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ABSTRACT 
 

For optimization of real-world arch dams, it is unavoidable to consider two or more 

conflicting objectives. This paper employs two multi-objective differential evolution 

algorithms (MoDE) in combination of a parallel working MATLAB-APDL code to obtain a 

set of Pareto solutions for optimal shape of arch dams. Full dam-reservoir interaction 

subjected to seismic loading is considered. A benchmark arch dam is then examined as the 

numerical example. The numerical results are compared to show the performance of the 

MoDE methods. 
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1. INTRODUCTION 
 

One of the most significant current matter in the structural optimization field is finding an 

optimal design of arch dams. Due to high construction costs and importance of their safety 

during an earthquake, it seems necessary to find an optimal shape for dams by considering 

seismic loading and fluid-structure interaction in analyzing and designing of these 

geometrically complicated structures. Because of reducing the complexity of problem, some 

simplifications are involved in literature. In number of studies the arch dam is considered 

with empty reservoir [1, 2] and in some others reservoir’s effect is simplified by added mass 

approach [3, 4] which overestimates the hydrodynamic effects in dam body [5]. In addition, 

aside from structural point of view, finding an appropriate method using optimization 

techniques is of main concern in the field of arch dam optimization.  

Recently, researchers have shown an increased interest in employing metaheuristic 

approaches in finding optimal shape of arch dams. However, many studies in this field have 
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considered this problem as a single objective optimization, which yields only one single 

design as the answer [6, 7]; actually for this problem, there are some conflicting objectives 

that should be optimized simultaneously. The concrete volume and stress state of the dam 

body are two contrasting objectives that should be minimized. To find a single design as the 

best optimal shape, a decision maker method can be used that rank the Pareto solutions to 

rate them according to their preferences.  

This paper represents the multi-objective formulation of dam optimization problem with 

employing multi-objective differential evolution (MoDE) algorithm for optimizing arch 

dams considering dam-reservoir interaction subjected to seismic loading. The single 

objective DE is a vector-based evolutionary algorithm which successful application of it for 

structural optimization has been reported in the literature [8]. A parallel working APDL-

MATLAB code for modeling, analyzing and obtaining fitness functions, is developed for 

interfacing simultaneously with the MoDE to find the Pareto solution. The performance of 

proposed methodology is evaluated for a benchmark real-world arch dam. 

 

 

2. FORMULATION OF STRESS-VOLUME MULTI-OBJECTIVE ARCH 

DAMS 

 

The solution of problems with multiple objective is a set of multiple sub-solutions, which 

optimizes simultaneously these objectives. Multi-objective optimization problems arise 

when optimal decisions need to be taken in the presence of trade-offs between two or more 

conflicting objectives. Typically, there does not exist a single solution that simultaneously 

optimizes each objective. Instead, there exists a (possibly infinite) set of Pareto optimal 

solutions. A solution is called non dominated or Pareto optimal if none of the objective 

functions can be improved in value without degrading one or more of the other objective 

values.. In mathematical terms, this problem can be formulated as follows: 

 

Minimize:  1 2( ), ( ),..., ( ),..., ( )k Nfit fit fit fit x x x x x X  (1) 

 

Where the integer 2N  is the number of objectives, X is the feasible set of the decision 

vector. The feasible set is typically defined by some constraint functions: 

 

 0   (x 1,2,3, ,)i i p    (2) 

 

in which ( )i x  and p denote the constraint functions and number of constraints, 

respectively. In addition, the vector-valued objective function is often defined as: 

 

 1 2( ), ( ),.: , ..( ,) ( ),..., ( )N

N T

kfit fit ffit it fiR f tit  xx x xX x  (3) 

 

A feasible solution, 1 x X , is said to dominate another solution, 2 x X , if both 

following equations are satisfied: 
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 1 2   1,2( ,...,N) ( )i i for all indices ifit fit x x  (4) 

 1 2( ) (     1,2,...,)j j for at least one indexfit fit j N x x  (5) 

 

A solution, 1 x X , is called the Pareto optimal if there does not exist another solution 

that dominates it. 

Considering these definitions here, two types of objectives are considered: 

Objective 1: The concrete volume of the arch dam that should be minimized. It can be 

determined by integration on the dam surfaces: 

 

Minimize:      1 , ,u d

A

fit y x z y x z dA X  (6) 

 

in which, A is an area produced by projecting the dam body on a  xz plan;  ,uy x z  and 

 ,dy x z  are parabolas of upstream and downstream surfaces of the arch dam, respectively.  

Objective 2: Failure criterion function of Willam and Warnke. For concrete structures, it 

is defined as [9]: 

 

Minimize:  2

,

1,2, ,     1,2, ,d

c f n t

F S
fit n n t T

f s

 
      
 

X  (7) 

 

where, F is the function of principal stress state ( , , )xp yp zp    in which, ,    xp yp zpand    

are principal stresses in principal directions ,      x y and z , respectively. T is the earthquake 

duration. dn  is the total number of nodes in the finite element model. fs  is safety factor 

which for the earthquake loading may be chosen as 1fs  , [10]. S is failure surface 

expressed in terms of principal stresses. 

 

 

3. DESIGN CONSTRAINTS 
 

Two constraints are considered in this study. The first one is required to ensure that 

upstream and downstream faces of the dam do not pass through each other (Eq. 8). The 

second one is for constructing facilities and having smooth cantilevers over the height of the 

dam. For this purpose, the slope of overhang at the upstream and downstream faces of the 

dam should satisfy Eq. 9: 

 

    1 0, 1,2,..6di
di ui

ui

r
r r i

r
      (8) 

1 0                               alw

alw


 


     (9) 
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where dir  and uir  are the radius of curvature at thi level in the z direction and cot    is 

the slope of overhang at the downstream and upstream faces of the dam. alw is the 

allowable absolute value for the aforementioned parameter. To ensure the sliding stability of 

the dam, following equation should be satisfied: 

 

l u     (10) 

 

where,   is the central angle of arch dam at thi level in the z direction.  and l u   are 

allowable lower and upper bounds of the central angle. For practical purposes   usually 

varies from 90
to130

 throughout the dam height. 

 

 

4. SINGLE OBJECTIVE DIFFERENTIAL EVOLUTION 
 

The single objective Differential evolution (DE) is a vector-based evolutionary algorithm 

developed by Storn and Price, designed for optimization problems in continuous search 

space [11]. It is a stochastic search algorithm with self-organizing tendency and does not use 

the information of derivatives. Thus, it is a population-based, derivative-free method. 

Although DE can be considered as a further development to genetic algorithms, in contrast 

with GA, it treats solutions as real-number strings, thus no encoding and decoding is needed. 

DE has its own evolutionary strategies: mutation, crossover and selection. Different from 

genetic algorithm, mutation is the key operator of DE. To illustrate, in genetic algorithms, 

mutation is carried out at one site or multiple sites of a chromosome, while in differential 

evolution, a difference vector of two randomly chosen vectors is used to perturb an existing 

vector. If three distinct individuals 1
g
rx  , 2

g
rx  and 3

g
rx  are randomly selected from the current 

population, the mutation operator is mathematically described as: 

 
1

1 2 3.( )g g g g

i r r rm x F x x     (11) 

 

in which, the 1g

im   is the mutant vector, 1r  , 2r  and 3r  are three mutually exclusive integers 

different from index i . F  [0; 2] is a parameter, often referred to as the differential weight. 

In principle, F  [0; 2], but in practice, a scheme with F  [0; 1] is more efficient and stable. 

The trial vector 1g
iv   is obtained by applying the crossover operator on mutant vector 

1g

im 
 

as follows: 

 

 1

1
  ,    

 ,  

g

ijg

ij g

ij

If rand CR or j sn

otherwi

m

x s
v

e














 (12) 

 

in which, rand  generates a random value in [0,1]; CR is the crossover constant in [0,1]; sn is 

an arbitrary number in (1,2,…,D) that ensure 1g
iv 

 gets at least one parameter from
1g

im 
.  



MULTI-OBJECTIVE OPTIMIZATION OF ARCH DAMS USING DIFFERENTIAL … 

 

497 

The Selection is essentially the same as that used in genetic algorithms. It is to select the 

most fittest to pass onto the next generation. The better individual between 1g
iv  and g

ix is 

survived into the next generation: 

 
1 1

1            , x . 

 ,  

g g

g i i

i g

i

g

iif is bettev r than

otherwise

v
x

x

 




 


 (13) 

 

DE repeats the above three operators until a termination criterion is satisfied. 

 

 

5. MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION 
 

To date there are relatively some papers that propose ways of extending DE to handle the 

multi-objective optimization. Single objective Differential Evolution strategy with an 

aggregating function to solve bi-objective problems was proposed in [12]. Another MODE 

was proposed in [13]. This algorithm uses a variant of the original DE so that the best 

individual is adopted to create the offspring. The Pareto-Based DE was then proposed in 

[14]. In this algorithm, the DE is extended to multi-objective optimization by incorporating a 

non-dominated sorting and ranking selection procedure proposed by Deb et al. [15, 16]. 

Vector Evaluated Differential Evolution (VEDE) as a parallel, multi-population algorithm 

was proposed in [17]. Non-dominated Sorting Differential Evolution (NSDE) was proposed 

in [18]. Generalized Differential Evolution (GDE) was also proposed in [19]. GDE extends 

the selection operation of the basic DE algorithm for constrained multi-objective 

optimization. It is a simple modification of the NSGA-II [16]. In contrast with NSGA-II in 

this method, DE operators are used for generating new individuals. In current study, we 

utilize the MoDE-RMO method proposed by Chen et al. [20]. This algorithm combines the 

ranking-based mutation operator with MoDE to accelerate the convergence speed and 

enhance its performance. 

 

5.1 Ranking-based mutation operator 

Ranking-based mutation operator (RMO) for DE in single-objective optimization in which, 

the parents are proportionally selected according to their rankings in the current population 

[21]. The higher ranking a parent obtains the more opportunity it will be selected. 

Integrating the proposed ranking-based mutation operator into some DE algorithms 

indicated that the ranking-based mutation operator is able to enhance the performance of the 

DE algorithms in single objective optimization [20]. The main challenge in extending this 

operator for the MoDE is that, in single objective DE, the population can be directly sorted 

from best to worst, while in multi-objective optimization there exist many solutions, which 

are non-dominated with each other. To deal this problem, a non-dominated sorting and 

crowding distance are incorporated into ranking-based mutation operator as presented in the 

following subsections. 
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5.1.1 Non-dominated sorting and crowding distance 

In the non-dominated sorting procedure, two entities is calculated for each solution [20]. The 

first one is domination count pn , that is the number of solutions which dominate the 

solution p and the second one is pS  (a set of solutions that the solution dominates). All 

solutions in the first non-dominated front will have their domination count as zero. Now, for 

each solution p with   0np  , we visit each member  q of its set pS and reduce its 

domination count by one. Then, if the domination count for any member becomes zero, we 

put it in a separate list, denoted by Q . These members are belong to the second non-

dominated front. Now, the above procedure is continued for other members and the third 

front is identified. This process continues until all fronts are identified. 

Crowding distance is used to get an estimate of the density of solutions surrounding a 

particular individual i in the population, and it calculates the average distance of two 

solutions on either side of solution i (i.e. i + 1 and i − 1) along each of the objectives [20]. 

This requires sorting the population according to each objective function value in an 

ascending order. Afterwards, for each objective function, the boundary solutions i.e. 

solutions with smallest and largest function values, are assigned an infinite distance value. 

All other intermediate solutions are assigned a distance value equal to the absolute 

normalized difference in the function values of two adjacent solutions. This calculation is 

continued for other objective functions, as well. The overall crowding-distance value is 

calculated as the sum of individual distance corresponding to the each objective. The 

objective values were normalized before calculating the crowding distance. 

 

5.1.2 Ranking assignment and selection probability 

The non-domination front number fronti and crowding distance cdi  are obtained for each 

solution i , to define a partial order for the whole population. If any of the two following 

conditions are satisfied then the solution i is better than solution j : 

 

front fronti j  (14) 

front front cd cdi j i j    (15) 

 

Now, based on the partial order defined before, the population can be sorted in ascending 

order. The ranking of an individual is assigned as follows: 

 

, 1,2,...,iR Np i i Np    (16) 

 

where Np is the population size. According to Eq. (16), the best individual in the current 

population will obtain the highest ranking. After assigning the ranking for each individual, 

the selection probability ip  of the thi individual is calculated as: 

 

, 1,2,...,i
i

R
p i Np

Np
   (17) 

https://www.google.com/search?biw=1093&bih=514&site=webhp&q=define+afterwards&sa=X&ved=0CB4Q_SowAGoVChMI4_rLiZPVxwIVyjgUCh3vWgcJ
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The ranking-based mutation operator of “DE/rand/1” for multi-objective optimization can 

be described as follows [20]: 

Step1: calculate the non-domination front number of each individual through the non-

dominated sorting procedure.  

Step2: calculate the crowding distance of each individual. 

Step3: sort the population in ascending order and assign the ranking and selection 

probability ip for each individual. 

Step4: while 1rrand p  or 1 ,r i  select base vector index randomly as:  1 1,r Np   

Step5: while 2rrand p or 2 1r r  or 2 ,r i  select terminal vector index randomly as: 

 2 1,r Np  

Step6: while 3 2r r  or 3 1r r  or 3 ,r i  select starting vector index randomly as: 

 3 1,r Np  

According to this procedure, the individual with a higher ranking will have a larger 

probability to be selected as base vector or terminal vector in the mutation operator; 

therefore, it is beneficial for the propagation of good information in the population to the 

offspring [20]. In the ranking-based mutation operator for multi-objective optimization, the 

starting vector is randomly selected while the base and terminal vectors are selected based 

on their selection probabilities. The reason is clear; if the two vectors in the difference vector 

are both chosen from better vectors, then the search step-size of the difference vector may 

decrease quickly and may lead to premature convergence [21, 22]. 

 

5.2 Multi-objective differential evolution with RMO 

The multi-objective differential evolution with RMO (MoDE-RMO) combines the advantages 

of standard DE with the mechanism of Pareto-based ranking and crowding distance sorting 

[20]. In MoDE-RMO crossover operator is conducted in the same way as that in single-

objective optimization but because trial and target vectors are usually non-dominated with 

each other, selection needs to be redesigned as shown in Fig. 1. At the end of a generation, 

total size of the population is between Np and 2NP . This population is truncated for the next 

step of the algorithm by non-dominated sorting and evaluating the individual of the same front 

with the crowding distance. The truncation procedure keeps only the best Np vectors in the 

population. The pseudo-code of MoDE-RMO is shown in Fig. 2. 

 

1) if the trial vector dominates the target vector then  

   Use the trial vector to replace the target vector 

2) if the target vactor dominates the trial vector then 

    The trial vector is discarded 

3) else 

    The trial vector is added to the population 

 end if 

Figure 1. Pseudo-code of selection operator for MoDE-RMO 
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1: initialize vectors at the population 

 1 2, ,...,g g g g
NPp x x x with   1 2, ,..., 1,...,g g g g

i i i iDx x x x i NP    

2: Set mutation scale factor F, 

3: Set crossover constant CR, 

4: Set maximum number of generations, Maxgen. 

5: Evaluate the fitness value of each target vector .g
ix    

6: for i=0 to g do 

7:     Repeat 

8:     Determine the selected vector indexes 1,r  2,r  and 3r  through the RMO operator. 

9:     Use crossover using DE scheme to generate the trial vector 1g
iv  for each target 

vector .g
ix  

10:     Use RMO to generate a mutant vector 1g
im   corresponding to the target vector .g

ix  

11:     Evaluate the trial vector 1g
iv  and use the following selection operation 

12:     if 1g
iv  dominates ,g

ix then 1 1.g g
i ix v    

13:     if g
ix dominates 1,g

iv  then 1g
iv  is rejected.  

14:     if 1g
iv  and g

ix are dominated with each other, then add 1g
iv  to the population. 

15:     until population is completed  

16:              Sort the population based on fast non-dominated sorting and crowding distance 

17:             Add best NP  individuals into the next generation 

18: end for 

Figure 2. Pseudo-code of the MoDE-RMO algorithm 

 

 

6. NUMERICAL INVESTIGATION 
 

The Morrow point arch dam is selected as the case study in this paper (Fig. 3). This double 

curvature thin-arch concrete structure that is located 263 km southwest of Denver, Colorado, 

has 142.65 m high and 220.68 m long along the crest and its thickness varies from 3.66 m at 

the crest to 15.85 m at the base level [23]. A finite element model utilizing 8-node solid 

elements for arch dam and 8-node fluid element for reservoir has been developed and 

verified as presented in Ref [24]. Since the Morrow point dam model is symmetry, designers 

can analysis the half of the dam’s finite element with considering the proportional boundary 

constraints in the center of dam. However, it is worth to mention that, the natural frequencies 

of some modes are eliminated due to considering only half of the dam as shown in 

literatures. Thus, in order to perform an exact analysis, we consider the complete model of 

the dam, here. According to the results, a good conformity has been achieved between the 

results of the present work with those of the reported in the literature [24]. 

The dam body construction required 273600 
3m of concrete. Material properties of both 

the dam body and water are presented in Table 1. To handle the optimization, The MoDE 

and MoDE-RMO are coded in MATLAB software and modeling and analyzing of the arch 
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dam are done using a combination of parallel working MATLAB and Ansys Parametric 

Design Language (MATLAB-APDL) codes. Reservoir is supposed to be full and the dam-

reservoir interaction subjected to seismic loading is taken to account in this example. In 

order to construct the dam geometry, six controlling levels are considered so the dam can be 

modeled using twenty shape design variables. In this research, the N–S record of 1940 El 

Centro earthquake is selected to apply to the arch dam-reservoir system in the upstream–

downstream direction [25]. Damping ratio is considered equal to 5%. 

 

 
Figure 3. Finite element model of the morrow point dam 

 
Table 1: Material property of the morrow point dam 

Material Property Value unit 

Mass Concrete 

Modulus of Elasticity 27.579 GP 

Poisson’s Ratio 0.2 - 

Mass Density 2483 Kg/m
3
 

 Uniaxial compressive strength of concrete ( )cf  30 MPa 

 Uniaxial tensile strength of concrete ( )tf  1.5 MPa 

Water 

Bulk Modulus 2.15 GP 

Mass Density 1000 Kg/m3 

Velocity of Pressure Waves 1438.66 m/s 

 Wave reflection coefficient 1 - 

 

For both algorithms presented in this paper, the number of agents is set to 100 and the 

number of iterations is limited to 200. In Table 2, the extreme values obtained by the MoDE 

algorithms are presented. It should be noted that the maximum allowable values for the 

dam’s volume and Willam-Warnke failure criterion is limited to 3.3×105 and 0.8, 

respectively. According to this table, for those points which 2fit  is more important than 1fit , 

the MoDE-RMO yields 20% better than the MoDE. Since the accepted results should be 

negative for 2fit , so Table 2 presents best extreme value with negative 2fit , as well. The 

MoDE-RMO can find an acceptable design with 2.35×105 m3 while the best acceptable 

results for the MoDE is 2.82×105 m3. The values of variables for the best design are 

presented in Table 3. The Pareto fronts of these methods are presented in Fig. 4. According 

to this figure, the results of the MoDE-RMO are obviously better than the MoDE. 
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Table 2: Comparison of the extreme results  

Optimization method MoDE MoDE-RMO 

Obtained extreme values [0.78, 2.49e5] [0.78, 2.01e5] 

 [-0.45, 3.23e5] [-0.55, 3.09e5] 

 
Table 3: The best design obtained by the MoDE-RMO 

Variable Value  Variable Value  Variable Value 

( )m m  0.132  ( )m m  0.536  
1( )rd m  107.990 

1( )tc m  5.514  
1( )ru m  108.824  

2 ( )rd m  92.778 

2 ( )tc m  10.947  
2 ( )ru m  93.807  

3( )rd m  79.680 

3( )tc m  13.586  
3( )ru m  79.860  

4 ( )rd m  66.365 

4 ( )tc m  15.470  
4 ( )ru m  68.384  

5( )rd m  53.872 

5( )tc m  14.618  
5( )ru m  54.010  

6 ( )rd m  40.009 

6 ( )tc m  14.946  
6 ( )ru m  40.229    

 

 
Figure 4. Pareto fronts of the MoDE-based methods 

 
Table 4: Different possible scenarios for the morrow point arch dam with corresponding 

solutions 

S
ce

n
a
ri

o
 

Importance 

of criteria 

Possible 

priority 

weights 

Selected solution by MTDM 

MoDE MoDE-RMO 

1fit  2fit  iR  1fit  2fit  iR  

A 1 2C C  [0.9,0.1] 291759.83 -0.122 0.8498 241519.88 -0.097 0.8499 

B 1 2C C  [0.7,0.3] 305005.00 -0.255 0.7368 253568.03 -0.260 0.7367 

C 1 2C C  [0.5,0.5] 317318.55 -0.384 0.7069 265417.17 -0.379 0.7071 

D 1 2C C  [0.3,0.7] 330957.78 -0.514 0.7368 275429.28 -0.455 0.7367 

E 1 2C C  [0.1,0.9] 399834.14 -0.609 0.8498 308460.05 -0.556 0.8499 

 

For the process of decision making and finding the best solution, the decision maker 

(DM) should notify their preferences by considering all the information integrated in the 
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Pareto front. In order to show the wide range of possible solutions, five different scenarios 

are also considered. The numerical values of these scenarios for the algorithms are presented 

in Table 4. In this table, R is the global ranking function to performing the DM. As it can be 

seen, the all good results are found by the MoDE-RMO. 

 

 

7. CONCLUSIONS 
 

In this study, shape optimization of arch dams including the dam-reservoir interaction is 

presented as a multi-objective problem. The concrete volume and Willam-Warnke failure 

criterion are considered as objective functions. To solve this problem, two multi objective 

differential evolution algorithms are employed. To fulfill this aim, we developed an 

enhanced parallel-working APDL-MATLAB code. In order to examine the effectiveness of 

proposed methodology, Morrow Point arch dam optimization is performed. The resulted 

Pareto fronts of MoDE-RMO as well as extreme values are obtained and compared with the 

standard MoDE. According to the results, the utilized method can find much better results 

compared to its standard variant. 

 

 

REFERENCES 
 

1. Kaveh A, Mahdavi VR. Optimal design of arch dams for frequency limitations using 

charged sytem search and partical swarm optimization, Int J Optim Civil Eng 2011; 4: 

543-55. 

2. Gholizadeh S, Seyedpoor SM. Optimum design of arch dams with frequency 

limitations, Int J Optim Civil Eng 2011; 1: 1-14. 

3. Kaveh A, Mahdavi VR. Colliding bodies optimization for design of arch dams with 

frequency limitations, Int J Optim Civil Eng 2014; 4: 473-90. 

4. Akbari J, Ahmadi MT, Moharrami H. Advances in concrete arch dams shape 

optimization, Appl Math Model 2011; 35: 3316-33. 

5. Kuo JSH. Fluid-structure interactions: Added mass computations for incompressible 

fluid, Earthquake Engineering Research Center, University of California, Berkeley, 

1982, 126 p. 

6. Tajalli F, Ahmadi MT, Moharrami H. A shape optimization algorithm for seismic 

design of a concrete arch dam, Dam Eng 2007; 18: 139-62. 

7. Seyedpoor SM, Salajegheh J, Salajegheh E, Gholizadeh S. Optimal design of arch dams 

subjected to earthquake loading by a combination of simultaneous perturbation 

stochastic approximation and particle swarm algorithms, Appl Soft Comput 2011; 11: 

39-48. 

8. Talatahari S, Gandomi AH, Yang XS, Deb S. Optimum design of frame structures using 

the Eagle Strategy with Differential Evolution, Eng Struct 2015; 91: 16-25. 

9. Willam KJ, Warnke EP. Constitutive model for the triaxial behavior of concrete, Int 

Assoc Bridge Struct Eng 1975, pp. 1-30. 

10. USBR, Design criteria for concrete arch and gravity dams, in: U.s.d.o.i.b.o. reclamation 

(Ed.), US Government Printing Office, Washington, 1977. 



S. Talatahari, M.T. Aalami and R. Parsiavash 

 

504 

11. Price K, Storn R, Lampinen J. Differential Evolution: A Practical Approach to Global 

Optimization, Springer, 2005. 

12. Babu BV, Mathew Leenus Jehanand M. Differential Evolution for Multi-Objective 

Optimization, Congress on Evolutionary Computation (CEC’2003), IEEE Press, 

Canberra, Australia, 2003, pp. 2696–2703. 

13. Xue F, Sanderson AC, Graves RJ. Pareto-based Multi-Objective Differential Evolution, 

Congress on Evolutionary Computation (CEC’2003), IEEE Press, Canberra, Australia, 

2003, pp. 862-869. 

14. Madavan NK. Multiobjective Optimization Using a Pareto Differential Evolution 

Approach, Evolutionary Computation (CEC’2002), IEEE Service Center, Piscataway, 

New Jersey, 2002, pp. 1145-1150. 

15. Deb K, Agrawal S, Pratab A, Meyarivan T. A Fast Elitist Non-Dominated Sorting 

Genetic Algorithm for Multi-Objective Optimization: NSGA-II, Parallel Problem 

Solving from Nature PPSN VI, Springer, Paris, France, 2000, pp. 849-858. 

16. Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic 

algorithms: NSGA-II, IEEE Transactions on Evolutionary Computation 2002; 6: 182-97. 

17. Parsopoulos KE, Taoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Vector 

evaluated differential evolution for multiobjective optimization, 2004 Congress on 

Evolutionary Computation (CEC’2004), IEEE Service Center, Portland, Oregon, USA, 

2004, pp. 204-211. 

18. AW Iorio LX. Solving Rotated Multi-objective Optimization Problems Using Differential 

Evolution, Advances in Artificial Intelligence, Springer, Cairns, Australia, 2004, pp. 861-

872. 

19. Kukkonen S, Lampinen J. An Extension of Generalized Differential Evolution for Multi-

Objective Optimization with Constraints, Parallel Problem Solving from Nature - PPSN 

VIII, Springer, Birmingham, UK, 2004, pp. 752–761. 

20. Chen X, Du W, Qian F. Multi-objective differential evolution with ranking-based 

mutation operator and its application in chemical process optimization, Chemometr 

Intell Lab Syst 2014; 136: 85-96. 

21. Gong W, Cai Z. Differential evolution with ranking-based mutation operators, , IEEE 

Trans on Cybernetics 2013; 43: 2066-81. 

22. Gong W, Cai Z, Liang D. Engineering optimization by means of an improved 

constrained differential evolution, Comput Methods Appl Mech Eng 2014; 268: 884-

904. 

23. USACE, Earthquake Design and Evaluation of Concrete Hydraulic Structures, U. S. 

Army Corps of Engineers, Washington, DC, America, 2007. 

24. Talatahari S, Aalami MT, Parsiavash R. Optimum design of double curvature arch dams 

using a quick hybrid charged system search algorithm, Int J Optim Civil Eng 2016; 6(2): 

227-43. 

25. PEER, El Centro, 1940 Ground Motion Data, in: P.E.E.R. Centre (Ed.), 2009. 


