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ABSTRACT 
 

For application of the plastic analysis and design methods the control of the plastic 

behaviour of the structures is an important requirement. In this study, the complementary 

strain energy of the residual forces is considered as an overall measure of the plastic 

performance of the structure. Shakedown theorem for the analysis of the plastic behaviour of 

the laterally loaded piles is developed and applied to single vertical long pile. Limit curves 

are presented for the shakedown load multipliers. The formulations of the problems lead to 

mathematical programming which are solved by the use of nonlinear algorithm. 
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1. INTRODUCTION 
 

The most important tool for controlling the plastic behaviour of structures is the application 

of the static and kinematic theorems of shakedown proposed by Melan [1] and Koiter [2], 

respectively. These two theorems have been successfully applied to the solution of a large 

number of problems (see e.g. Maier [3]; Polizzotto [4]; Konig [5], Nina et al. [6] and Simon 

and Weichert [7]). Evaluate of the lateral load capacity is an important component in the 

analysis and design of pile foundations subjected to lateral loadings and soil movements. 

Elastic–plastic solutions for laterally loaded piles were developed recently by Guo [8-9], Qin 

and Guo [10] and Keawsawasvong and Ukritchon [11]. Depending upon the pile-soil 

characteristics and the magnitude and type of cyclic loading, the pile response may 

shakedown and stabilize to an elastic response, or continue to accumulate deflections and 

deteriorate until failure occurs (Swane and Polus [12]). 

In the application of the plastic analysis and design methods the control of the plastic 
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behaviour of the structures is an important requirement. Since the plastic analysis provides 

no information about the magnitude of the plastic deformations and residual displacements 

accumulated before the adaptation of the structure, therefore for their determination several 

bounding theorems and approximate methods have been proposed. Among others Kaliszky 

and Lógó [13], Movahedi and Lógó [14] and Movahedi [15] suggested that the 

complementary strain energy of the residual forces could be considered as an overall 

measure of the plastic performance of structures and the plastic deformations should be 

controlled by introducing a limit for the magnitude of this energy. 

 

 

2. MECHANICAL MODELLING 
 

2.1 Failure mechanisms 

Short and long piles fail under different mechanisms. A short rigid pile, unrestrained at the 

head, tends to rotate or tilts as shown in Fig. 1a and passive resistance develops above and 

below the point of rotation on opposite sides of the pile. For long pile, the passive resistance 

is very large and pile cannot rotate or tilt. The lower portion remains almost vertical due to 

fixity while the upper part deflects in flexure. The pile fails when a plastic hinge is formed at 

the point of maximum bending moment as shown in Fig. 1b, long pile fails when the 

moment capacity is exceeded (structural failure). 

 

 
Figure 1. Failure mechanisms of pile under horizontal load: (a) short rigid pile, (b) long pile  

 

Assuming a uniform pile cross section for a long pile, a plastic hinge with a moment of 

𝑀𝑝 will develop at the point of maximum bending moment that has no shear force, i.e. at 

point of failure in Fig. 2. Pile under the lateral loading has a virtual lateral velocity 𝑉, 𝑉0 at 

the pile head. The lateral velocity at any depth along the pile is assumed decreasing linearly 

from 𝑉0 to 0 at point of failure and can be expressed as: 

 

𝑉 = 𝑉0(1 −
𝑍

𝑙
) (1) 
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where 𝑍 is the depth measured from pile head, 𝑙 is the depth where plastic hinge forms. This 

mechanism was originally proposed by Murff and Hamilton [16]. It is assumed that the 

lateral soil resistance is fully developed at the ultimate state. The ultimate soil resistance is 

described by the generic limiting force profile (LFP) proposed by Guo [17]. 

 

𝑃𝑢 = 𝐴𝑟(𝑍 + 𝛼0)𝑛 (2) 

 

where 𝑃𝑢 = ultimate soil resistance or limiting force per unit length; 𝐴𝑟 = 𝑆𝑢𝑁𝑔𝑑1−𝑛 

(cohesive soil) and 𝛾′𝑁𝑔𝑑2−𝑛 (cohesionless soil), gradient of the limiting force profile; 𝑑 = 

the outer diameter of the pile; 𝛼0 = an equivalent depth to consider the resistance at the 

ground surface, and 𝑛(< 3) = the power governing the shape of the limiting force profile 

shown in Fig. 3, the values of 𝑛 = 0.7 and 1.7 are generally sufficient accurate for piles in 

clay and sand; 𝑍 = depth below the ground level; 𝑆𝑢 average undrained shear strength of 

cohesive soil; 𝛾𝑠
′ effective unit weight of overburden soil (i.e. dry weight above water table 

and buoyant weight below); 𝑁𝑔 gradient to correlate clay strength or sand weight with the 

ultimate resistance 𝑃𝑢. The magnitude of the three input parameters 𝛼0, 𝑁𝑔 and 𝑛 are 

independent of load levels over the entire loading regime. 

 

 
Figure 2. Failure mechanism (a) free-head long pile (b) fixed-head long pile 

 

Guidelines for determining the values of the parameters are discussed by Guo [8] and 

[18]. The generic limiting force profile (LFP) becomes that suggested for sand by Broms 

[19], and Barton [20], and that for clay by Matlock [21] and Reese et al. [22], by choosing 

an appropriate set of 𝛼0, 𝑁𝑔and 𝑛. For example, selecting𝑁𝑔 = 3𝐾𝑝, 𝛼0 = 0 and n = 1, 

𝐾𝑝 = the coefficient of passive earth pressure, the limiting force profile becomes the Broms’ 

[19] LFP for sand, while giving 𝛼0 = 2𝑑/𝑁𝑔, 𝑁𝑔 =
𝛾𝑠
′𝑑

𝑆𝑢
+ 0.5, and n = 1, it reduces to 

Matlock’s [21] LFP for soft clay. Here the virtual velocity 𝑉0will be cancelled. The best 

solution, i.e. the largest load, is found by maximizing the load 𝐻𝑢with respect to the 

optimization parameter 𝑙. The details of calculations for plastic limit analysis of lateral piles 
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are explained by Guo [17] and Qin et al. [23]. The solution for free-head long piles are 

presented below: 

 

𝑙 = [𝛼0
𝑛+1 + (𝑛 + 1)

𝐻𝑢

𝐴𝑟
]

1
𝑛+1

− 𝛼0 (3) 

 

the lateral load capacity can be calculated by: 

 

𝑀𝑝

𝐴𝑟

=
1

𝑛 + 2
[𝛼0

𝑛+1 + (𝑛 + 1)
𝐻𝑢

𝐴𝑟
]

𝑛+1

− [
𝛼0

𝑛+2

𝑛 + 2
+ 𝛼0

𝐻𝑢

𝐴𝑟
] (4) 

 

The influence of the loading eccentricity may be considered by replacing the plastic 

moment 𝑀𝑝with 𝑀0, where 𝑀0 = 𝐻𝑢𝑒, 𝑒 is the eccentricity. Consequently: 

 

𝑀𝑝

𝐴𝑟

=
1

𝑛 + 2
[𝛼0

𝑛+1 + (𝑛 + 1)
𝐻𝑢

𝐴𝑟
]

𝑛+2
𝑛+1

− [
𝛼0

𝑛+2

𝑛 + 2
+ 𝛼0

𝐻𝑢

𝐴𝑟
] +

𝐻𝑢𝑒

𝐴𝑟

 (5) 

 

For the case of a fixed-head pile, the energy dissipation due to the plastic moment 𝑀𝑝 at the 

failure point is calculated. Following the same calculations as for the free-head piles, the ultimate 

lateral capacity for fixed-head piles can be easily determined, Guo [17] and Qin et al. [23]. 

 

 
Figure 3. Schematic generic limiting force profiles 

 

2.2 Loadings 

The structure is subjected to two independent loads 𝑷1 and 𝑷2 with multipliers 𝑚1 ≥ 0, 𝑚2 ≥
0 (Fig. 4). In the analysis five loading cases (ℎ = 1,2, … ,5) shown in Table 1 are taken into 

consideration. For each loading case a shakedown load multiplier 𝑚𝑠ℎ can be calculated. 

Making use of these multipliers a limit curve can be constructed in the plane 𝑚1 𝑙⁄  and 𝑚2 𝑙⁄  

(Fig. 5). Structure does not fail, under the action of the loads 𝑚1𝑷1and 𝑚2𝑷2 , if the points 

corresponding to the multipliers 𝑚1 𝑙⁄  and 𝑚2 𝑙⁄  lies inside or on the limit curve. 
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Figure 4. Loads on the pile  

 
Table 1: Load combinations 

ℎ Multipliers Loads Load multipliers 

1 𝑚2 = 0 𝑸1 = 𝑷1 𝑚𝑠ℎ1 
2 𝑚1 = 0 𝑸2 = 𝑷2 𝑚𝑠ℎ2 

3 𝑚1 = 0.5𝑚2 𝑸3 = [0.5𝑷1, 𝑷2] 𝑚𝑠ℎ3 
4 𝑚1 = 𝑚2 𝑸4 = [𝑷1, 𝑷2] 𝑚𝑠ℎ4 

5 𝑚1 = 2𝑚2 𝑸4 = [𝟐𝑷1, 𝑷2 ] 𝑚𝑠ℎ5 

 

2.3 Control of the plastic deformations 

At the application of the plastic analysis and design methods the control of the plastic 

behaviour of the structures is an important requirement. Following the suggestions of 

Kaliszky and Lógó [13], Movahedi and Lógó [14] and Movahedi [15] the complementary 

strain energy of the residual forces could be considered as an overall measure of the plastic 

performance of structures and the plastic deformations should be controlled by introducing a 

bound for the magnitude of this energy: 

 

1

2
∑ 𝑸𝑖

𝑟

𝑛

𝑖=1

𝐹𝑖𝑸𝑖
𝑟 ≤ 𝑊𝑝0 (6) 

 

 
Figure 5. Limit curve and safe domain 
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Here 𝑊𝑝0 is an assumed bound for the complementary strain energy of the residual forces 

and 𝑸𝑟 residual internal forces. This constraint can be expressed in terms of the residual 

moments 𝑀𝑖,𝑎
𝑟  and 𝑀𝑖,𝑏

𝑟  acting at the ends (a and b) of the finite elements as: 
 

1

6𝐸
∑

𝑙𝑖

𝐼𝑖

𝑛

𝑖=1

[(𝑀𝑖,𝑎
𝑟 )

2
+ (𝑀𝑖,𝑎

𝑟 )(𝑀𝑖,𝑏
𝑟 ) + (𝑀𝑖,𝑏

𝑟 )
2

] ≤ 𝑊𝑝0 (7) 

 

By the use of (7) a limit state function can be constructed: 
 

𝑔(𝑊𝑝0,𝑀
𝑟) = 𝑊𝑝0 −

1

6𝐸
∑

𝑙𝑖

𝐼𝑖

𝑛

𝑖=1

[(𝑀𝑖,𝑎
𝑟 )

2
+ (𝑀𝑖,𝑎

𝑟 )(𝑀𝑖,𝑏
𝑟 ) + (𝑀𝑖,𝑏

𝑟 )
2

]. (8) 

 

The plastic deformations are controlled while the bound for the magnitude of the 

complementary strain energy of the residual forces exceeds the calculated value of the 

complementary strain energy of the residual forces. 

 

 

3. SHAKEDOWN ANALYSIS 
 

The solution method based on the shakedown theorem which is formulated as below: 
 

Maximize 𝑚𝑠ℎ (9a) 
 

subject to 
 

𝑮∗𝑀𝑟 = 0; (9b) 

𝑀𝑒 = 𝑭−1𝑮𝑲−1𝑚𝑠ℎ𝑸ℎ; (9c) 

𝑀𝑟 + 𝑚𝑎𝑥𝑀𝑒 ≤ 𝑀𝑝 (9d) 

1

6𝐸
∑

𝑙𝑖

𝐼𝑖

𝑛

𝑖=1

[(𝑀𝑖,𝑎
𝑟 )

2
+ (𝑀𝑖,𝑎

𝑟 )(𝑀𝑖,𝑏
𝑟 ) + (𝑀𝑖,𝑏

𝑟 )
2

] ≤ 𝑊𝑝0. (9e) 

 

Here 𝑭, 𝑲, 𝑮, 𝑮∗: flexibility, stiffness, geometrical and equilibrium matrices, respectively. 

Eq. (9.b) is an equilibrium equation for the residual moment, 𝑀𝑟. Eq. (9.c) express the 

calculations of the elastic fictitious moments, 𝑀𝑒. Eq. (9.d) is used as yield conditions. Eq. 

(9.e) is used to control the plastic deformations. This is a mathematical programming 

problem which can be solved by the use of nonlinear algorithm. Selecting one of the loading 

combination 𝑸ℎ; (ℎ = 1,2, … ,5) a shakedown load multiplier 𝑚𝑠ℎ can be determined, then 

the limit curve of the plastic limit state can be constructed. 

 

 

4. NUMERICAL EXAMPLES 
 

To demonstrate the theories and solution strategy introduced above, a nonlinear 
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mathematical programming procedure is elaborated where one has to determine the safe 

loading domain of a laterally loaded long pile with deterministic loading data and with 

bound for the magnitude of the complementary strain energy of the residual forces. 

The application of the method is illustrated by two examples. The first example shows a 

free-head steel long pile subjected to a lateral load and bending moment at its top with 

diameter of 𝐷 = 20𝑐𝑚 in cohesionless soil (Fig. 6). The working loads are 𝑷1 = 𝐇 =
10𝐾𝑁, 𝑷2 = 𝐌 = 4𝐾𝑁𝑚. The yield stress and the Young’s modulus are 𝜎𝑦 = 21𝐾𝑁/𝑐𝑚2 

and 𝐸 = 2.06 ∙ 104𝐾𝑁/𝑐𝑚2. The second example shows a fixed-head steel long pile 

subjected to a lateral load and bending moment at its top with diameter of 𝐷 = 20𝑐𝑚 in 

cohesionless soil (Fig. 7). The working loads are 𝑷1 = 𝐇 = 10𝐾𝑁, 𝑷2 = 𝐌 = 5𝐾𝑁𝑚. The 

yield stress and the Young’s modulus are 𝜎𝑦 = 21𝐾𝑁/𝑐𝑚2 and 𝐸 = 2.06 ∙ 104𝐾𝑁/𝑐𝑚2. 

 

  
Figure 6. Loads on the free-head pile Figure 7. Loads on the fixed-head pile 

 

The results of the solution technique for free and fixed-head steel long piles are presented 

in Fig. 8 and Fig. 9 respectively, where deterministic loading is considered. The results are 

in very good agreement with the expectations. In the figures the safe limit load domains are 

presented in case of different complementary strain energy of the residual forces (𝑊𝑝0 =

40; 45; 50; 55). One can see that increasing the complementary strain energy of the residual 

forces results bigger safe loading domain. 

 

 
Figure 8. Safe loading domain for free-head steel long pile 
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Figure 9. Safe loading domain for fixed-head steel long pile 

 

 

5. CONCLUSIONS 
 

In the paper shakedown analysis of laterally loaded pile foundation with limited residual 

strain energy capacity is studied by an appropriate model. Limit curves are presented for the 

shakedown multipliers. The numerical analysis shows that the bound of the complementary 

strain energy of the residual forces can influence significantly the magnitude of the 

shakedown multipliers. The presented investigation drowns the attention to the importance 

of the problem but further investigations are necessary to make more general statements. 
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