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ABSTRACT 
 

By minimizing the total potential energy function and deploying the virtual work principle, a 

higher-order stiffness matrix is achieved. This new tangent stiffness matrix is used to solve 

the frame with geometric nonlinear behavior. Since authors’ formulation takes into account 

the higher-order terms of the strain vector, the convergence speed of the solution process 

will increase. In fact, both linear and nonlinear parts of the frame axial strains are included 

in the presented formulation. These higher-order terms affect the resulting unbalanced force 

and also frame tangent stiffness. Moreover, the finite element method, updated Lagrangian 

description, and arc length scheme are employed in this study. To check the efficiency of the 

proposed strategy, several numerical examples are solved. The findings indicate that the 

authors’ technique can accurately trace the structural equilibrium paths having the limit 

points. 
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1. INTRODUCTION 
 

Because of the economic consideration, some frames are built more flexible nowadays. For 

these cases, accurate considerations in the analysis and design are required. All structures 

which deform largely, they behave nonlinearly prior to reaching to their ultimate strength. 

There are two different types of the nonlinear behavior in the structures, namely the material 

and geometrical nonlinear performance. In the former, the stress and strain are nonlinearly 

related. This is due to properties of the structural martial. In another case; the structure’s 

geometry changes due to the large deformations. As a result, the stiffness matrix should be 

set up in each step of the analysis, based on the corresponding deformations. Up to now, 
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extensive researches have been conducted to present an appropriate stiffness matrix which is 

capable of achieving the equilibrium path of structures. The behavior of structures under the 

load is dependent on the various factors. To find accurate results, all of these parameters 

should be included in the stiffness matrix. 

Safaan proposed the first geometric nonlinear stiffness matrix of frames by using simple 

formulas. However, this technique did not lead to the acceptable results [1]. Afterwards, 

researchers suggested the stiffness matrices with the help of Lagrangian techniques. For 

nonlinear analysis of structures, three general descriptions are usually presented, for 

considering the body’s configuration. In the first approach, which is named total Lagrangian, 

the initial shape of the member, which is called the base configuration, is used in the 

analysis [2]. Note that the last available position of element is considered as the reference 

shape in the updated Lagrangian method [3]. The third strategy deploys the rigid body 

motions and infinitesimal deformations [4]. This scheme is named co-rotational tactic. It 

should be reminded that the updated Lagrangian technique is more accurate and efficiency 

than the total Lagrangian [5] and [6]. For this reason; the updated Lagrangian is employed in 

this study.  

Conner used a simple stiffness matrix which was applicable in limited situations [7]. This 

investigator utilized a shape function for the member, which was previously introduced by 

Powell [8]. The mentioned frame member had small deformations, having the axial force 

and flexural moments at its ends. Afterwards, Oran formulated the symmetric stiffness 

matrix for the members with axial-flexural behavior [9] and [10]. This matrix was 

constructed based on the updated Lagrangian approach. In another event, Yang analyzed the 

frames and beams with the help of simple formulas [11]. He took advantage from the strain 

energy function, and constructed the stiffness matrix, for the small deformation members. 

Wen and Rahimzadeh proposed a formulation for the analysis of the frames, by considering 

the small nodal rotation, large transmission and rotation of the members [12]. Based on 

these assumptions, the element motions were estimated by using a third-order function. Note 

that the obtained tangent matrix is suitable for the small deformations and cannot work in 

the case of large displacements. By applying the virtual work principle and using some 

nonlinear terms of strain, the stiffness matrix of the beams twisted non-uniformly was 

explored by Yang and McGuire [13].  

In another study, Spillers calculated the asymmetric stiffness matrix of the space frames 

with large rotations and small rotational strain [14]. This matrix is unsuitable for the 

buckling problems. In order to analyze the plane frames with small strain and moderate to 

large rotation, second-order effects for geometrically nonlinear behavior were considered by 

Torkamani et al. [15]. As a result, a symmetric matrix which is the sum of four matrices was 

achieved. Furthermore, two matrices of the second-order included the displacement 

components. Chang obtained the higher-order stiffness matrix of the space frames by the 

usage of the rigid body rule [16]. This matrix is divided into three sections of elastic, 

geometric and higher-order terms. It is worth emphasizing; the parameters that the make up 

the geometric and higher-order stiffness matrices have force components. Yang et al. 

employed the geometric stiffness of the curved beams in buckling analysis [6]. The higher-

order stiffness matrices of the truss structures were formulated by Torkamani and Shieh [17] 

and also by Rezaiee-Pajand and Naserian [18]. By considering the large deformations, all 

the linear and nonlinear terms of the strain were taken into account in equilibrium equations. 
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Consequently, an asymmetric matrix with five parts calculated. Gorgun and Yilmaz [19] and 

Gorgun [20] investigated the geometrical nonlinear behavior of plane frames with semi-rigid 

and flexible connections, respectively. By using the minimization of difference between the 

measured and analytical static displacement, a novel algorithm for the static damage 

detection of frame structures was obtained by Rezaiee-Pajand et al. [21]. Based on the exact 

solution of governing differential equations, Rezaiee-Pajand et al. computed the critical 

buckling load of the semi-rigid steel frames with members [22-23]. In another research, the 

nonlinear behavior of the material and geometrical of the shear-flexible frame problems 

were investigated [24]. 

Based on the review of the other investigator papers, it can be deduced that sufficient 

studies have not been done for developing a robust frame tangent stiffness, so far. In fact, 

some researchers neglected the higher-order terms of the strains in the two-dimensional 

frame analysis. In this study, both linear and nonlinear parts of the frame axial strains are 

included in the formulation. These higher-order terms affect the resulting unbalanced force 

and also frame tangent stiffness. As a result, better convergence speed of the solution 

process will be achieved. To test the ability and efficiency of the authors’ techniques, 

various numerical problems will be solved. The outcomes of these geometric nonlinear 

analyses will be also compared with the answers of the former investigators.  

 

 

2. HIGHER-ORDER STIFFNESS MATRIX 
 

In this paper, a new higher-order stiffness matrix will be formulated for geometric nonlinear 

analysis of the plane frames. The following assumptions will be used in the mathematical 

calculation process. 

 

2.1 Assumptions 

In order to solve the problems more effectively, the coming assumptions are considered: 

1. The members of the structure are straight. Additionally, no imperfection and residual 

stress exist among the elements. 

2. The cross sections of the members are symmetric about the principal axes. Moreover, the 

centroid axis of the cross section is in direction of the element longitudinal axis.  

3. The structural deformations occur only in the members’ plane. Additionally, the local 

buckling is negligible. 

4. The cross sections of structural members always remain plane. Afterward, the cross 

sections remain perpendicular to the longitudinal axes though the members' deformation. 

5. The distributed loads are applied to the symmetry axis of the cross section. 
 

2.2 Finite element method 

A plane frame element is demonstrated in Fig. 1. This member has six degrees of freedom, 

and the nodal displacement vector has the following shape: 

 

 (1) 

 

 222111 ,,,,,}{  vuvud T 
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Figure 1. Coordinate systems of a plane frame element 

 

where, u1, v1, Ɵ1 and u2, v2, Ɵ2 are referred DOFs corresponding to translations of node 1 

and 2 along the directions of x, y and z, respectively. The nodal force vector can be written 

as below: 

 

 (2) 

 

Here, N1, V1, M1 and N2, V2, M2 are the components of force corresponding to node 1 

and 2 along the directions of x, y and z, respectively. It should be reminded that the 

displacements of an arbitrary point placed on the cross section can be expressed in terms of 

the deformations of the neutral axis as follows [15]: 

 

 (3) 

 

In this equation, ,  and ,  are the displacements of the cross section’s center and 

arbitrary point in the directions of x and y, respectively. Furthermore, the vertical distance of 

the selected arbitrary point from the neutral axis is shown by y. 

For relationship between the motions of an arbitrary point and nodal displacements, the 

following shape functions will be used:  

 

 (4) 

 (5) 

 (6) 

 

In the last relation, ,  and  denote the vectors of shape functions for the 

axial, vertical displacement and rotation of a frame member, respectively. Using the 
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equilibrium conditions of the straight beam with nodal moments leads to the subsequent 

third-order equation for vertical displacement: 

 

 (7) 

 
(8) 

 

In this relationship, E and I are the modulus of elasticity and the moment of inertia, 

respectively. The shape functions of the axial and rotational deformations can be obtained by 

deploying a linear relation as follows: 

 

 (9) 

 

According to the Fig. 1, the following are the boundary conditions of the plane frame 

element: 

 

 (10) 

 

Utilizing the boundary conditions stated in Eq. (10) leads to shape functions in the 

coming form: 

 

 (11) 

 
(12) 

 

(13) 

 

2.3 Equilibrium equations 

By minimizing the total potential energy function and deploying the virtual work principle, 

the coming incremental equilibrium equation can be achieved: 

 
 (14) 

 

In this equality, the strain energy and the external potential work are demonstrated by U 

and W, respectively. Moreover, σ and ε denote the axial stress and strain, respectively. The 

axial stress of the member has the next form: 
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 (15) 

 
(16) 

 (17) 

 

In this relationship, σ0 is the axial stress in the reference shape. The axial strain of the 

frame element can be divided into linear and nonlinear parts [25]. The frame element’s 

strain has the succeeding appearance: 

 

 (18) 

 

The linear and the nonlinear parts of the strain are shown by exx and respectively. 

Inserting Eqs. (15)-(18) into Eq. (14) leads to the incremental static equation, which can be 

expressed as below: 

 

 (19) 

 

By utilizing Eqs. (3)-(5), the linear and nonlinear parts of the strain can be achieved in 

the coming form: 

 

 (20) 

 

(21) 

 

The differential equations of linear and nonlinear strain can be obtained as: 

 

 (22) 

 
(23) 

 

(24) 

 

In which,  includes the derivatives of the shape functions with respect to x 

parameter. By applying Eqs. (20)-(23), the incremental equilibrium Eq. (19) can be rewritten 
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in the below shape: 

 

 (25) 

 

2.4 Components of the stiffness matrix 

The incremental equilibrium Eq. (25) can be written in the next form: 

 

 (26) 

 

By deploying this equality, the higher-order stiffness matrix of the frame element can be 

obtained in the following shape: 
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(31) 

 

(32) 

 

(33) 

 

In these equalities, the axial force and bending moment are shown by P and M, 

respectively. The element’s bending moment can be expressed in terms of nodal bending 

moments as follows: 

 

 (34) 

 

Eq. (25) includes the integration of the fourth-order for the y parameter. In this paper, the 

second moment of inertia is defined in the coming shape:  
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the incremental deformations. All the higher-order matrices will be given in appendix A.  

Recall that the stiffness matrix stated in Eq. (27) is obtained based on local coordinates. 

By employing the transformation matrix, it can be transformed to the global coordinates. 

The following relation shows the process in which the local stiffness matrix converts into 

the global one: 

 

 (36) 

 

In this equality, [Ke] and [T] are the global stiffness matrix and transformation matrix, 

respectively. The transformation matrix converts the member stiffness from local 

coordinates into the global ones. It should be added that the transformation matrix of the 

plane frame structures will be given in appendix B. In the well-know process; the total 

nonlinear stiffness matrix of the structure can be obtained by assembling the global 

incremental stiffness matrices of the members. 

 
 

3. SOLVING NONLINEAR EQUATIONS 
 

The structural analysis aims to find the response of equilibrium equation, which governs the 

behavior. This relation has the coming shape: 

 

 (37) 

 

In the last relationship, the force vector, global nonlinear stiffness matrix and nodal 

displacement vector are shown by {f}, [K] and {D}, respectively. To achieve the nonlinear 

structural equilibrium path, three methods are proposed for solving Eq. (37). These are 

called the pure incremental approach, incremental- iterative tactic and direct technique. In 

the pure incremental scheme, the static path is obtained by deploying linear approximations. 

The related simplifications may lead to divergence of the solution [26]. Although this 

strategy is easy, its application is limited. For instances, the mentioned approach may not 

reach to the exact responses, in problems with large deformations [27]. 

In the direct algorithm, only one load increment exists. In this method, by using secant 

stiffness matrix the iterative procedures are carried out to obtain the equilibrium path. Note 

that the aforesaid tactic is only practical in the structures with moderate displacements [28]. 

According to experiences, the most efficient strategy for analyzing the nonlinear structures 

is the iterative-incremental method. In this scheme, each loading step is divided into two 

sections: 1- predictor step 2- iterative step. In the former stage, the displacement is, firstly, 

approximated by specifying the load factor. In the latter stage, the successive iterative 

procedure is conducted for obtaining the static path.  

It should be reminded, one of the classical techniques, which is very common is named 

Newton-Raphson. Note that the loading level remains constant in each step of this load 

control tactic [29]. This way has a low speed. In fact, the stiffness matrix is updated for 

numerous times in the Newton-Raphson procedure. To remedy these drawbacks, Crifield 

introduced the updated Newton-Raphson algorithm [30]. Additionally, the Newton-Raphson 

schemes perform weakly in encountering load limit points. To solve this difficulty, 
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displacement control method was suggested [31]. In this technique, one specific 

displacement component is presumed to be constant in each incremental step. It is worth 

mentioning; this strategy leads to inaccurate responses in problems with snap back behavior. 

 Other nonlinear solvers, named arc length techniques, were, firstly, presented by [32] 

and [33]. Constraint equation of these methods indicates the distance of the last point placed 

on the equilibrium path from the path obtained through iterative analyses. In the normal 

plane strategy, location of the iterative points is normal to the tangent passing through the 

previous static point [34]. The vector passing through the iterative and previous equilibrium 

point is perpendicular to the locus of the iterative points in the updated normal plane 

technique [35]. Another well-known scheme utilized in the nonlinear structural analysis is 

cylindrical arc length method. By disregarding the load component with respect to 

displacements one in constraint equation, Riks's improved technique was obtained [36]. 

Other forms of the nonlinear solvers were suggested by minimizing some parameters, such 

as reduced unbalanced load vector, residual displacement, perimeter and area [37-39]. 

Moreover, the new two-point strategy was utilized for nonlinear analysis of structures 

[40] and [41]. Furthermore, Saffari proposed the three-point approach with the eight-order 

convergence by inserting the effective functions into the normal flow algorithm [42]. In 

addition, the geometric and material inelastic nonlinear analysis of the space trusses was 

carried out [43]. For analyzing the nonlinear pre-buckling behavior, four systematic 

approaches were utilized [44]. An iterative procedure to solve the linear system of equations 

was implemented instead of computing the inversion of the tangent stiffness matrix. By 

minimizing the residual displacement, the analysis of structures with severe nonlinear 

behavior was performed [45]. Recently, the dynamic relaxation approach was applied by 

Rezaiee-Pajand and Estiri [46-49], for obtaining the equilibrium paths and the limit points of 

structures. 

In this paper, the cylindrical arc length method along with higher-order stiffness matrix 

will be employed for more rapid nonlinear analysis of the frame structures. In the following 

subsections, the formulation of this strategy will be presented by using the update 

Lagrangian description. 

 

3.1 Cylindrical arc length technique 

The solution procedure related to the cylindrical arc length method is demonstrated in Fig. 2. 

By considering the (n-1)th static point, the analysis is carried out to specify the n-th point on 

the equilibrium path. Firstly, the incremental load is obtained at the predictor stage. To 

achieve the corresponding displacement the subsequent system of equation should be 

solved: 
 

 
(38) 

 

In this equation, the tangent stiffness matrix related to the (n-1)th static point is denoted 

by . Moreover,  is incremental load factor in the nth step. Employing Eq. (38) 

leads to the coordinates of the point 1. Since this point is not placed on the equilibrium path, 

the successive iterations should be carried out. In all iterations of the cylindrical arc length 

method, the distance between the response points of the iterative steps and the previous 
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static point is equal to a constant quantity of arc length (Ln). 

 

 
Figure 2. The solution procedure of the arc length tactic 

 

Based on the Fig. 2, the constraint equation can be expressed as follows: 

 

 
(39) 

 

By ignoring the load component [36], the constraint equation is simplified as below: 

 

 
(40) 

 

This equality can be rewritten in the coming shape: 

 

 
(41) 

 

In each iteration, the displacement has the next form: 

 

 
(42) 

 

Where, the displacements corresponding to the residual load, R, and the external force, P, 

are shown by  and , respectively. The subsequent relationships can be used to 

calculate these displacements: 
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(44) 

 

As it will be demonstrated in Appendix A, three higher-order matrices shown by [K1], 

[K2] and [K3] are linear and nonlinear functions of the incremental displacements. 

Consequently, the variant stiffness matrix is updated at each iteration step. Based on Fig. 2, 

the residual force of the n-th iteration ( ) is computed by employing the following 

equation: 

 

 
(45) 

 

In this equality, Fi
n denotes the nodal force in the n-th iteration. Because the residual load 

and the external force are known at the beginning of each iteration, the system of Eqs. (43)-

(44) can be solved. Hence, based on Eq. (42), only n

i  is required for computing n

iD  . In 

iteration steps, inserting Eqs. (42)-(44) into Eq. (41) and simplifying leads to the subsequent 

second-order relationship: 

 

 
(46) 

 

The constant parameters of this relation have the coming shape: 

 

 
(47) 

 
(48) 

 
(49) 

 

After specifying these constants and solving Eq. (46), two roots of this relationship can 

be achieved in the next form: 

 

 
(50) 

 

Three following cases can be considered for these roots: 

 

 (51) 

 (52) 

 (53) 

 

At the first case, both answers are real. The root, whose distance from the previous 

iteration point is minimum, can be selected as the acceptable response. This scheme prevents 

the static path from returning to itself. When Eq. (52) equals zero, only one acceptable root 
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exists. In last case, the roots are virtual and unsuitable. Consequently, the arc length (Ln) 

should be reduced, and the solution procedure must be repeated.  

 

 

4. NUMERICAL EXAMPLES 
 

To investigate the efficiency and ability of the novel technique, some frame structures with 

geometric nonlinear behavior will be solved. The obtained responses will be compared with 

the available results, for proving the accuracy of the new formulations. It should be added 

that several plane frames with various cross sections have been analyzed by the authors, and 

a few of these structures will be presented in the subsequent subsections. 
 

4.1 Fixed beam 

Fig. 3 shows a fixed-fixed beam with rectangular cross section. For evaluation, the real 

behavior of this symmetric structure, it was tested under an increasing central vertical load 

by El-Ghazaly and Monforton [50]. The elasticity modulus of beam is E=20692.5 kN/cm2. 

As it is shown in Fig. 3, the area cross section, and moment of inertia are A=1.62 cm2 and 

I=0.055cm4, respectively. In the solution process, a unit arc length will be employed in the 

loading steps. 

 

 
Figure 3. Fixed-fixed beam 

 
The second moment of inertia for the rectangular cross section can be computed with 

help of the following equation: 

 

 

 

 (54) 

          (55) 

 

By using the authors’ algorithm, the higher-order nonlinear analysis of this structure will 

be carried out. Fig. 4 shows the obtained results for the fixed beam. To demonstrate the 

validity, the findings are compared with El-Ghazaly’s numerical [50] and experimental 

responses in the same Fig.  

 

1605
)(

52

2

52

2

44

2

BHy
BBdyydAyI

H

H

H

HA















6
5

2 0017.0
160

64.054.2
cmI 






M. Rezaiee-Pajand and R. Naserian 

 

304 

 
Figure 4. The equilibrium path of the Fixed- fixed beam 

 

According to the Fig. 4, by considering all the linear and nonlinear components of the 

strain vector, the new tactic can trace the structural path more accurate.  

 

4.2 Williams toggle frame 

As it is illustrated in Fig. 5, two members of the toggle frame have the angle of 1.7 with 

respect to the horizon. At first, this structure was analyzed and experimentally investigated 

by Williams [51]. In another study, Wood and Zienkiewicz employed finite element method 

for analyzing this frame with rectangular cross section [52]. Moreover, by using the residual 

displacement procedure, the behavior of Williams's toggle frame was studied with circular 

cross section by Chan [38]. Due to rather complex and interesting behavior, this plane 

structure was investigated intensively, by using other nonlinear solution strategies, by 

Rezaiee-Pajand and Alamatian [53, 54]] and Rezaiee-Pajand et al. [55, 56].]. In this paper, 

toggle frame with rectangular [52], circular [38] and hollow cross section, which is proposed 

by the authors, is analyzed. The employed cross sections are shown in the Fig. 5. 
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Figure 5. Williams toggle frame 

 

A unit concentrated load is applied to the top of the frame. Furthermore, the arc length in 

the loading steps is assumed 1. The second moment of inertia of the circular cross section is 

obtained as below: 

 

 
 

(56) 

 
 

(57) 

 

The axial, first and the second flexural rigidity of the members are listed in Table 1:  

 
Table 1: Properties of toggle frame 

Second Flexural Rigidity 

(EI2) kN.Cm4 

Flexural Rigidity  

(EI) kN.Cm2 

Axial Rigidity 

(EA) kN 
Section 

7.8 268.5 8369 Rectangular 

11.7 263.6 8134.6 Circular 

5.1 240.6 7578.7 Hollow Rectangular 

 

This structure with rectangular, circular and hollow cross section having nonlinear 

behavior is analyzed. Fig. 6 illustrates the obtained responses and the results of two other 

researchers’ works. It is obvious that the load-displacement diagram of this frame includes a 

snap-through part. Based on the Fig. 6, the authors’ tactic possesses the ability of passing the 

limit point of the equilibrium path. Moreover, the proposed method reaches to the load limit 

point after tracing the longer path in comparison with predecessors' tactic. Consequently, the 

new higher-order nonlinear technique is more accurate than the other strategies. 
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Figure 6. The equilibrium path of the Toggle frame 

 

4.3 Five-story frame 

Fig. 7 shows the geometry and loading of the 29-member frame. This five-story structure 

was analyzed before by using the dynamic relaxation method [57] and [58], and also the 

optimization schemes [59]. The beams and columns are W18×35 and W21×50, respectively. 

The elasticity modulus of all members is 2×108 kN/m2. Moreover, the arc length in the 

loading steps is assumed to be five. 

 

 
Figure 7. Five-story frame 

 



NONLINEAR FRAME ANALYSIS BY MINIMIZATION TECHNIQUE 

 

307 

It should be added that a novel parallel axis theorem is utilized for calculation of the 

second moment of inertia for the compound cross sections. This rule is formulated as below: 

 

 

 (58) 

 

In this equation,  and are the second moment of inertia about an arbitrary 

and natural axis,  is the moment of inertia about the natural axis, and d is the distance of 

two axes.  

Solving Eq. (58) leads to coming results for the second moment of inertia in Table 2. 

 
Table 2: Properties of the five-story frame’s members 

Second Moment of Inertia 

(I2) Cm6 

Moment of Inertia 

(I) Cm4 

Area Section  

(A) Cm2 
Section Member 

8321638.1 21227.8 66.45 W18×35 Beam 

21779797.12 40957.17 94.84 W21×50 Column 

 

The equilibrium path of the plane frame is shown in Fig. 8. Note that the distributed load 

is converted to the nodal moment and vertical loads before the analysis. Based on the static 

path, utilizing the higher-order stiffness matrix leads to the results compatible with the other 

studies. 

 
Figure 8. The equilibrium path of the five- story frame 

 

4.4 Gable frame 

In this part of the paper, a more accurate nonlinear analysis of the gable frame proposed by 

the authors is carried out. This frame with four cross sections is demonstrated in Fig. 9. A 

concentrated load of one kN is applied at the head of structure. The elasticity modulus of the 

members equals to 20500 kN/cm2. Furthermore, a unit length increment factor is used in 

load steps. 
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Figure 9. Gable frame 

 

The properties of the cross sections of members are listed in Table 3. 

 
Table 3: Properties of the gable frame’s members 

Second Moment of Inertia 

(I2) Cm6 

Moment of Inertia  

(I) Cm4 

Area Section 

(A) Cm2 
Section 

400000 13333 400 Rectangular 

1174734 15753 160 Hollow Rectangular 

1172593 16286 452.4 Circular 

4166457 16270 72.7 IPE 360 

 

This gable frame is analyzed four times by utilizing rectangular, hollow rectangular, 

circular and IPE cross sections. The corresponding equilibrium paths are shown in Fig. 10. It 

is obvious that the static paths are obtained accurately. As it is shown in the Fig. 10, three 

detected equilibrium paths, which are found by employing I-shaped, circular and hollow 

cross sections, are the same. Whereas, the curve related to the rectangular cross section is 

below the other cross sections’ ones. This is because the moment of inertia and the second 

moment of inertia of the rectangular cross section is less, in comparison with other cross 

sections used in this example. 
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Figure 10. The equilibrium path of the gable frame 

 

 

5. CONCLUSION 
 

Some flexible frames experience large displacements under the loads or special boundary 

conditions. Based on the virtual work principle, a robust tangent stiffness matrix is achieved 

by minimizing the total potential energy. All terms of the strain vector are taken into account 

in the equilibrium equations. In the next stage, the cylindrical arc length approach is applied 

for solving the nonlinear governing equations. This nonlinear solver uses the presented 

frame stiffness matrix. To demonstrate the ability of the new formulations, and also 

implement the authors’ computer program, some geometric nonlinear analyses are 

performed by solving various examples. Findings prove that employing the novel technique 

lead to the outcomes, which are compatible with the other researchers’ experimental and 

numerical results. In addition, the present tangent stiffness matrix gives more accurate 

answers, in comparison with the previously published solutions.  

 

 

APPENDIX A 
 

The elastic stiffness matrix [K0], the geometric stiffness matrix [Kp], and the higher-order 

stiffness matrices [K1], [K2], and [K3] of the plane frame are given below: 

It is worth emphasizing; the matrix [k3] is the sum of five terms. According to the Eq. 

(32), the fourth term is asymmetric. For convenience, the asymmetric term is separated from 

the other symmetric ones. At section I, the sum of the symmetric terms is shown. The matrix 

[k3] can be expressed in terms of the symmetric and asymmetric parts.  
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I. Upper triangular entries for the symmetric terms of the matrix [K3]: 
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(63i)  
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П. Nonzero entries for the asymmetric term of the matrix [K3]: 
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APPENDIX B 
 

The transformation matrix [T] for the plane frame has the succeeding shape: 

 

(66) 
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