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ABSTRACT 
 

This study investigates the prediction model of compressive strength of self–compacting 

concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive 

neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the 

hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS 

called PSOPC–ANFIS. Their performances are comparatively evaluated in order to find the 

best prediction model. In this study, SCC mixtures containing different percentage of nano 

SiO2 (NS), nano–TiO2 (NT), nano–Al2O3 (NA), also binary and ternary combining of these 

nanoparticles are selected. The results indicate that the PSOPC–ANFIS approach in 

comparison with the ANFIS and ANN techniques obtains an improvement in term of 

generalization and predictive accuracy.  Although, the ANFIS and ANN techniques are a 

suitable model for this purpose, PSO integrated with the ANFIS is a flexible and accurate 

method due tothe stronger global search ability of the PSOPC algorithm. 
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1. INTRODUCTION 
 

Concrete is one of the most extensively used materials in the world. Portland cement–based 

binders are the primary active components of cementitious composites used in most modern 

construction. The other components are water, and both fine and coarse aggregates. Other 

powders are referred to as supplementary cementitious materials (SCMs) since they are used 
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to replace some of the more expensive cement. Moreover, chemical admixtures like 

superplasticizers can be added in small amounts to modify the properties of a cementitious 

composite for specific applications. 

Self–compacting concrete (SCC) is a special concrete which has great flowing ability in 

fresh state so that it can be placed and compacted under its own weight without vibration [1, 

2]. There are many advantages of using SCC such as shorter construction periods, reduction 

in the labor cost, and better compaction in the structure especially in confined zones where 

compaction is difficult. In order to obtain the ability of self–compacting in SCC, the 

common practice is to use new generation high range water reducers, to limit the maximum 

aggregate size, and to use low water–powder ratios or viscosity modifying admixtures. On 

the other hand, the cost of SCC is one of the negative point of this type of concrete, due to 

needs to use of chemical admixtures and use of high volumes of Portland cement. High 

cement content usually introduces high hydration heat, high autogenous shrinkage and high 

cost. So, it cause to increase the consumption of cement and rise carbon dioxide emissions 

associated with cement production that can affect serious environmental impacts. Using 

some natural and artificial pozzolans like fly ash (FA) could be one of the best solution to 

reduce both the cost and cement that needs to create SCC [3, 4]. 

Many researchers [5, 6] has investigated the properties of SCC made with different 

amounts of fly ash. Among different pozzolans, FA has reported one of the best materials as 

SCMs to improve the mechanical properties and durability of concrete when used as a 

cement replacement material [7–9]. Most of researches in this area concentrated in 

incorporating nanoparticles on SCC which most of them have focused on using SiO2 

nanoparticles [10]. Using different types of nanoparticles like Al2O3 or TiO2 in SCC has 

been addressed in some of studies [11–13]. Flexural performance and abrasion resistance of 

concrete containing TiO2 nanoparticles for pavement were experimentally studied by Li et 

al. [14, 15]. The results were shown the significant improvement of flexural fatigue 

performance and abrasion resistance. Nazari and Riahi used different percentage of Al2O3 

nanoparticles in concrete in order to investigate the influence of these particles [16]. The 

results appeared the strength improvement by using of nano–Al2O3 particles up to maximum 

replacement level of 2.0% produces concrete. However, the ultimate strength of concrete 

was gained at 1.0 wt% of cement replacement.  

There are many factors to assess the performance concrete, and many research focused 

on the evaluation and prediction of these factor. The compressive strength of concrete has 

been considered as one of the most essential qualities of concrete. In order to save costs and 

time in important projects, developing accurate and reliable prediction models of the 

compressive strength has received great deal of attentions by many researchers. Therefore, soft 

computing techniques as the modern approach for constructing a computationally intelligent 

system been widely have been widely used. The most popular of the techniques consists of 

Artificial Neural Networks (ANNs), Evolutionary Computation (EC), Machine Learning 

(ML), Adaptive network–based fuzzy inference system (ANFIS) and Support vector 

machines. The successful applications of the techniques have been reported in the problems 

of engineering [17–22]. Sobhani et al. [23] presented a comparative study of prediction 

models such as ANN and ANFIS to estimate the compressive strength of no–slump 

concrete. The comparison of the results indicated that ANN and ANFIS models were more 

feasible than the proposed traditional regression models. Rofooei et al. [24] applied different 
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ANN models to estimate the vulnerability of sample of reinforced MRF concrete structures. 

Saridemir [25] investigated the use of genetic programming approach to predict the 

compressive strength of concretes containing rice hush ash. Behfarnia and Khademi [26] 

investigated the efficiency and accuracy of ANN and ANFIS models for the prediction of 

28–day compressive strength of concrete with different usual mixture without any special 

additive. The results of this study revealed that the ANN model was the efficient model for 

prediction of compressive strength. 

The main contribution of this work to investigate an accurate prediction model of the 

compressive strength of self–compacting concrete (SCC) by utilizing soft computing 

techniques. The techniques consist of ANFIS, ANN and the hybrid of particle swarm 

optimization with passive congregation (PSOPC) and ANFIS, which called PSOPC–ANFIS. 

In order to find the best prediction model of the compressive strength of SCC, a comparative 

study of the models are implemented. In this study, SCC mixtures containing different 

percentage of nano–SiO2 (NS), nano–TiO2 (NT), nano–Al2O3 (NA), also binary and ternary 

combining of these nanoparticles are selected. The numerical results demonstrate that the 

PSOPC–ANFIS model in comparison with the ANFIS and ANN techniques obtains an 

improvement in term of generalization and predictive accuracy. Furthermore, the ANFIS 

and ANN techniques are a suitable model for this purpose. 

 

 

2. DATASET DESCRIPTION AND MATERIALS 
 

In order to attain the aim purpose of this study, the experimental data sets containing of 82 

samples of SCC are obtained from different previous studies [27, 28]. All of the mixture 

were produced with constant water/binder ratio of 0.4 and the amount of fly ash was 25 

wt.% of the cement in all samples. In this study, NS, NA and NT are the abbreviation of 

SiO2, Al2O3 and TiO2 nanoparticles, respectively and combination of S, A and T denote the 

binary and ternary mixture of these nanoparticles. Table 1 shows the experimental data set 

used in this study. Each of these sample contains cement (C), sand (S), NS, NA, NT, 

superplasticizer dosage (SP) and time (D) as input variables of the database, the compressive 

of SCC as the output variables of the database.  

 
Table 1: Experimental data sets 

Label Cement Fly ash 
Nano 

SiO2 

Nano 

TiO2 

Nano 

Al2O3 
Water Sand SP Age 

Control 525 175 0 0 0 280 1210 4.5 3 

1NA 518 175 0 0 7 280 1198 4.20 3 

3NA 504 175 0 0 21 280 1176 4.00 3 

5NA 490 175 0 0 35 280 1153 4.00 3 

1NS 518 175 7 0 0 280 1198 4.5 3 

3NS 504 175 21 0 0 280 1176 4.2 3 

5NS 490 175 35 0 0 280 1153 4.2 3 

1NT 518 175 0 7 0 280 1153 4.20 3 
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5NT 490 175 0 35 0 280 1176 3.90 3 

Control 525 175 0 0 0 280 1210 4.5 7 

 
. . . . . . . . . 

 
. . . . . . . . . 

Control 525 175 0 0 0 280 1210 4.5 28 

 
. . . . . . . . . 

 
. . . . . . . . . 

Control 525 175 0 0 0 280 1210 4.5 90 

 
. . . . . . . . . 

 
. . . . . . . . . 

1NSA 518 175 3.5 0 3.5 280 1153 4.20 3 

3NSA 504 175 10.5 0 10.5 280 1198 4.20 3 

5NSA 490 175 17.5 0 17.5 280 1176 4.00 3 

 
. . . . . . . . . 

 
. . . . . . . . . 

1NSAT 518 175 2.3 2.3 2.3 280 1198 3.80 3 

3NSAT 504 175 7 7 7 280 1176 3.80 3 

5NSAT 490 175 11.7 11.7 11.7 280 1153 3.50 3 

 
. . . . . . . . . 

 
. . . . . . . . . 

 

Furthermore, Table 2 illustrates the range of input and output data sets. 

 
Table 2: Statistical description of concrete components 

Factors Notation Unite Min Max Mean 

Cement C kg/m
3
 490.00 525.00 504.95 

Nano SiO2 NS kg/m
3
 0.00 35.00 6.68 

Nano TiO2 NT kg/m
3
 0.00 35.00 6.68 

Nano Al2O3 NA kg/m
3
 0.00 35.00 6.68 

Sand S kg/m
3
 1153.00 1210.00 1178.40 

SP SP kg/m
3
 3.50 4.50 4.04 

Ages D days 3.00 90.00 32.00 

Compressive strength Output MPa 11.90 60.67 34.05 

 

 

3. BACK–PROPAGATION TRAINED ARTIFICIAL NETWORK 
 

Back–propagation (BP) algorithm has been presented as a type of ANN methods. In this 

model, the input values to a neuron are obtained by multiplying the output of the connected 
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neuron by the synaptic strength of the connection between them [29]. The weighted sums of 

the input components xi are calculated as follows: 
 

1

( ) ( )
n

j ij i

i

net f w x b


   (1) 

 

where (net)j is the output from neuron, wij is connection’s weights, b is thresholds, n is the 

number of neurons or processing elements (PE) in each layer and f is the activation function 

as follows: 
 

 
2

( ) 1
1 exp 2( )

j j

j

O f net
net

  


 (2) 

 

BP–ANN operates in two steps. First, the data are fed into the input layer and processed 

by transfer functions through the layers until the network’s response is computed at the 

output layer. Second, the network’s response is compared at the target and an error is 

generated. Based on this error signal, connection weights between layer neurons are updated 

until the network reaches a pre–defined performance goal. The back–propagation algorithm 

is used to accelerate the convergence of this algorithm. BP algorithm adjusts the weights in 

the steepest descent direction where the performance function decreases more rapidly. 
 

 

4. ADAPTIVE NETWORK–BASED FUZZY INFERENCE SYSTEM 
 

One of types of fuzzy inference system (FIS) has been introduced as a nonlinear mapping 

from the input space to the output space [30]. The mechanism of this system has been 

basically adopted as the conversion of inputs from numerical domain to fuzzy domain with 

using the three functional components: a rule base, which contains a selection of fuzzy rules; 

a database, which defines the membership functions (MFs) used in the fuzzy rules and a 

reasoning mechanism, which performs the inference procedure upon the rules to derive an 

output. The adaptive neuro–FIS (ANFIS) is a FIS implemented in the framework of adaptive 

networks. The architecture of ANFIS with two input variables is shown in Fig. 1. 

 

 
Figure 1. Architecture of ANFIS [20] 
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The ANFIS approach consists of the human–like reasoning style of FIS by the use of 

input–output sets and incorporates of two fuzzy if–then rules based on Takagi and Sugeno’s 

type [35]: 

222222

111111

,:2

,:1

ryqxpfthenBisyandAisxIfRule

ryqxpfthenBisyandAisxIfRule




 (3) 

 

where A1, A2, B1 and B2are representing MFs for the inputs x and y, respectively. Also, pi, qi 

and ri ( 1,2i  ) are incorporating parameters of the output MFs (consequent parameters). 

The final structure of ANFIS consists of fixed square nodes and adaptive circle nodes 

that those parameters are changed during the training process. A hybrid learning algorithm 

of ANFIS is employed by the parameters of MFs of input variables and linear parameters of 

the output variable that are optimized with gradient descent (GD) approaches and finally can 

be calculated as follows [30]: 
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where iw  represents the firing strength of rule I, ( )iA x  and ( )iB x are the membership 

degrees of x and y in Ai and Bi, respectively. Gaussian functions with maximum and 

minimum equals to 1 and 0, respectively, are selected for the membership degrees as: 
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where {ai, bi, ci} and {di, ei, gi} are the premise parameters set that used to adjust the shape 

of MF.  

 

 

5. INTELLIGENCE ANFIS MODEL 
 

The ANFIS approach utilizes both the advantages of neural networks and fuzzy systems. 

However, training the parameters of the ANFIS model is considered as a main challenge 

when ANFIS is employed for the real–world problems. Furthermore, the GD approaches are 

utilized as the training methods of ANFIS, which are known to be local search approaches 

and their performances generally depend on initial values of parameters. Since the optimal 



A COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT … 

 

373 

design of fuzzy systems (FSs) can be considered as an optimization problem, many 

researchers have proposed metaheuristic approaches such as genetic algorithms (GAs) and 

PSO for the optimal design of FSs [32, 33].  

The performance and accuracy of the ANFIS model depend on the premise parameters and 

the consequent parameters which need to be trained. Recently, Khatibinia and 

Mohammadizadeh [33] have introduced a intelligent ANFIS approach. In this approach, the 

premise parameters i.e. {ai, bi,ci} have been estimated by the particle swarm optimization with 

passive congregation (PSOPC). The intelligent ANFIS approach been has called as PSOPC–

ANFIS. The flowchart of the proposed intelligent ANFIS method is shown in Fig. 2. 

 

 
Figure 2. Flowchart of the proposed intelligent ANFIS model 

 

In this model,the premise parameters are considered as the design variables of 

optimization problem. Furthermore, the consequent parameters are calculated by the least 

squares estimation (LSE). To evaluate the accuracy of the PSOPC–ANFIS approache, the 

root mean squared error (RMSE) between actual output and desired output is considered as 

the objective function, which can be expressed as follows: 

 

Find premise parameters 

by PSOPC algorithm 

Training data 

Generate Fuzzy Inference 

System (FIS) structure 

Train the ANFIS model  

 

Finding the optimal number 

of the clusters (nc) by SA 

Utilize Fuzzy C-Means 

 

End 

 

Convergence? 

Yes 

No 
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where O and O  are the measurement values and the predicted values, respectively; and nt is 

the total number of test data. In fact, RMSE can calculate the variation of errors in the 

proposed model and is very useful when large errors are undesirable. 

 In order to overcome the overfitting problem in the PSOPC–ANFIS approache, the 

subtractive algorithm (SA)is utilized to find the optimum number of the fuzzy rules. The 

fuzzy c–means (FCM) approach also creates a fuzzy inference system for the antecedents 

and consequents. The details of the SA and FCM approaches can be found in the work of 

Khatibinia et al. [21]. 

 

 

6. RESULT AND DISCUSION 
 

6.1 Scaling database 

To evaluate the effectiveness and accuracy of the ANN, ANFIS and PSO–ANFIS approachs, 

the compressive of SCCis estimated using the PSOPC–ANFIS and RCGA–ANFIS 

approaches. In order to achieve this purpose, the database of laboratory testing results for 88 

samples outlined in Table 1 is selected. Before dividing database into training and testing 

sets, the values of the input variables are normalized between 0.2 and 0.8 as follows [33]: 
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where 
i

x , xmax and xmin are the normalized, maximum and minimum values of the input 

variables, respectively. In this study, b1 and b2 are assumed to be equal to 0.6 and 0.2, 

respectively.  

 

6.2 Evaluating accuracy of the soft computing methods 

To evaluate the performance of all of the soft computing methods, three criteria are chosen. 

The coefficient of determination (R2) represents that how well the independent variables 

considered account for the measured dependent variable [33] as follows: 
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Also, the prediction relationship relative root mean squared error (RRMSE) between 

actual output and desired output is considered as the objective function that can calculate the 

variation of errors in the proposed model expressed [33]: 
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Moreover, the mean absolute percentage error (MAPE) are computed as following [33]: 
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6.3 Results of the ANN model 

In order to provide the ANN model, 70% of the data is randomly considered as the training 

data. Furthermore, The number of the validating and testing data are selected to be equal to 

15%. Figure 3 shows the correlation between the target values(experimental compressive 

strength)and output values (estimated compressive strength) for the training, validating and 

testing and data.  

In accordance with Fig. 3, all of R2 show the desirable ability of this method to use for 

prediction problems. It is found from Figure 3 that, ANN model has correlation coefficient 

almost one. Therefore, this shows that this model has high degree to experimental data.  
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(b) 

 
(c) 

Figure 3. Results of predicting compressive strength by the ANN model for (a)training data, 

(b)testing data and (c)validating data 
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6.4 Results of the ANFIS and PSOPC–ANFIS models 

The experimental data are divided into two sets for the training and testing the networks, 

where, 70% of the experimental data are used to train the networks, and the rest (30%) are 

used to test the accuracy of the trained models.The performance and the accuracy of the 

ANFIS and PSOPC–ANFIS models are graphically shown in Figs. 4 through 7. 

 

 
Figure 4. Percentage of error values of the ANFIS model in the training process 

 

 
Figure 5. Percentage of error values of the ANFIS model in the testing process 

 

 
Figure 6. Percentage of error values of the PSOPC–ANFIS model in the training process 



A. Feizbakhsh and M. Khatibinia 

 

378 

 
Figure 7. Percentage of error values of the PSOPC–ANFIS model in the testing process 

 

It is observed from Figs. 4 through 7, the PSOPC–ANFIS model in comparison with the 

ANFIS model predicts the compressive strength of SCC at high accuracy rate. Furthermore, 

Figs. 8 and 9 show the histogram for distribution of error values in the testing process of the 

ANFIS and PSOPC–ANFIS models, respectiviely. 
 

 
Figure 8. The histogram for distribution of error values in the testing process of ANFIS 

 

 
Figure 9. The histogram for distribution of error values in the testing process of PSOPC–ANFIS 
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The histogram of PSOPC–ANFISin comparing with that of ANFIS represented is close 

to the normal distribution, which illuminate the robust prediction using the PSOPC–ANFIS 

model. 

 

6.5 Comparison of the ANN, ANFIS and PSOPC–ANFIS models 

This section presents the comparison of results obtained by the ANN, ANFIS and PSOPC–

ANFIS and RCGA–ANFIS.For this purpose, at first, each of the performance criteria is 

normalized to a value of 1 for the best performance and 0 for the worst. Then, the RI is 

obtained by calculating the average of every normalized performance criteria as shown in 

Eq. (13) [33].  

 

2

MAPE RRMSE
RI


  (13) 

 

Also, Eq. (14) is used for normalizing theperformance criteria as: 
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Table 3 shows the results from the proposed methods, the ANFIS, ANN and PSOPC–

ANFIS techniques for comparison purposes.  

 
Table 3. Performance measurement results of various prediction techniques 

Process Performance 
Model 

PSOPC–ANFIS ANFIS ANN 

Train MAPE 1.3971 4.6305 0.3407 

 
RRMSE 0.0517 0.1524 0.0139 

 
R

2
 0.9974 0.9812 0.9998 

Test MAPE 2.7705 3.0215 2.9872 

 
RRMSE 0.1029 0.0988 0.1285 

 
R

2
 0.9890 0.9903 0.9857 

 RI 0.930 0.500 0.068 

 

Based on the RI index obtained for testing process, the PSOPC–ANFIS method 

outperform the ANN and ANFIS model. Therefore, the PSOPC–ANFIS model can be a 

powerful technique with high accuracy as compared with the ANN and ANFIS techniques. 

 

 

7. CONCLUSIONS 
 

In this paper, the accuracy and efficiently of the ANN, ANFIS and PSOPC–ANFIS models 

as soft computing methods wereinvestigated to find the best method for predictingthe 
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compressive strength of SCC by knowing the mixture properties materials and percentage of 

each of them. Results of the models were discussed based on RIwhich was normalized to a 

value of 1 for the best performance and 0 for the worst. The following results could be 

drawn from this study: 

 The results of the analyses indicate that the hybrid of PSOPC and ANFIS outperform the 

ANN, ANFIS models. By adopting the hybrid model, there is no need to go through time–

consuming laboratory tests. 

 PSOPC is applied to optimize the premise parameters of ANFIS, to acquire a global optimal 

solution and a reliable model in prediction of the compressive strength of CCS. 

The ANFIS and ANN models can be a reliable model for predicting the compressive 

strength of CCS. 
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