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ABSTRACT 
 

The p-median problem is one of the discrete optimization problem in location theory which 

aims to satisfy total demand with minimum cost. A high-level algorithmic approach can be 

specialized to solve optimization problem. In recent years, meta-heuristic methods have 

been applied to support the solution of Combinatorial Optimization Problems (COP). 

Collision Bodies Optimization algorithm (CBO) and Enhanced Colliding Bodies 

Optimization (ECBO) are two recently developed continuous optimization algorithms which 

have been applied to some structural optimization problems. The main goal of this paper is 

to provide a useful comparison between capabilities of these two algorithms in solving p-

median problems. Comparison of the obtained results shows the validity and robustness of 

these two new meta-heuristic algorithms for p-median problem. 
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1. INTRODUCTION 
 

Most of the public and private companies have the problem of finding appropriate locations 

for their facilities. Government agencies need to determine locations of offices and other 

public services such as schools, hospitals, fire stations, ambulance bases, military bases, 

radar installations, waste disposal facilities and so on. Industrial companies must locate the 

fabrication and assembly plants as well as warehouses. In these cases, the success or failure 

of facilities depends in part on the locations chosen for these facilities [1]. Such problems 

are known as location-allocation problems. 

Most of the studies on location finding problems are classified into four categories:  
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1. Facility location problems 2. p-median problems 3. p-center problems, and 4. covering 

problems [2]. 

In this paper a comparative study is performed for two meta-heuristics consisting of CBO 

and ECBO algorithms for solving p-median problem. 

 

 

2. THE P-MEDIAN PROBLEM 

 

The p-median problem is one of a largest class of location problems in both capacitated and 

incapacitated conditions. The aim of p-median problem is to locate p facilities among n 

demand points and allocates the demand points to the facilities. The objective is to minimize 

the total demand-weighted distance between the demand points and the facilities. In the 

early 20th century, Alfred Weber presented the same problem with the addition of weights 

on each of the three points to simulate customer demand. The following formulation of the 

p-median problem is due to ReVelle and Swain [3]. 
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where 

n=total number of demand points, 

  ipoint at  located isfacility  a if 1

otherwise 0ijx  

  jpoint at  located isfacility  a if 1

otherwise 0jy  

wi =demand at point i 

dij =travel distance between points i and j 

p =number of facilities to be located 

 

Hakimi [4] developed a method for finding medians on a network or graph and showed 

that the absolute median of a graph G is always located at a vertex of a graph. Thus, to find 

the optimum location for a switching center in a communication network, one must only 

search the vertices of the graph of a network and he proved that the p-median problem is an 

NP-hard problem [5]. 

Mathematical and exact methods were the earliest techniques proposed for solving 

allocation problems. However, as the problem size increases, the computational time of 

exact methods increases exponentially. In contrast to exact methods, heuristic algorithms 

generally have acceptable time and memory requirements, but do not guarantee optimal 

solution [6]. Over the past three decades, there has been a considerable increase in the 

amount of solution methods. Meta-heuristics provide a general framework to build heuristics 

for combinatorial and global optimization problems. Meta-heuristics have many distinctive 

features that make them as suitable techniques, especially when these are combined with 

other optimization methods [7]. 

These have been the subject of intensive research since Kirkpatrick, Gellatt and Vecchi 

[8] proposed Simulated Annealing (SA) as a general scheme for building heuristics, capable 

of escaping the local optimums. In 1996 the basic SA heuristic for p-median problem (PMP) 

has been proposed by Murray and Church. After that several Tabu Search and Genetic 

search methods have been proposed for solving PMP [9, 10, 11]. 
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In 1992, Dorigo developed the ant colony optimization (ACO), Levanova and Loresh 

[12] applied the hybrid of ACO and SA. In 2000, Glover applied the Scatter search for PMP 

which this algorithm was proposed by himself in 1977. Charged System Search (CSS) was 

used by Kaveh and Sharafi in 2008 [13]. 

Kaveh and Rahimi Bondarabady [14], and Kaveh and Shojaee [15] applied the GA and 

Ant colony, and Kaveh and Mahdavi [16] used CBO for PMP to decompose the finite 

element models. Kaveh and Ghobadi applied PMP to blood banking supply chain allocation 

problem [17]. 

 

 

3. OPTIMIZATION ALGORITHM 
 

Evolutionary computation uses iterative process, such as growth or development in a 

population. This population is then selected in a guided random search using parallel 

processing to achieve the desired end. A local search procedure looks for the best solution 

near another solution by repeatedly making small changes to the current solution. This 

procedure is continued until no further solution can be found. The convergence properties of 

meta-heuristics are closely related to the random sequence applied on their operators during 

a run. In particular, when starting some optimizations with different random numbers, 

experience shows that the results may be very close but not equal, and require also different 

numbers of generations to reach the same optimal value [7]. 

A meta-heuristic can be successful on a given optimization problem if a balance between 

the exploration (diversification) and the exploitation (intensification) can be achieved. 

Exploitation is needed to identify parts of the search space with high quality solutions. 

Exploitation is important to intensify the search in some promising areas of the accumulated 

search experience. The main differences between the existing meta-heuristics concern the 

particular way in which they try to achieve this balance [18]. Also defining a neighborhood 

structure is the most important aspect of algorithms. By using an efficient neighborhood 

structure, a problem can be solved with higher accuracy in less computational time. 

CBO and ECBO are two recently developed meta-heuristic algorithms developed by 

Kaveh & Mahdavi [19] and Kaveh & Ilchi Ghazaan [20], respectively. 

 

3.1 CBO algorithm 

The basic idea of the theory of colliding bodies optimization (CBO) is that the total 

momentum before the collision to be the same as the total momentum after the collision 

[19]. CBO is a simple algorithm and it depends on no internal parameter. In this algorithm, 

each body is a candidate solution to the problem which is characterized by a mass and 

velocity. In the initialization phase of the CBO, the positions and velocities of all individuals 

are randomly initialized (Eq. (1) & Eq. (2)). In the second step, objective function is 

evaluated and masses are defined (Eq. (3)). At each iteration, a particle CBi adjusts its 

position Xi and velocity Vi according to the previous position and the velocity after the 

collision (Eq. (4) & Eq. (6)). 

The optimization is repeated until termination criteria, specified as the maximum number 

of iterations, is satisfied. 
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3.2. ECBO algorithm 

In order to improve the CBO to get faster and more reliable solutions, Enhanced Colliding 

Bodies Optimization (ECBO) was developed by Kaveh and Ilchi Ghazaan [20]. ECBO uses 

memory to save a number of historically best CBs and also utilizes a mechanism to escape 

from local optima. The solution vectors saved in CM are added to the population, and the 

same numbers of current worst CBs are deleted. Then the values of Xi and Vi are evaluated 

before and after the collision. Finally, CBs are sorted according to their masses in a 

decreasing order. In ECBO, a parameter like Pro within (0, 1) is introduced which specifies 

whether a component of each CB must be changed or not. For each colliding body Pro is 

compared with rand i (i = 1, 2, . . . , n) which is a random number uniformly distributed 

within (0, 1). If rand i < Pro, one dimension of the ith CB is selected randomly and its value 

is regenerated and the termintion condition is checked [21]. CBO and ECBO and some 

recently developed metaheuristic algorithms can be found in Kaveh [22]. Pseudo code of teh 

ECBO is illustrated in Fig. 1. 

 

Pseudo code of Enhanced Colliding Bodies Optimization 

Initial location is created randomly 

The value of objective function and mass are evaluated  

While stop criteria is not attained (like max iteration) 

 for each CBs 

Calculate CBs velocity before collision according equation (2) 

Calculate CBs velocity after collision according equation (4) 

Update CBs position according equation (6) 

If rand i < Pro 

One dimension of the ith CB is selected randomly and regenerate 

End if 

End for 

End while 

End 

Figure 1. Pseudo code of enhanced colliding bodies optimization [21] 
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4. NUMERICAL EXAMPLE 
 

In this section, three examples are studied. The first example is a quadrangular FE mesh 

with 1936 nodes (44×44). The second and third examples are rectangular and H-shaped 

forms of Kaveh and Mahdavi [16]. A weighted incidence graph is used to transform the 

connectivity properties of finite element models into those of graphs. In all of these 

examples the weights of all the nodes and edges are taken as unity. In the second stage after 

establishing adjacency matrix of the graph, the graph is partitioned into p subdomains by use 

of the p median concept and metahuristic algorithms. Three optimization algorithms, CBO, 

ECBO and PSO are applied for decomposing the meshes by p medians and the results are 

compared in Table 1. 

 

Example 1: A quadrangular FE mesh with 44×44=1936 nodes and its decomposition into 

5-10-20 subdomains are shown in Fig. 2. The comparisons of convergence rates for the three 

algorithms for each instance are made in Table 1 and Fig. 3. 

 

Example 2: A rectangular FE mesh with 760 nodes and four internal perforations is 

shown Fig. 4. The comparisons of convergence rates for the three algorithms for each 

instance are made in Table 1 and Fig. 5. 

 

Example 3: A H-shaped FE mesh is considered as shown in Fig. 6, and decomposed into 

5–10 subdomains with medians. The comparisons of convergence rates for the three 

algorithms for each instance are made in Table 1 and Fig. 7. 

 

 

  
 

Figure 2. A quadrangular mesh divided into 5 and 10 subdomains by the ECBO algorithm 

 



A. Kaveh and M. Ghobadi 

 

324 

 
Figure 3. The history of convergence for p = 5 and p=10 in a quadrangular mesh 

 

Table 1: The minimum cost and CPU time for the considered numerical examples 

Number of medians CBO 
 

ECBO 
 

PSO  

  
min cost CPU time(s) min cost 

CPU 

time(s) 

min 

cost 

CPU 

time(s) 

Example 1 p=5 19048 0.86639 18912 0.79748 19423 0.98038 

 p=10 13344 1.09393 13216 1.230409 13872 1.6339 

 p=20 9368 2.9727 9232 3.1651 9448 6.2567 

        

Example 2 p=5 3711 0.41211 3623 0.53425 3960 .3.8188 

 
p=10 2680 1.26562 2575 1.38088 2744 4.498625 

 
       

Example 3 p=5 4374 1.201909 4114 2.187340 4224 2.568828 

 
p=10 3002 2.691113 2930 2.758156 3076 2.275321 

 

 
p =5 

 
p =10 

Figure 4. A rectangular mesh divided into p subdomains by the ECBO algorithm 
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Figure 5. The history of the convergence for p = 10 in a rectangular mesh with four perforations 

 

 
p =5 

 
p =10 

Figure 6. The H-shaped mesh divided into p subdomains by the ECBO 

 

 
Figure 7. The history of convergence for p = 5 and p = 10 for the H-shaped mesh 
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5. DISCUSSION AND CONCLUSIONS 
 

In this study the CBO and ECBO algorithms are applied to finding medians of different 

finite element models. Though the CBO has been successfully implemented in partitioning 

and the speed of convergence is better than ECBO (Fig. 8), however, the reliability of the 

ECBO in min cost and solution accuracy is preferable (see Fig. 3, Fig. 5 and Fig. 7). By 

ECBO, more runs have a similar answers and this shows a better convergence around near 

optimal solution within a reasonable time. This confirms that the memory of ECBO can help 

the CBO to escape from local minima 

 

  
Figure 8. Comparison of the computational time for the CBO and ECBO 
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