.33 32.67 110.00 49.00 4.04 

B2 155.00 11.50 124.93 12.67 187.40 19.00 1.65 

Grace et 

al.(2002) 

C 82.30 14.00 63.80 33.00 95.70 49.52 3.55 

C-1 85.90 13.20 67.93 18.93 101.90 28.40 2.15 

C-2 132.60 16.00 88.40 10.67 132.60 16.00 1.00 

C-3 107.70 13.50 89.60 14.73 134.40 22.10 1.64 

H-50-2 97.90 15.20 76.53 23.73 114.80 35.60 2.33 

H-75-2 113.90 13.70 87.20 19.47 130.80 29.20 2.13 

Mahfuz ud 

darain et al. 

(2016) 

CB 36.00 15.00 26.00 22.87 39.00 34.30 2.29 

C8P1 50.00 14.90 47.33 26.47 71.00 39.70 2.66 

C8P2 55.00 15.20 51.33 20.87 77.00 31.30 2.06 

C10P1 54.00 16.60 54.67 28.87 82.00 43.30 2.60 

C10P2 69.00 23.70 58.00 28.47 87.00 42.70 1.80 

C10P2A 80.00 24.70 70.00 31.93 105.00 47.90 1.90 

Fanning et 

al.(2001) 

F1 53.00 12.18 45.53 31.33 68.30 47.00 3.86 

F2 53.50 12.12 45.27 30.00 67.90 45.00 3.71 

F3 82.90 11.95 73.93 14.67 110.90 22.00 1.84 

F4 83.60 12.50 79.00 16.00 118.50 24.00 1.92 

F5 85.60 10.96 66.67 11.33 100.00 17.00 1.55 

F6 85.60 12.73 68.67 13.33 103.00 20.00 1.57 

F7 83.70 12.50 65.00 12.00 97.50 18.00 1.44 

F8 78.30 13.10 54.67 10.67 82.00 16.00 1.22 

Maghsou di 

et al. (2009) 

AH0 63.73 11.89 54.17 48.00 81.25 72.00 6.05 

AHF 76.70 11.13 68.67 15.49 103.00 23.23 2.08 
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AHD 71.30 10.15 67.33 13.31 101.00 19.96 1.97 

BHF 122.00 13.04 89.93 38.00 134.90 57.00 4.28 

BHD 124.00 12.18 107.33 16.25 161.00 24.38 1.87 

Gopinathan 

et al. (2016) 

CBHSC 35.00 2.34 108.76 16.70 163.30 25.05 2.07 

C3HSC 40.00 3.09 36.67 4.69 55.00 7.03 3 

C5HSC 45.00 3.78 43.33 5.97 65.00 8.95 2.89 

W3HSC 45.00 3.91 60.00 8.00 90.00 12.00 3.17 

W5HSC 50.00 4.17 46.67 6.29 70.00 9.44 2.414 

U3HSC 68.00 4.32 66.67 8.55 100.00 12.82 3.07 

U5HSC 76.00 4.46 80.00 10.75 120.00 16.13 3.73 

 

 

3.0 RESULTS AND DISCUSSION 
 

The proposed Artificial Neural Network (ANN) based model was performed well for 

predicting the performance parameters of FRP strengthened high strength concrete beams 

such as yield load, deflection at yield load, service load, deflection at service load, ultimate 

load, deflection at ultimate load, and deflection ductility. To ascertain the accuracy of the 

models, scatter plots were drawn between the experimental results and those results 

predicted through ANN model as shown in Fig. 11. 

The predicted versus experimental value for the yield load and deflection at yield load are 

shown through Figs. 11(a) and (b).The ANN predictions for the yield load resulted in a 

MAPE of 5.23%, a RMSE of 6.375, a correlation co-efficient of 0.934 and a co-efficient of 

determination of 0.981 was observed at 50 epochs. For the deflection at yield load, the ANN 

resulted in a correlation co-efficient of 0.926, a co-efficient of determination of 0.966, a 

RMSE of 1.055 and a MAPE of 5.31% was observed at 30epochs. 

The predicted versus experimental value for the service load and deflection at service 

load are presented through Figs. 11(c) and (d). For the service load, the ANN yields a 

correlation co-efficient of 0.918, co-efficient of determination of 0.968, a RMSE of 

6.621and a MAPE of 5.99% was observed at 37 epochs. The ANN predictions for the 

deflection at service load resulted in a correlation co-efficient of 0.927, a co-efficient of 

determination of 0.980, a RMSE of 1.786 and a MAPE of 6.07% was observed at 17epochs.  

The ANN prediction for the ultimate load resulted in a correlation co-efficient of 0.953, a 

co-efficient of determination of 0.960, a RMSE of 9.542 and a MAPE of 5.85% was 

observed at 60 epochs. The ANN resulted in a correlation co-efficient of 0.937, a co-

efficient of determination of 0.974, a RMSE of 3.121 and a MAPE of 6.93% was observed 

at 40epochs in the prediction of deflection at ultimate load. Good convergence was observed 

between the experimental results and predicted results for ultimate load and deflection at 

ultimate load as shown through Figs. 11 (e) and (f).  

The predicted versus experimental value for the deflection ductility is shown in Fig. 11 

(g). The ANN resulted in a correlation co-efficient of 0.966, a co-efficient of determination 

of 0.988, a RMSE of 6.352 and a MAPE of 9.54% was observed at 18epochs in the 

prediction of deflection ductility. Good convergence was observed between the experimental 

results and the predicted results. The summary of performance evaluation of ANN model is 

reported in Table 5.  
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The results of ANN model have been validated using other researcher’s results to 

improve its accuracy. The input and target parameters considered for the validation of results 

are presented in Tables 3 and 4. The results predicted through ANN modeling are presented 

through Fig. 11 (a) to (g) in the form of scatter plots. From Fig. 11 (a) to (g), it can be 

observed that most of the points fall along the diagonal line for the ANN prediction model. 

It shows that the results predicted through ANN model are in very good agreement with the 

experimental results. 

 

  
(a) Yield load (b) Deflection at Yield Load 

  
(c) Service Load (d) Deflection at Service Load 
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(e) Ultimate Load (f) Deflection at Ultimate Load 

 
(g) Deflection Ductility 

Figure 11. Comparison of Experimental and Predicted Results 

 
Table 5: Performance evaluation of ANN model 

S.NO Output parameters r RMSE MAPE R2 

1 Yield load (kN) 0.934 6.375 5.230 0.981 

2 Deflection at Yield load (mm) 0.925 1.055 5.310 0.966 

3 Ultimate load(kN) 0.954 9.542 5.850 0.960 

4 Deflection at ultimate load(mm) 0.938 3.121 6.930 0.974 

5 Service load(kN) 0.918 6.624 5.990 0.968 

6 Deflection at service load (mm) 0.927 1.786 6.070 0.980 

7 Deflection ductility 0.966 0.351 9.540 0.938 
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4. CONCLUSIONS 
 

This main aim of this study focuses on using an artificial neural network (ANN) based 

model for predicting the performance of high strength reinforced concrete (HSC) beams 

strengthened with surface mounted FRP laminates. The performances of the models were 

evaluated and the results predicted through ANN modeling were compared with the 

experimental results. The results predicted through ANN modeling exhibited better 

convergence with the experimental results. Also the results show that ANN modeling is a 

more accurate and reliable tool for evaluating the performance of high strength concrete 

beams strengthened with FRP laminates under static loading condition. This is evident from 

the values of correlation co-efficient (r), RMSE, MAPE and R2, which are global, more 

realistic and meaningful error types. It can be seen from the obtained results that the lowest 

RMSE and MAPE and the highest r and R2. A correlation co-efficient of 0.918 to 0.966 and 

a co-efficient of determination of 0.938 to 0.981 was observed for HSC beams strengthened 

with FRP laminates while predicting the convergence through scatter plots. 
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