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ABSTRACT 
 

The most recent approaches of multi-objective optimization constitute application of meta-

heuristic algorithms for which, parameter tuning is still a challenge. The present work 

hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main 

control parameters into especial fuzzy sets that are constructed based on a number of 

prescribed facts. Such parameter-less particle swarm optimization is employed as the core of 

a multi-objective optimization framework with a repository to save Pareto solutions. The 

proposed method is tested on a variety of benchmark functions and structural sizing 

examples. Results show that it can provide Pareto front by lower computational time in 

competition with some other popular multi-objective algorithms. 
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1. INTRODUCTION 
 

Many real-world engineering problems fall in the category of Pareto optimization due to 

existence of conflicting objectives. It means an objective cannot be improved without 

deterioration of at least another objective; therefore these problems have more than one 

solution; that is called Pareto front, PF.  

Up to date, several methods have been offered by investigators for multi-objective 

optimization, MOO. A wide variety of them includes evolutionary methods that generally 

constitute improvement of both the algorithms and the data structures to extract non-

dominated solutions. This category is historically considered a revolution in their time; that 

includes VEGA [1], MOGA [2], NPGA [3], SPEA-II [4]. Particularly, Non-dominated 

Sorting Genetic Algorithm-II [5] has received much attention. NSGA-II is widely applied as 
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a popular algorithm due to its parameter-less sharing evaluation, elitist approach and lower 

computational cost with respect to other evolutionary methods. Another category of multi-

objective optimization, however, utilizes vector-sum search engines which provide 

considerably more efficient algorithms. Hu and Eberhart proposed a Dynamic Neighborhood 

Particle Swarm Optimization using a similar approach to lexicographic methods; in which 

only one objective is optimized at a time [6]. Ray and Liew [7] utilized Pareto dominance 

and crowding control in Particle Swarm Optimization to develop a multi-objective search 

with desired diversity. Coello et al. [8] offered a Multi-Objective Particle Swarm 

Optimization with an additional repository memory, an extra exploratory operator and a 

constraint handling scheme. They reported higher efficiency of MOPSO in deriving 

competitive results to three other MOO algorithms [8-10] especially in convergence to true 

PF of their test functions. 

All these methods require true judgment for their parameter thresholds. Parameter tuning 

in crisp type may bring about undesired consequences or require several time-consuming 

trial runs for each specific problem. An alternate approach is to utilize expert 

recommendations or previous experiences via a more comprehensive logic which can 

simulate some aspects of human thinking in automatic algorithms.  

Since 1965, when Prof. Zadeh introduced Fuzzy Logic, FL [11], it has undergone 

considerable developments in several engineering fields [12-14].One interesting point that 

FL introduces is that imprecise definitions within the inference core may result in better 

results when de-fuzzified for practical implementation.The matter concerns areas with lack 

of data or difficulty in crisp inference. 

One such field is parameter tuning of optimization algorithms. According to No-Free-

Lunch theorem [15], no specific set of parameters are expected to be the most suitable for all 

kinds of problems. In another word, exact parameter tuning relies on having the complete 

problem-specific data. However, it is not the case in practice as the design space areas are 

not brightened before starting the search via an optimization algorithm. Perhaps, the search 

space will not be perfectly brightened even after that, as we define an efficient algorithm the 

one to find the optimum with minimal sampling effort. Nevertheless, it should be noted that 

some algorithms with few parameters have already been developed in recent years that 

require less tuning effort [16-21]. 

The issue is concerned here by extending the definition of crisp values for the algorithm 

parameters to fuzzy membership functions. This approach is further implemented on the 

framework of multi-objective particle swarm optimization. Performance of the proposed 

method is evaluated treating a number of literature benchmarks including test functions and 

structural sizing examples.  

 

 

2. APPLIED FUZZY CONCEPTS AND OPERATORS 
 

Theory of Fuzzy Sets and Fuzzy Logic can be found in several references [22-23]. Here, a 

review of some basic concepts is briefed as required in later sections. 

 



A FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING … 

 

55 

2.1 Fuzzy set 

A fuzzy set, L, is introduced by a membership function; (y)L , that indicates the degree of 

belief that how much its Linguistic Variable, y, belongs to a linguistic label, L. This label is 

indeed the name of that fuzzy set and is alternatively called Linguistic Value. The domain, 

on which membership has a non-zero value, is called support of that fuzzy set. A continuous 

fuzzy set has a continuous support. The membership function varies between 0 and 1 

indicated by:  

 

0 (y) 1L   (1) 

 

2.2 Normal fuzzy set 

A fuzzy set that includes at least one point with full membership grade; that is:  

 

( ) : (y) 1Ly Support L     (2) 

 

2.3 Fuzzy variable 

A fuzzy variable includes:a linguistic variable, its domain of variation called universe of 

discourse, a number of linguistic Labels and their corresponding membership functions.  

 

2.4Fuzzy partition 

Consider the case that every point on the universe of discourse belongs to at least the support 

of one fuzzy label. Such a fuzzy variable introduces a fuzzy partition over the corresponding 

universe of discourse. 

 

2.5 Fuzzy singleton 

A normal fuzzy set including only one point yc
in its support. It indeed reveals an alternate 

definition of acrisp value; i.e. the case that the belief for membership of yc
to the set is 1 

only at yc
 and 0 at the other points. 

 

2.6Complement/ concentration/dilution operators 

For each given fuzzy set, L ¸ its simple fuzzy complement is defined by another set L  (the 

same as ( )c L ) on the same support set so that  

 

( ) : (y) 1 (y)L Ly Support L       (3) 

 

A given linguistic value, L ¸ may be concentrated or diluted if desired. A simple 

definition for such operators can be revealed as follows. 

 

( )( ) : (y) ( (y)) , 1n

CON L Ly Support L n      (4) 
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( )( ) : (y) ( (y)) , 0 1n

DIL L Ly Support L n     

 

(5) 

 

In another word, 
( ) (y) (y)CON L L  for most parts of the support; that means stricter 

membership regulation is exerted by concentrating a linguistic value (Fig.1) and vice versa 

for dilution operator. 

 

 
(a)              (b) 

Figure 1. Sample fuzzy set and its (a) fuzzy complement, (b) fuzzy concentrated set 

 

 

3. MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION  
 

A wide spectrum of meta-heuristic methods, are developed in recent years which apply 

vector-sum partitioning of the design space. Particle Swarm Optimization, PSO is perhaps 

the pioneer work in this class and a very popular optimization tool for engineering 

applications [24-26]. 

Any particle in PSO denotes a design vector, X; which is evaluated at any location in the 

design space to determine its corresponding fitness score. Movement of each Particle, X, 

from its current location at iteration, k, toward a new position in the next iteration obeys 

from the following rules: 

 
1 1k k k

i i iX X V
 

   (6) 

1

( ) ( )
k k k k k k

k k k
i i ii iI C SV Q V Q B X Q G X



    

 

(7) 

 

in which 
k

iB denotes the local-best experience of the thi  particle up to the iteration, k , 

and 
k

G is the global best of all particles. 
1k

iV


. As a result the new velocity vector of any thi

particle is obtained by summation of three scaled movements at the following directions:  

 Inertial direction: moving parallel to the last velocity vector of the particle, 
k

iV scaled by 

the factor k

IQ  
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 Cognitive direction: moving from the current position 
k

iX  toward the previous best 

experience of each particle itself; 
k

iB . The corresponding scale factor is denoted by k

CQ . 

 Social direction: moving from the current position 
k

iX  toward the global best position; 
k

G  scaled by the factor k

CQ  

In the traditional PSO, the cognitive and social factors are given by:  

 
k

C C

k

S S

Q rand C

Q rand C

 

 
 (8) 

 

The function rand uniformly generates random values in range [0, 1]. The PSO 

parameters: 
SC  and 

CC  controls the relative importance of global or local best experience of 

particles in the total movement vector. It is while the inertial term has an exploitative effect. 

Hence, it is offered by experts to be decreased as the search progresses to the last iteration,

IterN  [27]. 

In the traditional method of parameter tuning, crisp values should be assigned to such 

factors. One may ask how precise are these crisp values for optimization? The answer, 

however, relies on the number of trial runs to tune them and also the explorative effect of the 

rand function. Besides, dissimilarities of the search space from case to case, makes it 

difficult to fix a parameter set that is best suited for all possible cases.  

Existing vagueness in answering the aforementioned question leads us to switch into 

application of fuzzy variables, as the alternative. Suppose the following facts are accepted 

regarding the general PSO parameters , ,k k k

I C SQ Q Q :  

1. Fact-1:None of the inertial, cognitive and social terms is limited to an especial iteration 

2. Fact-2: Belief to the truth of the global best at the last iteration is the highest among the 

entire search process. 

3. Fact-3: As the belief to truth of 
k

G  is strengthened via the search progress, necessity of 

diversification about it to find better solutions is weakened.  

4. Fact-4:The inertial factor is desired to have its maximum at early iterations 

5. Fact-5:Importance of the inertial factor is desired to vanish faster than increasing the 

social term  

6. Fact-6: Importance of the local best (cognitive term) in the search direction is lower than 

the global best (social term) near the end of the optimization process. In addition, the 

belief to truth of 
k

iB  is not considerable at early iterations. 

The first fact, indicate that crisp definition of PSO parameters can be extended to fuzzy 

partition over the iteration as a linguistic variable. It is evident that the universe of discourse 

is defined by integers from 1 to
IterN . 

A simple yet continuous expansion of a crisp value at m  to a fuzzy set can be defined by 

the following Gaussian-like distribution function:  

 
21

( )
2( ) ( , , ) e

ck y

ck N k y   




   (9) 
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in which 
cy  is the median and  denotes the standard deviation.  is conceptually 1, 

however, can be taken 2 for efficiency reasons. Lowering the standard deviation acts like a 

concentration operator for this function. The maximum of N(.) occurs at the median/mean 

i.e. ( , , ) 1c cN y y   .Another interesting feature of this fuzzy set is that its support covers all 

values in the universe of discourse. It deserves Fact-1 requirement.  

Let’s use the following fuzzy set for the PSO social parameter k

SQ . It introduces an 

increasing function which takes its maximum at the last iteration (Fact-2) and non-zero 

values at the others (Fact-1).  

 

( ) ( , , )S Iterk N k N   (10) 

 

The membership function for the inertial term is at first considered the complement of

( )S k  due to Fact-3 and Fact-4.A concentration operator can also act on it to satisfy Fact-5. 

The resulting function is given by: 

 
2( ) (1 ( ))I Sk k    (11) 

 

 
Figure 2. Effect of  variation on the shape of N(.) as membership function 

 

Similarly, fuzzy set of the cognitive term is characterized by  

 

( ) ( , , )C Ck N k y   (12) 

 

In order to satisfy Fact-6, the median 
Cy  for the cognitive membership function falls 

between the 1st and the end iterations by.  

 

C Itery rand N   (13) 
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The coefficient is also taken a random portion of 2 IterN (Fig.2). Finally, the PSO 

parameters are tuned by the aforementioned fuzzy partition so that:  

 

, , ( ), ( ), ( )k k k

I C S I C SQ Q Q k k k       (14) 

 

Fig.3 demonstrates a sample fuzzy partition over the iteration counter k .  

 

 
Figure 3. Sample fuzzy partition for the inertial, cognitive and social memberships in FPSO 

 

PSO analogy can be applied into a multi-objective framework keeping the same structure 

of EQ.(6) and (7) but with some changes in evaluating its terms. First, Pareto-dominance 

and fitness sharing controller are used to adapt new definitions for the local/global best 

terms in Eq.(7).Second, an auxiliary archive called repository is employed to save desired 

number of non-dominated solutions found up to the current iteration. Third, a mutation 

operator is added to avoid the algorithm from premature convergence to a false PF (that is 

equivalent to a local optimum in global optimization) [8]. In this regard, we employ the 

above actions with implementation of our Fuzzy tuning scheme. The new algorithm called 

Multi-Objective Fuzzy Particle Swarm Optimization; MOFPSO is, thus, introduced via the 

following steps:  

 

1. Initialization 

1.1. Generate the population of particles; POP by randomly locating them within their 

limits: 

 
0

( )i LB UB LBX X rand X X     (15) 

 

Where   indicate a component-wise product. LBX  and UBX  denote lower and upper 

bounds on design variables, respectively. Every design vector had 
VarN  variables while the 
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number of particles is
POPN . Set limit of Repository size;

REP PopN N and the number of 

iterations;
IterN  

1.2. Evaluate cost function vector for each particle 

1.3. Initiate the Repository: Extract non-dominated solutions out of the current 

population and store them in Repository Archive; REP.  

1.4. Construct the Grid: take every cost function as a coordinate and divide the line 

between already-found minimum and maximum of that function by
GridN parts. 

Intersection of such grid parts forms a number of hyper-cubes; into which the 

current Pareto front is subdivided  

1.5. Set each particle’s velocity to zero. 

 
0

0iV   (16) 

 

1.6. Initialize local best positions of the particles by their current positions 

 
0

i iB X  (17) 

 

2. Loop until the loop counter k  reaches the prescribed value: 
IterN  

2.1. Determine global best particle 
k

G out of REP.  

2.1.1. Construct hyper-cubes using the current grid 

2.1.2. Calculate any hyper-cube’s fitness by the following relation when 
hn represents 

the number of Pareto points within that hyper-cube 

 
1

h

h

F
n

  (18) 

 

2.1.3. Select the fittest hyper-cube by a roulette-wheel procedure 

2.1.4. Choose one of the Pareto solutions in the selected hyper-cube as the current 

global best: 
k

G  

2.2. Update Fuzzy sets ( ), ( ), ( )I C Sk k k   by Eq.(10~12) and the mutation threshold 

by: 

 

( ) ( )m I CP k k   (19) 

 

2.3. For every thi  particle do:  

2.3.1. Calculate the particle velocity using Eq.(7) 

2.3.2. Update the position of that particle by Eq.(8) 

2.3.3. If 
mrand P then apply mutation on the particle,  

2.3.4. Correct the particle’s position so that it falls within its prescribed bounds 

2.3.5. Evaluate cost function vector for the particle and its mutated variant 
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2.3.5.1. Replace the particle with its mutated variant if the particle is dominated by such 

a newcomer  

2.3.5.2. else if the particle does not dominate its mutated variant replace them with 50% 

probability 

2.4. Apply Pareto dominance to update local best positions: 

2.4.1. If the current particle 
k

iX  dominates its previous-best position 
( 1)k

iB


update its 

local best by
k k

i iB X  

2.4.2. else if the current particle 
k

iX  is dominated by its previous-best position 
( 1)k

iB


then 
( 1)k k

i iB B


  

2.4.3. otherwise randomly select one of the 
k

iX and 
( 1)k

iB


as 
k

iB  

 

2.5. Update the Repository and Grid 

2.5.1. Extract non-dominated solutions out of the current population and those in the 

current REP 

2.5.2. If the number of these non-dominated solutions are less than
REPN take them as 

the updated REP; 

2.5.3. otherwise eliminate extra non-dominated solutions from REP until the remained 

ones form an updated REP with
REPN members. In this procedure, give priority 

of elimination to the ones that are located in more crowded hyper-cubes. 

2.5.4. Construct new grid using the updated REP 

2.6. Increment the loop counter 
 

3. Announce the REP members as the final Pareto Front 
Flowchart of the proposed MOFPSO is given in Fig.4. The external archive REP for non-

dominated solutions; has as an elitism saving role in multi-objective frame work and also 

acts a guide for particle movements in the corresponding MOFPSO.  

Meanwhile, the idea behind applying hyper-cubes is to find well-distributed Pareto fronts 

by constant grid divisions. This adaptive grid calculation has been reported to have less 

complexity than niching process in related literature [8, 27].  
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Figure 4. Flowchart of the proposed MOFPSO 

 

 

4. PERFORMANCE METRICS 
 

Desirability of the Pareto front resulted by MOO algorithm requires some different measures 

from those of single-objective optimization.For example, the global optimum is no more a 

single point; but is denoted by the points (or an equation) coordinating true PF. The equation 

covering such a set is available for some MOO test functions; however, it is not the case for 

most of the engineering problems. Therefore, it is common to use test functions for 

evaluation purposes. In such a case, a distancein the functions view between the final non-

dominated solutions of a MOO algorithm from true Pareto front will be a measure of its 

quality of convergence.  

As another feature, a desired MOO result should reveal a good spread of points along the 

Pareto front; i.e. as uniform as possible. MOO algorithm should also be powerful in 

capturing corners of true Pareto front as well as its interior regions. In another word, 

maximum extension of PF is desired to be achieved. The employed measures in this study 

are listed below. 

 

4.1 Generationaldistance metric 

In order to asses the distance between non-dominated set and true Pareto front, we apply a 

Generational Distance, GD; based on that introduced by Van Veldhuizen and Lamont [29] 

as:  

 

2

1

n

i

i

e

GD
n





 

(20) 
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where n  is number of solutions in Pareto set and ie is the smallest Euclidean distance 

between each position and true optimal set. 

The minimal GD is zero indicating that all resulted Pareto points by the algorithm are on 

true Pareto front; i.e. the MOO global optimum. 

 

4.2 Spacing metric 

The spacing metric introduced by Schott [30] deals with the spread (distribution quality) of 

the Pareto front.  

 

2

1

( )

1

n

i

i

d d

SP
n









 

(21) 

 

whereas for any thi point on the Pareto front we have: 

 

min ( ) ( )
fN

j i

i j s s

s

d f X f X   (22) 

 

fN stands for the number of the cost functions and d is the average over all 
id . The 

lower SP  corresponds to better spread of Pareto front [30]. 

 
4.3 Extent metric 

Zitzler et al. [31] introduced this metric on the resulted Pareto front. It is defined as follows:  

 

1

n

i

i

EX D


   (23) 

max ( ) ( )
fN

j i

i j s s

s

D f X f X 
 

(24) 

 

For a good MOO result EX is desired to be as large as possible. 

 
4.4 CPU Time 

As the metric for computational efficiency; the elapsed CPU Time, CT (in seconds) is 

evaluated by running all the algorithms on the same platform.  

 

 

5. NUMERICAL INVESTIGATION  
 

Performance of the proposed MOFPSO is evaluated here in comparison with the well-

known NSGA-II on a variety of MOO test functions and sizing problems. Every example is 
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solved by both the algorithms using 50 independent runs with 100PopN  and 200IterN  . 

Specific parameters of NSGA-II are tuned as 1.00Crossovern  , 0.40Mutationn   and 0.02MuP   

while 7GridN  for MOFSPO.  

A number of problems are then treated by the aforementioned MOO algorithms. All the 

algorithms are programmed in MATLAB and run on a 64bit platform with CORETMi3-

3120M 2.5GHz CPU and 4GB RAM. It is worth mentioning that in every run the random 

initial population is identically used by the algorithms for true comparison. 

The first 3 MOO test functions are given by Deb [32] for var 30N   and [0,1]ix   as 

follows. 

Test Problem 1:This test function has a convex Pareto optimal front. TP1 is defined by:  

 

1 1

1
2

( )

( )
( ) 1

f X x

Minimize f X x
f X p

p

 


  
    

 

 (25) 

 

where: 

 
var

2 var

1 9
1

N

i

i

x
p

N

 


  (26) 

 

Test Problem 2: True Pareto front of this example (TP2) consists of several non-

continuous convex parts. It is formulated as:  

 

1 1

1 1
2 1

( )

( )
( ) 1 sin(10 )

f X x

Minimize f X x x
f X p x

p p


 


  
     

 

 (27) 

var

2var

9
1

1

N

i

i

p x
N 

 

  (28) 

 

Test Problem 3: This function has a non-convex Pareto set as defined by:  

 
6

1 1 1

2

1
2

( ) 1 exp( 4 )sin (6 )

( )
( ) 1

f X x x

Minimize f X x
f X q

q

   


    
   

    

 (29) 

 

where: 
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var
0.25

2 var

1 9
1

N

i

i

x
q

N

 
   

 
  (30) 

 

 
Figure 5. Four-bar truss of the test problem-4 

 

Test Problem 4:Sizing of this 4-bar truss is concerned with 4 stress constraints as 

introduced in [33]. The constraints are however re-formed to be assessed like variable limits.  

The problem has two objectives; i.e. total structural volume and the upper corner node’s 

displacement . Member cross sectional areas form the design variables. Formulation of this 

problem is given as. 

 

 1 1 2 3 4

2

1 2 3 4

1

2

3

4

( ) 2 2

( ) . 2 2 2 2 2 2
( )

:

3

2 3

2 3

3

f X L x x x x

Minimize f X F L
f X

E x x x x

Subject to

F F
x

F F
x

F F
x

F F
x

 

 
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 

 (31) 

 

where 10F kN , 210kN
cm

  , 
5

22 10 kNE
cm

  , 200L cm . 
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Test Problem 5: It is a two-bar truss sizing problem, studied by a number of researchers 

[34, 35]. The truss model is demonstrated in Fig.6. It has to carry the vertical load without 

elastic failure. Consequently, one of the problem’s objectives is to minimizing stress in each 

bar and another one is to minimize total volume of the truss. Design variables 1 2 3, ,x x x

indicate section areas of the bar elements and vertical distance between the node C and the 

supports, respectively. 

 

 
Figure 6. Two-bar truss of the test problem-5 

 

The mathematical description of problem is expressed as follows:  

 

2 2

1 1 3 2 3

2

1

2

3

5

2 2

3 3

1 3 2 3

( ) 16 1
( )

( ) max( , )

:

0

0

1 3

max( , ) 10

20 16 80 1
,

AC BC

AC BC

AC BC

f X x x x x
Minimize f X

f X

Subject to

x

x

x

x x
where

x x x x

 

 

 

    
 







 



 
 

 (32) 

 

Test Problem 6: TP6 is a frame sizing design problem. The three-story moment 

frame is shown in Fig.7 for which 6L m  and 4H m . Floor diaphragms are rigid and 

axial deformations are neglected. Thus, the system has only one degree of freedom at 

each story. Total live and dead load at each floor is given 56 KN/m that does not include 



A FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING … 

 

67 

the columns weight. Elastic module and material density of the employed steel are taken 

as 6
2200 10 kN

m
 and 37800

kg
m

, respectively.  

 

 
Figure 7. Moment frame of the test problem-6 

 

Design variables can take column section ID’s. Each ID may be associated an integer 

as in the available section list of Table 1. It is, therefore, a discrete problem with two 

conflicting objectives: the structural weight and its fundamental period. 
 

Table 1: The employed section list for the frame sizing problem 

ID Section Cross area (𝒄𝒎𝟐) Moment inertia (𝒄𝒎𝟒) 
1 IPE 8 7.64 80.1 

2 IPE 10 10.3 171 

3 IPE 12 13.2 318 

4 IPE 14 16.4 541 

5 IPE 16 20.1 869 

6 IPE 18 23.9 1320 

7 IPE 20 28.5 1940 

8 IPE 22 33.4 2770 

9 IPE 24 39.1 3890 

10 IPE 27 45.9 5790 

11 IPE 30 53.8 8360 

12 IPE 33 62.6 11770 

13 IPE 36 72.7 16270 

14 IPE 40 84.5 23130 

15 IPE 45 98.8 33740 

16 IPE 50 116 48200 

17 IPE 55 134 67120 

18 IPE 60 156 92080 

 

In order to prevent formation of soft story, an extra constraint is also applied as:  
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10.7i iK K   (33) 

 

Fig. 8 shows that despite NSGA-II, the proposed MOFPSO has been successful in 

capturing true Pareto front of TP1 in the same 200 iterations. 

Trace of GD in Fig. 9 declares that MOFPSO has much faster convergence with respect 

to NSGA-II. This figure shows completely different trend of EX variation. It has converged 

to a high maximum after an early falling downfor MOFPSO. Note that higher EX is desired 

for a proper MOO solution. 

Table 2 summarizes metric statistics for TP1 to TP4 for which true PF curve is given in 

literature. It confirms such GD superiority not only in average but also in the best and worst 

run results. However, NSGA-II has obtained lower SP measure than MOFPSO. Regarding 

the 3rd metric; i.e. EX, MOFPSO has been superior in capturing the extents of true Pareto 

front, as can also be realized from Fig. 8.  

 

 
(a)           (b) 

Figure 8.Resulted Pareto front by (a) NSGA-II and (b) MOFPSO for TP1 

 

 
(a)               (b) 

Figure 9. Comparison of MOFPSO vs. NSGA-II in (a) GD and (b) EX traces for TP1 
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Table 2: Statistical results of MOO test problems with known PF curve 

Test Problem Metric  NSGA-II MOFPSO 

TP1 

 

GD 

 

 

SP 

 

 

EX 

 

 

CT 

 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

0.0159±0.0021 

0.0125 

0.0213 

0.0088±0.0036 

0.0045 

0.0210 

10.3471±0.9530 

12.5920 

8.6650 

336.1350±1.3504 

334.0469 

342.4688 

0.0004±0.0003 

0.0001 

0.0014 

0.0100±0.0012 

0.0081 

0.0133 

12.4095±0.0432 

12.4933 

12.2839 

55.6203±3.6171 

49.2813 

62.3906 

TP2 

 

GD 

 

 

SP 

 

 

EX 

 

 

CT 

 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

0.0189±0.0041 

0.0110 

0.0269 

0.0128±0.0061 

0.0077 

0.0381 

12.0251±1.2639 

14.4059 

9.3426 

337.0581±2.1457 

332.5313 

346.8125 

0.0028±0.0048 

0.0001 

0.0240 

0.0192±0.0096 

0.0079 

0.0648 

11.5381±1.7828 

14.7162 

6.9458 

26.0600±6.3048 

19.8281 

52.56 

TP3 

 

GD 

 

 

SP 

 

 

EX 

 

 

CT 

 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

0.0130±0.0129 

0.000238 

0.0471 

0.0257±0.0380 

0.0053 

0.1663 

13.0157±2.2899 

20.14 

7.3141 

352.0560±5.5322 

344.2800 

369.2100 

0.0473±0.0827 

0.000209 

0.5559 

0.0598±0.0907 

0.0062 

0.4539 

16.1796±4.8268 

28.3973 

8.4776 

51.8822±13.6215 

20.6563 

72.0938 

TP4 

 

GD 

 

 

SP 

 

 

EX 

 

 

CT 

 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

0.0134±0.00068 

0.0118 

0.0149 

7.0470±0.6247 

5.6161 

8.4350 

357.4608±1.6468 

360.5267 

354.8602 

334.3119±4.7198 

328.4219 

347.8281 

0.0134±0.000714 

0.0119 

0.0148 

9.4485±1.0506 

6.9412 

12.0457 

360.9776±0.9749 

363.1928 

359.0310 

78.3381±3.4488 

71.9219 

85.0000 
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It is interesting that MOFPSO has consumed considerably lower computational effort to 

obtain such results; i.e. 55.6s (in average of 50 runs) which is almost on-sixth of 336.1s by 

NSGA-II.  

Treating the second test problem (TP2), it is observed that MOFPSO has rapidly 

converged to the curve of true Pareto front while NSGA-II has not yet captured it. Fig.10 

shows that despite NSGA-II, the MOFPSO result has been extended to all valleys of non-

convex Pareto curve. CT comparison in Table 2 reveals that in average MOFPSO has been 

about 13 times faster than NSGA-II in this example. However, regarding other metrics; i.e. 

SP and EX they have shown closer performance. 

In optimization of TP3, GD in the best runs of MOFPSO is again better than NSGA-II, 

however, it is not the case for the mean GD. Like the other examples, the spread metric SP 

of NSGA-II has been lower than MOFPSO; but such superiority is reversed for EX 

regarding Table 2. Fig.11 shows that in this example, both the methods have revealed their 

final non-dominated solutions on the curve of true PF.  

 

 
(a)             (b) 

Figure 10.Resulted Pareto front by (a) NSGA-II and (b) MOFPSO for TP2 

 

According to Fig. 12, both NSGA-II and MOFPSO have almost captured the curve of 

true PF. The matter is confirmed by reported GD results in Table 2. In TP4, the best method 

to maintain extension of PF is MOFPSO; meanwhile NSGA-II reveals the best SP results.  

It is also notable that the time complexity of MOFPSO (with 78s mean-CT) is still lower 

than NSGA-II (taking 334seconds in average). These values are updated to 71.9s vs. 

328.4sfor the best run of the algorithms, respectively. 
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(a)              (b) 

Figure 11.Resulted Pareto front by (a) NSGA-II and (b) MOFPSO for TP3 

 

 
(a)              (b) 

Figure 12.Resulted Pareto front by (a) NSGA-II and (b) MOFPSO for 4bar truss design (TP4) 

 

 
(a)             (b) 

Figure 13.Resulted Pareto front by (a) NSGA-II and (b) MOFPSO for the truss sizing at TP5 
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Table 3: Statistics of MOO results for test problems TP5 and TP6 

Test Problem Metric  NSGA-II MOFPSO 

TP5 

 

SP 

 

 

EX 

 

 

CT 

 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

571.6212±36.2179 

481.4095 

647.9019 

2727.8000±19.2030 

2753.9000 

2635.8000 

315.3541±2.7496 

313.1563 

324.4375 

829.1462±211.9612 

425.4678 

1359.8 

2655.3000±96.0512 

2776.8000 

2338.6000 

57.0097±5.6882 

39.5781 

69.9531 

TP6 

 

SP 

 

 

EX 

 

 

CT 

 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

Mean±SD 

Best 

Worst 

13.6906±2.2778 

9.8298 

18.3005 

395.3538±26.2187 

445.7590 

351.8258 

350.2038±7.5138 

339.3594 

372.1563 

18.2808±2.4223 

12.6576 

23.6849 

432.4208±23.1425 

448.8558 

351.7102 

72.3719±2.3545 

68.8750 

79.5625 

 

TP5 is a sizing problem for which true PF is not reported. Comparing Fig. 13a with Fig. 

13b shows good agreement in capturing PF by the treated methods. This is also true for TP6 

according to Fig. 14. However, some differences in spread of solutions along PF can be 

noticed in each case; that is numerically declared in Table 3.  

For TP5 and TP6, MOFPSO has resulted in PF with better EX than NSGA-II in the best 

run; however, the average EX of TP5 is slightly lower for MOFPSO. In the treated cases, 

NSGA-II has revealed smaller SP but MOFPSO has taken much better CPU time applying 

the same 
PopN and

IterN . 

 

 
(a)              (b) 

Figure 14.Resulted Pareto front by (a) NSGA-II and (b) MOFPSO for the frame design (TP6) 
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6. CONCLUSION 
 

The present work concerned a fuzzy approach to reduce parameter tuning effort in a multi-

objective particle swarm optimization. In this regard, the algorithm parameters are fuzzified 

taking into account some prescribed suggestions about proper iteration-wise variation of 

these factors.  

Gaussian distribution is utilized to generate fuzzy partition of the corresponding factors. 

Consequently, the cognitive and social coefficients are assigned a type of normal fuzzy sets. 

The other factors are constructed by fuzzy complement and concentration operators on the 

aforementioned membership functions. Such fuzzy sets depend on some random seeds, 

however, their maximal height are pre-determined. In fact, they represent especial types of 

control factors for the proposed MOFPSO.  

Statistical results of optimization in a number of test functions and also sizing design 

examples showed that MOFPSO is capable of capturing true Pareto front. In another word, it 

can provide sufficient diversity by its randomized terms to escape from local optima. In 

most treated problems MOFPSO resulted in more extended Pareto front with respect to 

NSGA-II, however, with evenly distributed points on PF.  

Parameter-less structure of the proposed method is of practical interest. Although, such a 

feature does not allow the best tuning for maximal performance, MOFPSO was competitive 

to NSGA-II in our tests regarding GD and EX metrics. In addition, computational time 

efficiency of MOFPSO is beneficial for solving engineering problems. 
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