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ABSTRACT 
 

This paper presents a novel population-based meta-heuristic algorithm inspired by the game 

of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization 

(TWO), considers each candidate solution as a team participating in a series of rope pulling 

competitions. The teams exert pulling forces on each other based on the quality of the 

solutions they represent. The competing teams move to their new positions according to 

Newtonian laws of mechanics. Unlike many other meta-heuristic methods, the algorithm is 

formulated in such a way that considers the qualities of both of the interacting solutions. 

TWO is applicable to global optimization of discontinuous, multimodal, non-smooth, and 

non-convex functions. Viability of the proposed method is examined using some benchmark 

mathematical functions and engineering design problems. The numerical results indicate the 

efficiency of the proposed algorithm compared to some other methods available in literature. 
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1. INTRODUCTION 
 

Nature-inspired meta-heuristic algorithms have been celebrated as powerful global optimization 

techniques in the last few decades. These methods do not require any gradient information of the 

involved functions and are generally independent of the starting points. Due to these 

characteristics, meta-heuristic optimizers are favorable choices when dealing with discontinuous, 

multimodal, non-smooth, and non-convex functions. This is especially the case when near-

global optimum solutions are sought and the intended computational effort is limited.  
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Many different meta-heuristic optimization techniques have been presented and 

successfully applied to different problems. Examples include Genetic Algorithms (GA) [1], 

Particle Swarm Optimization (PSO) [2], Ant Colony Optimization (ACO) [3], Harmony 

Search (HS) [4], Big Bang-Big Crunch (BB-BC) [5], Charged System Search (CSS) [6], 

Magnetic Charged System Search (MCSS) [7], Ray Optimization (RO) [8], Democratic PSO 

(DPSO) [9], Dolphin Echolocation (DE) [10], Colliding Bodies Optimization (CBO) [11], 

Water Cycle, Mine Blast and Improved Mine Blast algorithms (WC-MB-IMB) [12], Search 

Group Algorithm (SGA) [13] and the Ant Lion Optimizer (ALO) [14]. Some applications of 

meta-heuristics on optimization of structural engineering problems could be found in [15-19]. 

The aim of the present paper is to introduce a new meta-heuristic algorithm based on the 

physical phenomenon associated with the game of tug of war. The algorithm, which is called 

Tug of War Optimization (TWO), is then compared to some of the documented optimization 

techniques using benchmark problems. The remainder of the paper is organized as follows. 

The new algorithm together with its physical background is presented in Section 2. In 

Section 3 some mathematical and engineering design benchmark problems are studied in 

order to demonstrate the efficiency of the proposed algorithm. The concluding remarks are 

presented in Section 4. 

 

 

2. TUG OF WAR OPTIMIZATION 

 

2.1 Idealized tug of war framework 

Tug of war or rope pulling is a strength contest in which two competing teams pull on the 

opposite ends of a rope in an attempt to bring the rope in their direction against the pulling 

force of the opposing team. The activity dates back to ancient times and has continued to 

exist in different forms ever since. There has been a wide variety of rules and regulations for 

the game but the essential part has remained almost unaltered. Naturally, as far as both 

teams sustain their grips of the rope, movement of the rope corresponds to the displacement 

of the losing team. Fig. 1 shows one of the competing teams in a tug of war. 

 

 
Figure 1. A competing team in a tug of war 

 

Triumph in a real game of tug of war generally depends on many factors and could be 

difficult to analyze. However, an idealized framework is utilized in this paper where the two 

teams having weights Wi and Wj are considered as two objects lying on a smooth surface as 

shown in Fig. 2. 
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Figure 2. An idealized tug of war framework 

 

As a result of pulling the rope, the teams experience two equal and opposite forces (Fp) 

according to Newton's third law. For object i, as far as the pulling force is smaller than the 

maximum static friction force  siW   the object rests in its place. Otherwise the non-zero 

resultant force can be calculated as: 

 

kipr WFF 
 

(1) 

 

As a result, the object i accelerates towards the object j according to the Newton's second 

law: 
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Since the object i starts from zero velocity, its new position can be determined as: 
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2.2 Tug of war optimization algorithm 

TWO is a population-based meta-heuristic algorithm, which considers each candidate 

solution  jii xX ,  as a team engaged in a series of tug of war competitions. The weight of 

the teams is determined based on the quality of the corresponding solutions, and the amount 

of pulling force that a team can exert on the rope is assumed to be proportional to its weight. 

Naturally, the opposing team will have to maintain at least the same amount of force in order 

to sustain its grip of the rope. The lighter team accelerates toward the heavier team and this 

forms the convergence operator of the TWO. The algorithm improves the quality of the 

solutions iteratively by maintaining a proper exploration/exploitation balance using the 

described convergence operator. The steps of TWO can be stated as follows: 

Step 1: Initialization 

A population of N initial solutions is generated randomly: 

 

𝝁s : Static coefficient of friction 

𝝁k : Kinematic coefficient of friction 
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n,...,,j)xx(randxx min,jmax,jmin,jij 210 
 

(4) 

 

where 0
ijx  is the initial value of the jth variable of the ith candidate solution; max,jx  and min,jx  

are the maximum and minimum permissible values for the jth variable, respectively; rand is 

a random number from a uniform distribution in the interval [0, 1]; n is the number of 

optimization variables.  

 

Step 2: Evaluation of candidate designs and weight assignment 

The objective function values for the candidate solutions are evaluated. All of the initial 

solutions are sorted and recorded in a memory denoted as the league. Each solution is 

considered as a team with the following weight: 
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(5) 

 

where fit(i) is the fitness value for the ith particle; The fitness value of the ith team, 

evaluated as as the penalized objective function value for constrained problems; fitbest and 

fitworst are the fitness values for the best and worst candidate solutions of the current 

iteration. According to Eq. (5) the weights of the teams range between 1 and 2.  

 

Step 3: Competition and displacement 

In TWO each of the teams of the league competes against all the others one at a time to 

move to its new position in each iteration. The pulling force exerted by a team is assumed to 

be equal to its static friction force  sW . Hence the pulling force between teams i and j 

(Fp,ij) can be determined as max{ sjsi WW  , }. Such a definition keeps the position of the 

heavier team unaltered.  

The resultant force affecting team i due to its interaction with heavier team j in the kth 

iteration can then be calculated as follows: 
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(6) 

 

where k
ijpF ,  is the pulling force between teams i and j in the kth iteration and k  is 

coefficient of kinematic friction. Consequently, team i accelerates towards team j: 
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(7) 

 

where k
ija  is the acceleration of team i towards team j in the kth iteration; k

ijg  is the 

gravitational acceleration constant defined as: 
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where k
jX  and k

iX  are the position vectors for candidate solutions j and i in the kth 

iteration. Finally, the displacement of the team i after competing with team j can be derived 

as: 
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The second term of Eq. (9) introduces randomness into the algorithm. This term can be 

interpreted as the random portion of the search space traveled by team i before it stops after 

the applied force is removed. The role of k  is to gradually decrease the random portion of 

the team's movement. For most of the applications   could be considered as a constant 

chosen from the interval [0.9, 0.99]; bigger values of   decrease the convergence speed of 

the algorithm and help the candidate solutions explore the search space more thoroughly.   

is a scaling factor which can be chosen from the interval (0,1]. This parameter controls the 

steps of the candidate solutions when moving in the search space. When the search space is 

supposed to be searched more accurately with smaller steps, smaller values should be chosen 

for this parameter. For our numerical examples values between 0.01 and 0.05 seem to be 

appropriate for this parameter; maxX  and minX  are the vectors containing the upper and 

lower bounds of the permissible ranges of the design variables, respectively;   denotes 

element by element multiplication; ),1( nrandn  is a vector of random numbers drawn from a 

standard normal distribution.  

It should be noted that when team j is lighter than team i, the corresponding displacement 

of team i will be equal to zero (i.e. k
ijX ). Finally, the total displacement of team i in 

iteration k is equal to (i not equal j): 
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The new position of the team i at the end of the kth iteration is then calculated as: 
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(11) 

 

Step 4: Updating the league 

Once the teams of the league compete against each other for a complete round, the league 

should be updated. This is done by comparing the new candidate solutions (the new 

positions of the teams) to the current teams of the league. That is to say, if the new candidate 

solution i is better than the Nth team of the league in terms of objective function value, the 

Nth team is removed from the league and the new solution takes its place. 
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Step 5: Handling the side constraints 

It is possible for the candidate solutions to leave the search space and it is important to 

deal with such solutions properly. This is especially the case for the solutions corresponding 

to lighter teams for which the values of X is usually bigger. Different strategies might be 

used in order to solve this problem. For example, such candidate solutions can be simply 

brought back to their previous feasible position (flyback strategy) or they can be regenerated 

randomly. In this paper a new strategy is introduced and incorporated using the global best 

solution. The new value of the jth optimization variable of the ith team that violated side 

constraints in the kth iteration is defined as: 
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k
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(12) 

 

where jGB  is the jth variable of the global best solution (i.e. the best solution so far); 

randn is a random number drawn form a standard normal distribution. There is a very slight 

possibility for the newly generated variable to be still outside the search space. In such cases 

a flyback strategy is used. 

The abovementioned strategy is utilized with a certain probability (0.5 in this paper). For 

the rest of cases the violated limit is taken as the new value of the jth optimization variable. 

 

Step 6: Termination 

Steps 2 through 5 are repeated until a termination criterion is satisfied. The pseudo code 

of TWO is presented in Table 1. 

 
Table 1: Pseudo-code of the TWO algorithm developed in this study 

procedure Tug of War Optimization 

begin 

Initialize parameters; 

 Initialize a population of N random candidate solutions; 
     Initialize the league by recording all random candidate solution; 

 while (termination condition not met) do 

           Evaluate the objective function values for the candidate solutions 

          Sort the new solutions and update the league  

           Define the weights of the teams of the league Wi based on fit(Xi) 
            for each team i 

   for each team j 

    if (Wi < Wj) 

                             Move team i towards team j using Eq. (9);  

end if 

   end for 

Determine the total displacement of team i using Eq. (10) 

                Determine the final position of team i using Eq.(11) 
               Use the side constraint handling technique to regenerate violating variables  

  end for 

 end while 

end 
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3. TEST PROBLEMS AND OPTIMIZATION RESULTS 
 

In order to evaluate the efficiency of the proposed algorithm, some benchmark test problems 

are considered from the literature. A set of uni-modal and multi-modal mathematical 

optimization problems are studied in Section 3.1. In addition, six well-studied engineering 

design problems are investigated in Section 3.2. Except for the last three examples a 

population of 20 agents and a maximum number of permitted iterations of 200 are used for 

all test problems. For the fourth, fifth, and sixth structural design problems the numbers of 

agents are taken as 30, 40, and 40, respectively while 400 iterations are used for these 

examples. The coefficient of static friction ( s ) is taken as unity, while the coefficient of 

kinematic friction ( k ) varies linearly from 1 to 0.1. Since smaller values of k  let the 

teams slide more easily towards each other and vice versa, such a parameter selection helps 

the algorithm's agents to explore the search space at early iterations without being severely 

affected by each other. As the optimization process proceeds, the values of k  gradually 

decrease allowing for convergence. It was found that using the same value of kinematic 

friction coefficient for all teams yield the best optimization results for TWO. 

 

3.1 Mathematical optimization problems 

In this section the efficiency of the TWO is evaluated by solving the mathematical 

benchmark problems summarized in Table 2. These benchmark problems are taken from 

Ref. [20], where some variants of GA were used as the optimization algorithm. The results 

obtained by TWO are presented in Table 3 along with those of GA variants. Each objective 

function is optimized 50 times independently starting from different initial populations and 

the average number of function evaluations required by each algorithm is presented. The 

numbers in the parentheses indicate the ratio of the successful runs in which the algorithm 

has located the global minimum with predefined accuracy, which is taken as 
4

min 10 finalff . The absence of the parentheses means that the algorithm has been 

successful in all independent runs. 

 
Table 2: Details of the benchmark mathematical problems solved in this study 
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Table 3: Performance comparison of TWO and GA variants in the mathematical optimization 

problems 

Function name GEN GEN–S GEN–S–M GEN–S–M–LS TWO 

AP 1,360 (0.99) 1,360 1,277 1,253 1092 

Bf1 3,992 3,356 1,640 1615 1404 

Bf2 20,234 3,373 1,676 1636 1232 

BL 19,596 2412 2,439 1,436 1216 

Branin 1,442 1,418 1,404 1,257 1189 

Camel 1,358 1,358 1,336 1,300 1212 

Cb3 9,771 2,045 1,163 1,118 992 

CM 2,105 2,105 1,743 1,539 1420 
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DeJoung 9,900 3,040 1,462 1,281 1346 

Exp2 938 936 817 807 314 

Exp4 3,237 3,237 2,054 1,496 815 

Exp8 3,237 3,237 2,054 1,496 1257 

Goldstein and 

Price 
1,478 1,478 1,408 1,325 1690 

Griewank 18,838 (0.91) 3,111 (0.91) 1,764 1,652 (0.99) 1766 

Hartman3 1,350 1,350 1,332 1,274 1026 

Harman6 2,562 (0.54) 2,562 (0.54) 2,530 (0.67) 1,865 (0.68) 1601 (0.68) 

 

As it can be seen from Table 3, TWO generally performs better than GA and its variants 

in the mathematical optimization problems considered in this study.  

 

3.2 Structural design problems 

In order to further investigate the efficiency of the TWO, three engineering design problems 

are considered in this section. These problems have been previously studied using different 

optimization algorithms. These constrained optimization problems are turned into 

unconstrained ones using a penalty approach. If the constraints are satisfied, then the amount 

of penalty will be zero; otherwise its value can be calculated as the ratio of violated 

constraint to the corresponding allowable limit. 

 

3.2.1 Design of a tension/compression spring 

Weight minimization of the tension/compression spring shown in Fig. 3, subject to 

constraints on shear stress, surge frequency, and minimum deflection is considered as the 

first engineering design example. This problem was first described by Belegundu [21] and 

Arora [22]. The design variables are the mean coil diameter D(x1), the wire diameter d(x2), 

and the number of active coils N (x3).  

 

 
Figure 3. Schematic of the tension/compression spring 

 

The cost function can be stated as: 

 
2
123cost xx)2x()X(f 

 
(13) 

 

while the constraints are: 
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The side constraints are defined as follows: 

 

2x05.0 1   
(15) 3.1x25.0 2   

15x2 3 
 

 

This problem has been solved by Belegundu [21] using eight different mathematical 

optimization techniques. Arora [22] utilized a numerical optimization technique called a 

constraint correction at the constant cost to investigate the problem. Coello [23] and Coello 

and Montes [24] used a GA-based algorithm to solve the problem. He and Wang [25] used a 

co-evolutionary particle swarm optimization (CPSO). Montes and Coello [26] used 

evolution strategies. Kaveh and Talatahari used improved ant colony optimization [27] and 

charged system search CSS [6]. Recently, the problem has been solved by Kaveh and 

Mahdavi [11] using Colliding bodies optimization (CBO).  

The optimization results obtained by TWO are presented in Table 4 along with those of 

other methods. It can be seen that TWO found the best design overall. It should be noted that 

some constraints are slightly violated by the designs quoted by Kaveh & Talatahari [6, 26]. 

Table 5 shows the statistical results obtained for 30 independent optimization runs. 

 
Table 4: Comparison of the optimization results obtained in the tension/compression spring 

problem 

 Optimal design variables  

costf  )(3 Nx  )(2 Dx  )(1 dx  Methods 

0.0128334 14.250000 0.315900 0.050000 Belegundu [21] 

0.0127303 9.185400 0.399180 0.053396 Arora [22] 

0.0127048 11.632201 0.351661 0.051480 Coello [23] 

0.0126810 10.890522 0.363965 0.051989 Coello & Montes [24] 
0.0126747 11.244543 0.357644 0.051728 He and Wang [25] 
0.012698 11.397926 0.355360 0.051643 Montes and Coello [26] 

0.0126432 11.000000 0.361500 0.051865 Kaveh & Talatahari [27] 
0.0126384 11.165704 0.358532 0.051744 Kaveh & Talatahari [6] 

0.0126697 11.007846 0.3616740 0.051894 Kaveh & Mahdavi [11] 

0.0126671 11.428784 0.354379 0.051592 Present work 
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Table 5: Comparison of statistical optimization results obtained in the tension/compression 

spring design problem 

Std dev Worst Mean Best Methods 

N/A N/A N/A 0.0128334 Belegundu [21] 

N/A N/A N/A 0.0127303 Arora [22] 

3.9390e-5 0.012822 0.012769 0.0127048 Coello [23] 

5.9000e-5 0.012973 0.0127420 0.0126810 Coello & Montes [24] 
5.1985e-5 0.012924 0.012730 0.0126747 He and Wang [25] 
9.6600e-4 0.016485 0.013461 0.012698 Montes and Coello [26] 
3.4888e-5 0.012884 0.012720 0.0126432 Kaveh & Talatahari [27] 
8.3564e-5 0.013626 0.012852 0.0126384 Kaveh & Talatahari [6] 

5.00376e-5 0.012881 0.0127296 0.0126697 Kaveh & Mahdavi [11] 

2.6125e-4 0.0135213 0.0129709 0.0126671 Present work 

 

3.2.2 Design of a welded beam 

The second test problem regards the design optimization of the welded beam shown in 

Fig.4. This problem has been used for testing different optimization methods. The aim is to 

minimize the total manufacturing cost subject to constraints on shear stress )( , bending 

stress )( , buckling load )( cP , and deflection )( . The four design variables, namely h (x1), 

l (x2), t (x3), and b (x4), are also shown in the figure. 

 

 
Figure 4. Schematic of the welded beam 

 

The objective function can be mathematically stated as: 

 

)x0.14(xx04811.0xx10471.1)X(f 2432
2
1cost 

 
(16) 

 

The optimization constraints are 

 

0})x({)X(g max1  
 

(17) 
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0})x({)X(g max2  
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The side constraints can be stated as: 

 

21.0 1  x , 101.0 2  x , 101.0 3  x , 21.0 4  x  (19) 

 

Radgsdell and Phillips [28] utilized different optimization methods mainly based on 

mathematical programming to solve the problem and compared the results. GA-based 

methods are used by Deb [29], Coello [23], Coello and Montes [24]. This test problem was 

also solved by He and Wang [25] using CPSO and Montes and Coello [26] using evolution 

strategies. Kaveh and Talatahari employed ant colony optimization [27] and charged system 

search [6]. Kaveh and Mahdavi [11] solved the problem using the colliding bodies 
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optimization method. 

Table 6 compares the best results obtained by the different optimization algorithms 

considered in this study. The statistical results for 30 independent runs are provided in Table 

7. It can be seen from Table 6 that optimum design found by TWO is about 0.01 percent 

heavier than that found by CBO which was the best design quoted so far in literature.  

 
Table 6: Comparison of the optimization results obtained in the welded beam problem 

 Optimal design variables  

costf  )(4 bx  )(3 tx  )(2 lx  )(1 hx  Methods 

2.3815 0.2444 8.2915 6.2189 0.2444 Radgsdell and Phillips [28] 

2.433116 0.253300 8.178900 6.173000 0.248900 Deb [29] 

1.748309 0.210000 8.997500 3.420500 0.208800 Coello [23] 

1.728226 0.206480 9.020224 3.471328 0.205986 Coello and Montes [24] 

1.728024 0.205723 9.048210 3.544214 0.202369 He and Wang [25] 

1.737300 0.206082 9.037500 3.612060 0.199742 Montes and Coello [26] 

1.724918 0.205731 9.036683 3.471131 0.205700 Kaveh & Talatahari [27] 
1.724866 0.205723 9.038024 3.468109 0.205820 Kaveh & Talatahari [6] 

1.724663 0.205735 9.037276 3.47041 0.205722 Kaveh & Mahdavi [11] 

1.724855 0.205730 9.036631 3.47052 0.205728 Present work 

 
Table 7: Comparison of statistical optimization results obtained in the welded beam problem 

Std Dev Worst Mean Best  Methods 

N/A N/A N/A 2.3815  Radgsdell and Phillips [28] 

N/A N/A N/A 2.433116  Deb [29] 

0.011220 1.785835 1.771973 1.748309  Coello [23] 

0.074713 1.993408 1.792654 1.728226  Coello and Montes [24] 

0.012926 1.782143 1.748831 1.728024  He and Wang [25] 

0.070500 1.994651 1.813290 1.737300  Montes and Coello [26] 

0.009200 1.775961 1.729752 1.724918  Kaveh & Talatahari [27] 
0.008064 1.759479 1.739654 1.724866  Kaveh & Talatahari [6] 

0.0002437 1.725059 1.725707 1.724662  Kaveh & Mahdavi [11] 

0.0009951 1.729970 1.726016 1.724855  Present work 

 

3.2.3 Design of a planar 10-bar truss structure subject to frequency constraints 

The sizing optimization of a planar 10-bar truss subject to frequency constraints is selected 

as the third test case. The configuration of the structure is depicted in Fig. 5. This is a well-

known benchmark problem in the field of frequency constraint structural optimization. Each 

of the members' cross-sectional area is assumed to be an independent variable. A non-

structural mass of 454.0 kg is attached to all free nodes. Table 8 summarizes the material 

properties, variable bounds, and frequency constraints for this example. This problem has 

been investigated by different researchers: Grandhi and Venkayya [30] using an optimality 

algorithm, Sedaghati et al. [31] using a sequential quadratic programming and finite element 

force method, Wang et al. [32] using an evolutionary node shift method, Lingyun et al. [33] 

utilizing a niche hybrid genetic algorithm, Gomes [34] employing the standard particle 
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swarm optimization algorithm and Kaveh and Zolghadr utilizing democratic PSO [9], and a 

hybridized PSRO algorithm [35] among others. 

 

 
Figure 5. Schematic of the planar 10-bar truss structure 

 
Table 8: Material properties, variable bounds and frequency constraints for the 10-bar truss 

structure 

Property/unit Value 

E (Modulus of elasticity)/ N/m
2
 6.89 × 10

10
 

ρ (Material density)/ kg/m
3
 2770.0 

Added mass/kg 454.0 

Design variable lower bound/m
2
 0.645 ×10

-4
 

Design variable upper bound/m
2
 50 ×10

-4
 

L (Main bar’s dimension)/m 9.144 

Constraints on first three frequencies/Hz ω1≥7, ω2≥15, ω 3≥20 

 

Table 9 summarizes the design vectors of the optimal structures found by different 

methods.  

 
Table 9: Optimized designs (cm

2
) obtained for the planar 10-bar truss problem (the optimized 

weight does not include the added masses) 

Element 

number 

Grandhi & 

Venkayya 

[30] 

Sedaghati 

et al. [31] 

Wang et 

al. [32] 

Lingyun 

et al. 

[33] 

Gomes 

[34] 

Kaveh & Zolghadr 

DPSO 

[9] 

PSRO 

[35] 

Present 

work 

1 36.584 38.245 32.456 42.23 37.712 35.944 37.075 35.198 

2 24.658 9.916 16.577 18.555 9.959 15.530 15.334 14.311 

3 36.584 38.619 32.456 38.851 40.265 35.285 33.665 35.305 

4 24.658 18.232 16.577 11.222 16.788 15.385 14.849 14.833 

5 4.167 4.419 2.115 4.783 11.576 0.648 0.645 0.645 

6 2.070 4.419 4.467 4.451 3.955 4.583 4.643 4.671 

7 27.032 20.097 22.810 21.049 25.308 23.610 24.528 23.806 

8 27.032 24.097 22.810 20.949 21.613 23.599 23.188 24.894 

9 10.346 13.890 17.490 10.257 11.576 13.135 12.436 12.843 

10 10.346 11.452 17.490 14.342 11.186 12.357 13.500 12.803 

Weight (kg) 594.0 537.01 553.8 542.75 537.98 532.39 532.85 532.17 
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According to Table 9, the weight of the optimal structure found by TWO is 532.17 kg 

which is slightly better than that of DPSO, the best design quoted so far in the literature. The 

mean value and the standard deviation of 30 independent runs of TWO on this problem are 

537.43 and 3.43 kg, respectively. Table 10 shows the natural frequencies of the optimized 

structures obtained by different methods. It can be seen that all of the constraints are 

satisfied. 

 

3.2.4 Design of a spatial 25-bar truss structure 

Weight minimization of the spatial 25-bar truss schematized in Fig. 6 is considered as the 

fourth design example. The material density and modulus of elasticity are 0.1 lb/in3 and 

10000 ksi, respectively. Table 11 shows the two independent loading conditions applied to 

the structure. The twenty five bars of the truss are classified into eight groups, as follows: 

(1) A1, (2) A2-A5, (3) A6-A9, (4) A10-A11, (5) A12-A13, (6) A14-A17, (7) A18-A21, and (8) A22-

A25. 

 
Table 10: Natural frequencies (Hz) evaluated at the optimized designs for the planar 10-bar truss 

Frequenc

y number 

Grandhi 

&Venkay

ya [30] 

Sedaghati 

et al. [31] 

Wang et 

al. [32] 

Lingyun 

et al. 

[33] 

Gomes 

[34] 

Kaveh and Zolghadr 

DPSO 

[9] 

PSRO 

[35] 

Present 

work 

1 7.059 6.992 7.011 7.008 7.000 7.000 7.000 7.000 

2 15.895 17.599 17.302 18.148 17.786 16.187 16.143 16.127 

3 20.425 19.973 20.001 20.000 20.000 20.000 20.000 20.000 

4 21.528 19.977 20.100 20.508 20.063 20.021 20.032 20.002 

5 28.978 28. 173 30.869 27.797 27.776 28.470 28.469 28.699 

6 30.189 31.029 32.666 31.281 30.939 29.243 29.485 29.068 

7 54.286 47.628 48.282 48.304 47.297 48.769 48.440 48.280 

8 56.546 52.292 52.306 53.306 52.286 51.389 51.257 50.822 

 
Table 11: Independent loading conditions acting on the spatial 25-bar truss 

Node 
Case 1  Case 2  

Px kips Py kips Pz kips  Px kips Py kips Pz kips  

1 0.0 20.0 -5.0  1.0 10.0 -5.0  

2 0.0 -20.0 -5.0  0.0 10.0 -5.0  

3 0.0 0.0 0.0  0.5 0.0 0.0  

6 0.0 0.0 0.0  0.5 0.0 0.0  

 

Maximum displacement limitations of 0.35 in are imposed on all nodes in all directions. 

The axial stress constraints, which are different for each group, are shown in Table 12. The 

cross-sectional areas vary continuously from 0.01 to 3.4 in2 for all members.  
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Table 12: Member stress limits for the 25-bar spatial truss 

Element group Compressive stress limits ksi (MPa) Tensile stress limit ksi (MPa) 

1 35.092 (241.96) 40.0 (275.80) 

2 11.590 (79.913) 40.0 (275.80) 

3 17.305 (119.31) 40.0 (275.80) 

4 35.092 (241.96) 40.0 (275.80) 

5 35.092 (241.96) 40.0 (275.80) 

6 6.759 (46.603) 40.0 (275.80) 

7 6.959 (47.982) 40.0 (275.80) 

8 11.082 (76.410) 40.0 (275.80) 

 

 
Figure 6. Schematic of the spatial 25-bar truss structure 

 

Table 13 shows that the different optimization methods converged almost to the same 

structural weight. It seems that the results obtained by different methods are very close 

together for this example. The best result obtained by TWO is 544.42 kg which is only 

slightly heavier than that of HS. However, it should be noted that according to our codes the 

optimum design of HS slightly violates displacement constraints. Moreover TWO requires 

12000 analyses to complete the optimization process, while HS has used 15000 analyses. 

The mean value and standard deviation of 30 independent optimization runs by TWO are 

544.53 and 0.211 lb, respectively. Small differences in weight may originate from the level 

of precision in the implementation of the optimization problem. For example, the 

displacement limit of 0.350in set for TWO resulted in feasible optimized design quoted in 

Table 13 yielding a maximum displacement of 0.3504in which can be rounded to the above 

mentioned limit.  
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3.2.5 Design of a spatial 72-bar truss structure 

A spatial 72-bar truss structure shown in Fig. 7 is considered as the fifth design example. 

The elements are grouped to form 16 design variables according to Table 15. The material 

density and the modulus of elasticity are taken as 0.1 lb/in3 and 10,000 ksi, respectively. All 

members are subjected to a stress limitations of ±25 ksi. The displacements of the uppermost 

nodes along x and y axes are limited to ±0.25 in. Cross-sectional areas of bars can vary 

between 0.10 and 4.00 in2. The two loading conditions acting on the structure are 

summarized in Table 14. 

This problem has been studied by Erbatur et al. [39] using Genetic Algorithms, Camp 

and Bichon [40] using Ant Colony Optimization, Perez and Behdinan [41] using Particle 

Swarm Optimization, Camp [42] using Big Bang-Big Crunch algorithm, and Kaveh and 

Khayatazad [8] using Ray Optimization among others. 

 
Table 13: Comparison of the optimization results obtained in the spatial 25-bar truss problem 

Element group Optimal cross-sectional areas (in
2
) 

 

Rajeev and 

Krishnamoorthy, GA 

[36] 

Schutte and 

Groenwold, 

PSO [37] 

Lee and Geem, 

HS [38] 

Present 

work 

1 A1 0.10 0.010 0.047 0.010 

2 A2-A5 1.80 2.121 2.022 1.979 

3 A6-A9 2.30 2.893 2.950 2.993 

4 A10-A11 0.20 0.010 0.010 0.010 

5 A12-A13 0.10 0.010 0.014 0.010 

6 A14-A17 0.80 0.671 0.688 0.684 

7 A18-A21 1.80 1.611 1.657 1.678 

8 A22-A25 3.0 2.717 2.663 2.656 

 
Best weight 

(lb) 
546 545.21 544.38 544.42 

 
Average 

weight (lb) 
N/A 546.84 N/A 544.53 

 Std Dev (lb) N/A 1.478 N/A 0.211 

 
No. of 

analyses 
N/A 9596 15000 12000 

 
Table 14: Independent loading conditions acting on the spatial 72-bar truss 

node Case 1 Case 2 

 
Px kips 

(kN) 

Py kips 

(kN) 

Pz kips 

(kN) 

Px 

kips(kN) 

Py 

kips(kN) 

Pz kips 

(kN) 

1 5 5 -5 _ _ -5 

2 _ _ _ _ _ -5 

3 _ _ _ _ _ -5 

4 _ _ _ _ _ -5 
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Figure 7. Schematic of the spatial 72-bar truss structure 

 

Table 15 compares the results obtained by the present method to those previously 

reported in the literature. The weight of the best result obtained by TWO is 379.846 lb which 

is the best among the compared methods. Moreover, the mean weight of the results for 20 

independent optimization runs of TWO is 381.98 lb which is less than all other methods. 

Also, TWO requires only 16000 structural analyses while ACO, BB-BC and RO require 

18,500, 19,621, and 19,084, respectively. 

 
Table 15: Comparison of the optimization results obtained in the spatial 72-bar truss problem 

Element group 

Optimal cross-sectional areas (in
2
)  

Erbatur et 

al. [39] 

Camp and 

Bichon 

[40] 

Perez and 

Behdinan 

[41] 

Camp [42] 

Kaveh and 

Khayatazad 

[8] 

Present 

work 

1–4 1.755 1.948 1.7427 1.8577 1.8365 1.9961 

5–12 0.505 0.508 0.5185 0.5059 0.5021 0.5100 

13–16 0.105 0.101 0.1000 0.1000 0.1000 0.1000 

17–18 0.155 0.102 0.1000 0.1000 0.1004 0.1000 

19–22 1.155 1.303 1.3079 1.2476 1.2522 1.2434 

23–30 0.585 0.511 0.5193 0.5269 0.5033 0.5184 

31–34 0.100 0.101 0.1000 0.1000 0.1002 0.1000 

35–36 0.100 0.100 0.1000 0.1012 0.1001 0.1001 

37–40 0.460 0.561 0.5142 0.5209 0.5730 0.5211 

41–48 0.530 0.492 0.5464 0.5172 0.5499 0.5098 

49–52 0.120 0.100 0.1000 0.1004 0.1004 0.1000 
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53–54 0.165 0.107 0.1095 0.1005 0.1001 0.1000 

55–58 0.155 0.156 0.1615 0.1565 0.1576 0.1569 

59–66 0.535 0.550 0.5092 0.5507 0.5222 0.5346 

67–70 0.480 0.390 0.4967 0.3922 0.4356 0.3959 

71–72 0.520 0.592 0.5619 0.5922 0.5971 0.5821 

Best weight (lb) 385.76 380.24 381.91 379.85 380.458 379.846 

Mean weight 

(lb) 
N/A 383.16 N/A 382.08 382.553 381.976 

Standard 

deviation (lb) 
N/A 3.66 N/A 1.912 1.221 3.161 

Number of 

analyses 
N/A 18,500 N/A 19621 19,084 16000 

3.2.6 Design of a 120-bar dome truss 

The last test problem is the weight minimization of a 120-bar dome truss shown in Fig. 8. 

This structure was considered by Soh and Yang [43] as a configuration optimization 

problem. It has been solved by Lee and Geem [38], Kaveh and Talatahari [44], Kaveh et al. 

[45], Kaveh and Khayatazad [8], and Kaveh and Mahdavi [11] as a sizing optimization 

problem. The members of the structure are divided into seven groups as shown in Fig. 8.  

 

 
Figure 8. Schematic of the 120-bar dome truss structure 
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The allowable tensile and compressive stresses are set according to the AISC-ASD [46] 

provisions as follows: 
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where 
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where E is the modulus of elasticity, Fy is the yield stress of the material, i  is the 

slenderness ratio (
i

ii
i

r

LK
 ), Ki is the effective length factor, Li is the member length and ri 

is the radius of gyration. Cc is the critical slenderness ratio separating elastic and inelastic 

buckling regions (
y

c F
EC

22 ). 

The modulus of elasticity and the material density are taken as 30,450 ksi (210 GPa) and 

0.288 lb/in3, respectively. The yield stress is taken as 58.0 ksi (400 MPa). The radius of 

gyration is expressed in terms of cross-sectional areas of the members as b
ii aAr  [47]. 

Constants a and b depend on the types of sections adopted for the members such as pipes, 

angles, etc. In this example pipe sections are used for the bars for which a=0.4993 and 

b=0.6777. The dome is considered to be subjected to vertical loads at all unsupported nodes. 

These vertical loads are taken as -13.49 kips (60 kN) at node 1, -6.744 kips (30 kN) at nodes 

2 through 14, and -2.248 kips (10 kN) at the other nodes. Four different problem variants are 

considered for this structure: with stress constraints and no displacement constraints (Case 

1), with stress constraints and displacement limitations of ±0.1969 in (5 mm) imposed on all 

nodes in x and y directions (Case 2), no stress constraints and displacement limitations of 

±0.1969 in (5 mm) imposed on all nodes in z direction (Case 3), and all the abovementioned 

constraints imposed together (Case 4). For cases 1 and 2 the maximum cross-sectional area 

is taken as 5.0 in2 (32.26 cm2) while for cases 3 and 4 it is taken as 20 in2 (129.03 cm2). The 

minimum cross-sectional is taken as 0.775 in2 (5 cm2) for all cases. 

Table 16 compares the results obtained by different optimization techniques for this 

example. It can be seen that the results found by TWO are comparable to those of other 

methods. In case 1 the best result obtained by TWO is the same as that of CBO which is the 

best result so far. In cases 3 and 4 the results obtained by TWO are better than those of RO, 

IRO, and CBO and are only slightly heavier than that of HPSACO (0.01 and 0.004 percent 

in cases 3 and 4, respectively). The average number of structural analyses required by the 

RO and IRO algorithms were reported as 19,900 and 18,300, respectively, while TWO uses 
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40 candidate solutions and 400 iterations like CBO resulting in a maximum number of 

analyses of 16000. HPSACO and HS, respectively, performed 10000 and 35000 structural 

analyses to obtain their optimal results. It should be noted that HPSACO is a hybrid method 

which combines good features of PSO, ACO and HS. 

 
Table 16: Comparison of the optimization results obtained in the 120-bar dome problem 

Element 

group 

Optimal cross-sectional areas (in2) 

Case 1 Case 2 

HS [38] 
HPSACO 

[44] 
RO [8] 

CBO 

[11] 

Present 

work 
HS [38] 

HPSACO 

[44] 
RO [8] 

CBO 

[11] 

Present 

work 

1 3.295 3.311 3.128 3.1229 3.1229 3.296 3.779 3.084 3.0832 3.0831 

2 3.396 3.438 3.357 3.3538 3.3538 2.789 3.377 3.360 3.3526 3.3526 

3 3.874 4.147 4.114 4.1120 4.1120 3.872 4.125 4.093 4.0928 4.0928 

4 2.571 2.831 2.783 2.7822 2.7822 2.570 2.734 2.762 2.7613 2.7613 
5 1.150 0.775 0.775 0.7750 0.7750 1.149 1.609 1.593 1.5918 1.5923 

6 3.331 3.474 3.302 3.3005 3.3005 3.331 3.533 3.294 3.2927 3.2927 

7 2.784 2.551 2.453 2.4458 2.4458 2.781 2.539 2.434 2.4336 2.4336 
Best 

weight 

(Ib) 

19707.77 19491.3 19476.193 19454.7 19454.67 19893.34 20078.0 20071.9 20064.5 20064.86 

Average 

weight 

(Ib) 

- - - 19466.0 19454.98 - - - 20098.3 20106.85 

Std (Ib) - - 33.966 7.02 1.17 - - 112.135 26.17 116.15 

 

Case 3 Case 4 

HPSACO 

[44] 
RO [8] CBO [11] 

Present 

work 
 

HPSACO 

[44] 
RO [8] IRO [45] 

CBO 

[11] 

Present 

work 
1 2.034 2.044 2.0660 1.9667  3.095 3.030 3.0252 3.0273 3.0247 

2 15.151 15.665 15.9200 15.3920  14.405 14.806 14.8354 15.1724 14.7261 

3 5.901 5.848 5.6785 5.7127  5.020 5.440 5.1139 5.2342 5.1338 

4 2.254 2.290 2.2987 2.1960  3.352 3.124 3.1305 3.119 3.1369 

5 9.369 9.001 9.0581 9.5439  8.631 8.021 8.4037 8.1038 8.4545 
6 3.744 3.673 3.6365 3.6688  3.432 3.614 3.3315 3.4166 3.2946 

7 2.104 1.971 1.9320 1.9351  2.499 2.487 2.4968 2.4918 2.4956 

Best 
weight 

(Ib) 

31670.0 31733.2 31724.1 31673.62  33248.9 33317.8 33256.48 33286.3 33250.31 

Average 
weight 

(Ib) 

- - 32162.4 31680.34  - - - 33398.5 33282.64 

Std (Ib) - 274.991 240.22 6.15  - 354.333 - 67.09 25.38 

 

 

4. CONCLUSIONS 
 

In this paper a novel population-based meta-heuristic algorithm based on a game of tug of war 

is introduced. The algorithm, denoted as Tug of War Optimization (TWO), considers each 

candidate solution as a team participating in a series of tug of war competitions. Like other 

meta-heuristic optimization algorithms TWO uses a combination of randomness and 

exploitation of previously obtained favorable results to perform global optimization. The 

quality of the candidate solutions improves iteratively as the optimization process proceeds. 

Unlike many other meta-heuristic methods, the algorithm is formulated in such a way that 

considers the qualities of both of the interacting teams. In other words, since the weights of the 

teams are involved in the convergence operator, two losing teams are not treated the same by a 

particular winning team. The team with less weight would probably move more drastically. 
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As a meta-heuristic optimization algorithm, TWO does not require information on the 

derivatives of the objective function and the constraints. This makes the algorithm 

applicable to a wide range of optimization problems from different fields. Some classical 

mathematical and structural optimization problems are solved to evaluate the efficiency of 

the proposed algorithm. Results indicate the superiority of TWO compared to some other 

state-of-the-art optimization algorithms. 
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