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ABSTRACT

This study focuses on using an artificial neural network (ANN) based model for predicting
the performance of high strength concrete (HSC) beams strengthened with surface mounted
FRP laminates. Eight input parameters such as geometrical properties of the beam and
mechanical properties of FRP laminates were considered for this study. Back propagation
network with Lavenberg-Marquardt algorithm has been chosen for the proposed network,
which has been implemented using the programming package MATLAB. In the present
study, comparison has been made between the experimental results and those predicted
through neural network modeling. The amount of MAPE and RMSE were predicted and
were found to be acceptable range. The statistical indicators such as correlation co-efficient
(r) and co-efficient of determination (R?) were also predicted to estimate the accuracy of
results obtained through ANN modeling. The results predicted through ANN modeling
exhibit good correlation with the experimental results.
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1. INTRODUCTION

Now-a-days, strengthening of high strength concrete members with surface mounted fibre
reinforced polymer laminates (FRP) has proved to be an effective and appropriate technique
to improve their performance under service loads or ultimate loads [1]. This technique has
several advantages because of the inherent characeteristics of FRP material such as high
strength-to-weight ratio, low maintenance cost and higher corrosion resistance [2]. Fibre-
reinforced polymer (FRP) is a composite material made of a polymer matrix reinforced with
fibres. FRP composites are becoming an alternative material for rehabilitation and
retrofitting projects around the world [3]. Depending on the design objectives, these
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materials can be used to improve one or more of the structural member characteristics such
as load capacity, ductility and durability [4,5]. Design of structural strengthening
applications using surface mounted FRP composites is usually based on conventional design
approaches with improvements to account for the presence and characteristics of the FRP
material. In the meantime, soft computing and artificial intelligence techniques like artificial
neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and optimization
algorithms (GA) have also been used in various civil engineering applications. An effort has
been taken by some researchers in the area of soft computing and artificial intelligence
techniques [5-8]. Shanmugavelu et al [5] proposed an ANN based model for predicting the
performance characteristics of reinforced concrete beams strengthened with glass fibre
reinforced polymer laminates. The model was developed using general regression neural
network (GRNN) to predict different target parameters such as yield load, deflection at yield
load, ultimate load, deflection at ultimate load and ductility ratio respectively. The authors
reported that the proposed artificial neural network based model performed well to predict
the target parameters. Metwally [6] predicted the flexural capacity of reinforced concrete
beams using artificial neural network. The feed-forward back-propagation neural network
was applied to predict the flexural load capacity. The author reported that the proposed ANN
model provides accurate results in calculating the ultimate flexural load. Amani and Moeini
[7] predicted the shear strength of reinforced concrete (RC) beams using ANN and ANFIS
based model. Back-Propagation (BP) algorithm was used to predict the shear strength of RC
beams. The authors reported that the ANN based model was better than that of ANFIS based
model and the two models provide better prediction when compared to ACI and ICI
empirical codes. Pannirselvam et al [8] developed an ANN based model for predicting the
effectiveness of glass fibre reinforced polymer laminates on the performance of RC beams.
The results of fifteen reinforced concrete beams with an ANN based model were reported in
this study. The authors reported that the ANN based model provided a reasonable prediction
of the target parameters. The predicted results are in good agreement with the experimental
results. This study has been taken up for predicting the performance of high strength
concrete (HSC) beams strengthened with surface mounted FRP laminates using an artificial
neural network (ANN) based model.

2. MATERIALS AND METHODS

2.1 Artificial neural network (ANN)

An Acrtificial Neural Network (ANN) is an information processing paradigm that is inspired
by the way biological nervous systems such as brain and process information. The key
element of this paradigm is the novel structure of the information processing system. It is
composed of a large number of highly interconnected processing elements (neurons)
working in unison to solve specific problems. There are other ANNs which are adaptive
systems used to model things such as environments and population. The ANN attempts to
recreate the computational mirror of the biological neural network, although it is not
comparable since the number and complexity of neutrons used in a biological neural
network is many times more than those in an artificial neutral network. An ANN is
comprised of a network of artificial neurons (also known as "nodes™). These nodes are
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connected to each other and the strength of their connection to one another is assigned a
value based on their strength: inhibition (maximum being -1.0) or excitation (maximum
being +1.0). If the value of the connection is high, then it indicates that there is a strong
connection. Within each node's design, a transfer function is built in. There are three types
of neutrons in an ANN, input nodes, hidden nodes, and output nodes. The neural network
architecture is shown in Fig. 1.
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Figure 1. Architecture of Neural Network

2.2 Human nervous system versus artificial neural network

Artificial neuron is a basic building block of every artificial neural network. Its design and
functionalities are derived from observation of a biological neuron that is basic building
block of biological neural networks (systems) which includes the brain, spinal cord and
peripheral ganglia. Similarities in design and functionalities can be seen in Fig. 2. Fig. 2(a)
represents a biological neuron with its soma, dendrites and axon and Fig. 2(b) represents an
artificial neuron with its inputs, weights, transfer function, bias and outputs.
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Figure 2. Structure of Biological Neural Network and Artificial Neural Network
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In case of biological neuron, information comes into the neuron via dendrite; soma
processes the information and passes it on via axon. In case of artificial neuron, information
comes into the body of an artificial neuron via inputs that are weighted (each input can be
individually multiplied with a weight). The body of an artificial neuron then sums the
weighted inputs, bias and “processes” the sum with a transfer function. At the end, an
artificial neuron passes the processed information via output(s).

2.3 Data used in ANN modeling

The geometrical properties of the beam such as length (L), breadth (B) and depth (D) of the
section, reinforcement ratio (p), characteristic compressive strength of concrete (f) and the
mechanical properties of FRP laminates such as tensile strength (fs,) and elasticity modulus
(Esp) were considered as the input parameters. The experimental results of all the test beams
such as yield load (Py), deflection at yield load (Ay), service load (Ps), deflection at service load
(As), ultimate load (P,), deflection at ultimate load (A,) and deflection ductility (DD) were
considered as the target parameters. The input and target parameters for ANN modeling are
presented through Tables 1 and 2.

Table 1: Input parameters for ANN modeling

designation (mm) (mm) (mm) (mm) (MPa) (GPa) (%) (MPa)
RA 3000 150 250 0.00 0.0 0.00 0.419 64.0

RAC3 3000 150 250 3.00 126.2 7.47 0.419 64.0
RAC5 3000 150 250 5.00 156.0 1139  0.419 64.0
RAU3 3000 150 250 3.00 4469 1397 0419 64.0
RAUS 3000 150 250 5.00 4515 1737 0.419 64.0

RB 3000 150 250 0.00 0.00 0.00 0.628 64.0
RBC3 3000 150 250 3.00 126.2 7.47 0.628 64.0
RBC5 3000 150 250 5.00 156.0 1139 0.628 64.0
RBU3 3000 150 250 3.00 4469 1397 0.628 64.0
RBU5S 3000 150 250 5.00 4515 17.37  0.628 64.0

Table 2: Target parameters for ANN modeling

des?ger?;?ion Py (kN) A (mm) Ps(kN) As(mm) Py(kN) A,(mm) DD
RA 29.42 791 2779 1403  41.68  21.05  2.66
RAC3 36.77 9.02 3432 2231 5148 3346  3.70
RAC5 4658 1010 4413 3121 6619 4681  4.63
RAU3 5148 1142 4739 3550  71.09 5326  4.66
RAU5 5370 1074 5230 3814 7845 5721 532
RB 39.22 811 3595 2085 5393 3128  3.86
RBC3 5148 1135 4086 2415 6129 3623  3.19
RBC5 5324 1241 4249 3794 6374 5691 459
RBU3 58.80  12.85 58.83 4069 8825 6104 475

RBU5 63.00 12.69 67.00 43.73 100.51 65.59 2.66
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2.4 Steps involved in ANN modeling

In this stage, the input data are divided into three groups which are train data, validate data
and test data. The step-wise procedure for ANN modeling is presented through Figs. 3 to 10.

2.4.1 Building the network

This stage, specifies the number of hidden layers, neurons in each layer, transfer function in
each layer, training function, weight/bias learning function and performance function as
shown in Figs. 3 and 4.

Outpat Layer

Input Layer
Hidden Layer

Figure 3. Architecture of proposed NN model
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2.4.2 Training the network

Back propagation algorithms are used to developing the artificial neural network. The
training processes are shown through Figs. 5 and 6. The weights are adjusted to make the
actual outputs (predicted) close to the target (measured) outputs of the network.
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Figure 6. Neural Network Training

2.4.3 Test performance of model

The fitness of the developed model is shown through Figs. 7 to 10. At this stage, unseen
data are exposed to the model.
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The experimental results pertinent to this problem from other researchers published work
were used for the purpose of validating the ANN model. Data such as length of the section
(L), breath of the section (B), depth of the section (D), thickness of FRP laminates (ts),
tensile strength of FRP laminates (fr,), elasticity modulus of FRP laminates (Esp),
reinforcement ratio (p) and characteristic strength of concrete at 28 days (f«) taken from the

research works [] are presented through Tables 3 to 4.

Table 3: Input parameters for ANN modeling

Beam L B D T f E f

Authorsname  yogionation (mm)  (mm)  (mm)  (mm) (Mfga) (Gg';) (53) (Mcl;a)
AHO 3000 150 250 0.00 0.0 0.00 0.107 77.0
AH1 3000 150 250 0.05 3850.0 230.00 0.107 77.0
AH4 3000 150 250 0.18  3850.0 230.00 0.107 77.0
Hashemi et al. ACG3 3000 150 250 0.48  3850.0 230.00 0.107 77.0
(2009) BHO 3000 150 250 0.00 0.0 0.00 0.203 77.0
BH1 3000 150 250 0.05 3850.0 230.00 0.203 77.0
BH4 3000 150 250 0.18  3850.0 230.00 0.203 77.0
BCG3 3000 150 250 0.48  3850.0 230.00 0.203 77.0
SAB1 3000 150 250 0.00 0.0 0.00 0.565 66.7
Phalguni FS1 3000 150 250 2.50 7865 15270  0.565 53.3
Mukhopadhyaya FS2 3000 150 250 3.50 7865  229.00 0.565 54.0
etal. FS3 3000 150 250 3.50 7865 229.00 0.565 66.5
(1998) FS4 3000 150 250 3.50 786.5  229.00 0.565 79.7
FS5 3000 150 250 3.50 7865 229.00 0.565 66.6
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Rabinovith

etal. Al 2500 200 200 000 0.0 000 0482 763
(2003)

A2 2500 200 200 120 28000 16500 0482 763

A3 2500 200 200 120 28000 16500 0482 763

B1 2500 200 200 000 0.0 000 0482 763

B2 2500 200 200 120 28000 16500 0482 763

Gré"zcgoezt)a" C 2744 152 254  0.00 0.0 000 0521 652

c-1 2744 152 254 013 24130 23100 0521  65.2

c-2 2744 152 254 130 24130 23100 0521  65.2

c-3 2744 152 254 190 24130 23100 0521  65.2

H-50-2 2744 152 254 100 13240 379.00 0521  65.2

H-75-2 2744 152 254 150 13240 379.00 0521  65.2

Mahfuz ud darain

etal. CB 3300 125 250 000 0.0 000 0724 605
(2016)

CBCSP1 3300 125 250 0.7 49000 230.00 0.724  60.5

CBC8P2 3300 125 250  0.34 49000 23000 0.724  60.5

CBCIOPL 3300 125 250 0.7 49000 230.00 0.724  60.5

CBC1OP2 3300 125 250  0.34 49000 230.00 0.724  60.5

CBCIOPA 3300 125 250  0.34 49000 230.00 0.724 605

Maghsoud AHO 3000 150 250  0.00 0.0 000 1200  77.0

etal. (2009) : : : : :

AHF 3000 150 250 094 28000 16500 1.200  77.0

AHD 3000 150 250 067 28000 16500 1.200  77.0

BHO 3000 150 250 000 0.0 000 2400  77.0

BHF 3000 150 250 094 28000 16500 2400  77.0

BHD 3000 150 250  0.67 28000 16500 2400  77.0

Fa”(”z'ggle)t al. F1 3000 155 240  0.00 0.0 000 0912  80.0

F2 3000 155 240 000 0.0 000 0912  80.0

F3 3000 155 240 120 24000 15500 0912  80.0

F4 3000 155 240 120 24000 15500 0912  80.0

F5 3000 155 240 120 24000 15500 0912  80.0

F6 3000 155 240 120 24000 15500 0912  80.0

F7 3000 155 240 120 24000 15500 0912  80.0

F8 3000 155 240 120 24000 15500 0912  80.0

GOp"(‘gghlg etal. cpusc 3000 150 250 000 00 000 0603 670

C3HSC 3000 150 250  3.00 1262 747 0603  67.0

C5HSC 3000 150 250 500 1560 11.39 0.603  67.0

W3HSC 3000 150 250  3.00 1474 686  0.603  67.0

W5HSC 3000 150 250 500 1781 899  0.603  67.0

USHSC 3000 150 250  3.00 4469 1397 0603  67.0
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Table 4: Source Data used for Validation of Predicted Results
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AHO 63.93 21.00 54.17 68.00 81.25 102.00 4.35
AH1 69.50 13.00 59.93 33.61 89.90 5042 3.88
AH4 64.70 9.83 78.20 2190 11730 32.85 3.34
Hashemi et ACG3 67.33 10.37  69.33 17.47 10466 26.20 2.53
al.(2009) BHO 122.22 13.33 99.68 63.80 14952 95.70 7.18
BH1 130.00 14.11 100.00 42.16 150.00 63.24 4,48
BH4 118.00 1286 111.33 20.61 167.00 30.92 2.40
BCG3 130.66 13.80 108.22 17.33 162.33 26.00 1.88
SAB1 17050 2217 133.26 19.07 199.90 28.60 1.29
FS1 190.25 2592 140.93 18.32 211.40 27.48 1.06
Phalguni et FS2 179.00 30.60 131.27 20.61 196.90 30.91 1.10
al. (1998) FS3 199.90 27.14 14653 2261 219.80 33.92 1.52
FS4 21535 20.63 15553 26.40 233.30 39.60 2.16
FS5 214.70 19.24 154.6 24.2 23190 36.36 1.58
Al 65.00 9.90 50.28 33.33 75.42  50.00 5.05
Rabinovith A2 140.00 10.50 104.40 11.33 156.60 17.00 1.62
et al. (2003) A3 135.00 11.00 118.67 12.67 178.00 19.00 1.72
' Bl 109.00 12.00 73.33 32.67 110.00 49.00 4.04
B2 155.00 1150 12493 12.67 187.40 19.00 1.65
C 82.30 14.00 63.80 33.00 95.70 49,52 3.55
C-1 85.90 13.20 67.93 18.93 101.90 28.40 2.15
Grace et C-2 132.60 16.00 88.40 10.67 132.60 16.00 1.00
al.(2002) C-3 107.70 13.50 89.60 14.73 134.40 22.10 1.64
H-50-2 97.90 15.20 76.53 23.73 11480 35.60 2.33
H-75-2 113.90 13.70 87.20 19.47 130.80 29.20 2.13
CB 36.00 15.00 26.00 22.87 39.00 34.30 2.29
Mahfuz ud C8P1 50.00 14.90 47.33 26.47 71.00 39.70 2.66
darain et al. C8P2 55.00 15.20 51.33 20.87 77.00 31.30 2.06
(2016) C10P1 54.00 16.60  54.67 28.87 82.00 43.30 2.60
C10P2 69.00 23.70 58.00 28.47 87.00 42.70 1.80
C10P2A 80.00 24.70 70.00 3193 105.00 47.90 1.90
F1 53.00 12.18  45.53 31.33 68.30 47.00 3.86
F2 53.50 12.12 45.27 30.00 67.90 45.00 3.71
F3 82.90 11.95 73.93 14.67 110.90 22.00 1.84
Fanning et F4 83.60 12.50 79.00 16.00 11850 24.00 1.92
al.(2001) F5 85.60 10.96 66.67 11.33 100.00 17.00 1.55
F6 85.60 12.73 68.67 13.33 103.00 20.00 1.57
F7 83.70 12.50 65.00 12.00 97.50 18.00 1.44
F8 78.30 13.10 54.67 10.67 82.00 16.00 1.22
Maghsou di AHO 63.73 11.89 54.17 48.00 81.25 72.00 6.05
et al. (2009) AHF 76.70 11.13 68.67 1549 103.00 23.23 2.08
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AHD 71.30 1015 67.33 1331 101.00 1996  1.97

BHF 122.00 13.04 89.93 38.00 13490 57.00 4.28

BHD 124.00 1218 107.33 16.25 161.00 24.38  1.87
CBHSC  35.00 234 108.76 16.70 163.30 25.05 2.07
C3HSC  40.00 3.09 36.67 4.69 55.00 7.03 3
C5HSC  45.00 3.78 43.33 5.97 65.00 8.95 2.89
W3HSC  45.00 3.91 60.00 8.00 90.00 1200 3.17
WS5HSC  50.00 4.17 46.67 6.29 70.00 9.44 2414
U3HSC  68.00 4.32 66.67 8.55 100.00 12.82  3.07
US5HSC  76.00 4.46 80.00 10.75 120.00 16.13  3.73

Gopinathan
et al. (2016)

3.0 RESULTS AND DISCUSSION

The proposed Artificial Neural Network (ANN) based model was performed well for
predicting the performance parameters of FRP strengthened high strength concrete beams
such as yield load, deflection at yield load, service load, deflection at service load, ultimate
load, deflection at ultimate load, and deflection ductility. To ascertain the accuracy of the
models, scatter plots were drawn between the experimental results and those results
predicted through ANN model as shown in Fig. 11.

The predicted versus experimental value for the yield load and deflection at yield load are
shown through Figs. 11(a) and (b).The ANN predictions for the yield load resulted in a
MAPE of 5.23%, a RMSE of 6.375, a correlation co-efficient of 0.934 and a co-efficient of
determination of 0.981 was observed at 50 epochs. For the deflection at yield load, the ANN
resulted in a correlation co-efficient of 0.926, a co-efficient of determination of 0.966, a
RMSE of 1.055 and a MAPE of 5.31% was observed at 30epochs.

The predicted versus experimental value for the service load and deflection at service
load are presented through Figs. 11(c) and (d). For the service load, the ANN vyields a
correlation co-efficient of 0.918, co-efficient of determination of 0.968, a RMSE of
6.621and a MAPE of 5.99% was observed at 37 epochs. The ANN predictions for the
deflection at service load resulted in a correlation co-efficient of 0.927, a co-efficient of
determination of 0.980, a RMSE of 1.786 and a MAPE of 6.07% was observed at 17epochs.

The ANN prediction for the ultimate load resulted in a correlation co-efficient of 0.953, a
co-efficient of determination of 0.960, a RMSE of 9.542 and a MAPE of 5.85% was
observed at 60 epochs. The ANN resulted in a correlation co-efficient of 0.937, a co-
efficient of determination of 0.974, a RMSE of 3.121 and a MAPE of 6.93% was observed
at 40epochs in the prediction of deflection at ultimate load. Good convergence was observed
between the experimental results and predicted results for ultimate load and deflection at
ultimate load as shown through Figs. 11 (e) and (f).

The predicted versus experimental value for the deflection ductility is shown in Fig. 11
(9). The ANN resulted in a correlation co-efficient of 0.966, a co-efficient of determination
of 0.988, a RMSE of 6.352 and a MAPE of 9.54% was observed at 18epochs in the
prediction of deflection ductility. Good convergence was observed between the experimental
results and the predicted results. The summary of performance evaluation of ANN model is
reported in Table 5.
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The results of ANN model have been validated using other researcher’s results to
improve its accuracy. The input and target parameters considered for the validation of results
are presented in Tables 3 and 4. The results predicted through ANN modeling are presented
through Fig. 11 (a) to (g) in the form of scatter plots. From Fig. 11 (a) to (g), it can be
observed that most of the points fall along the diagonal line for the ANN prediction model.
It shows that the results predicted through ANN model are in very good agreement with the
experimental results.

Predicted results (KN)
& 8 & 8.8

o

=0.994x + 0.652 »

R2=0.981

0

Experimental results (kN)

100 200 300

w
(6]

S
NN
o v

Prediged results (
o

mm
W
<

o un

+ 0.9683x + 0.1375
R2? =0.966

0 20

Experimental results...

40

(@) Yield load

(b) Deflection at Yield Load

N
8.3
<

(o
o

w
o

Predicted results (k)
S 8

= 0.9379x + 5.6948 2

R2?=0.960

100 300

Experimental results (kN)

200

(c) Service Load

Predicted results

y|=1.0106x + 0.0692
R?2=0.974

0 50 100

150

Experimental results (mm

(d) Deflection at Service Load




ANN BASED MODELING FOR HIGH STRENGTH CONCRETE BEAMS WITH ... 465

180 80
Si60y = 0.9619x + 2.3922 F70.999 + 0.001
é40 Rz = 0968 EGORZ =0.980
%11(2)8 250
>
< 80 80
'§ 60 7 30
£ 40 B20
€2 210
“ 0 Qo
0 100 200 0 50 100
Experimental results(kN) Experimental results (mm)
(e) Ultimate Load (f) Deflection at Ultimate Load
8
y =0.9027x + 0.2687
"6 R? =0.930
Z2s
e
]
[<5]
O 3
2
D 2
)
0
0 5 10
Experimental results
(9) Deflection Ductility
Figure 11. Comparison of Experimental and Predicted Results
Table 5: Performance evaluation of ANN model
.NO Output parameters r RMSE MAPE R?
1 Yield load (kN) 0.934 6.375 5.230 0.981
2 Deflection at Yield load (mm) 0.925 1.055 5.310 0.966
3 Ultimate load(kN) 0.954 9.542 5.850 0.960
4 Deflection at ultimate load(mm) 0.938 3.121 6.930 0.974
5 Service load(kN) 0.918 6.624 5.990 0.968
6 Deflection at service load (mm) 0.927 1.786 6.070 0.980
7 Deflection ductility 0.966 0.351 9.540 0.938
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4. CONCLUSIONS

This main aim of this study focuses on using an artificial neural network (ANN) based
model for predicting the performance of high strength reinforced concrete (HSC) beams
strengthened with surface mounted FRP laminates. The performances of the models were
evaluated and the results predicted through ANN modeling were compared with the
experimental results. The results predicted through ANN modeling exhibited better
convergence with the experimental results. Also the results show that ANN modeling is a
more accurate and reliable tool for evaluating the performance of high strength concrete
beams strengthened with FRP laminates under static loading condition. This is evident from
the values of correlation co-efficient (1), RMSE, MAPE and R? which are global, more
realistic and meaningful error types. It can be seen from the obtained results that the lowest
RMSE and MAPE and the highest r and R?. A correlation co-efficient of 0.918 to 0.966 and
a co-efficient of determination of 0.938 to 0.981 was observed for HSC beams strengthened
with FRP laminates while predicting the convergence through scatter plots.
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