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ABSTRACT 
 

Due to the complex structural issues and increasing number of design variables, a rather fast 

optimization algorithm to lead to a global swift convergence history without multiple 

attempts may be of major concern. Genetic Algorithm (GA) includes random numerical 

technique that is inspired by nature and is used to solve optimization problems. In this study, 

a novel GA method based on self-adaptive operators is presented. Results show that this 

proposed method is faster than many other defined GA-based conventional algorithms. To 

investigate the efficiency of the proposed method, several famous optimization truss 

problems with semi-discrete variables are studied. The results reflect the good performance 

of the algorithm where relatively a less number of analyses is required for the global 

optimum solution. 
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1. INTRODUCTION 
 

In recent years, a great attention has been paid to structural optimization, since material 

consumption is one of the most important factors influencing building costs, while reducing 

the mass of structures normally is considered desirable for seismic behavior. Designers are 

able to produce better designs while saving time and money through optimization. Optimal 

design of truss-structures has always been an active research area in the field of search and 

optimization [1-10]. Generally, truss optimization can be classified into three main 

categories [11]: 1- Sizing optimization, 2- Configuration optimization and 3- Topology 

optimization. 
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In the sizing optimization of the truss, cross-sectional areas of members are considered as 

design variables, while the coordinates of nodes and connectivity between various members 

are considered to be fixed [7, 12-14]. In the configuration optimization of the truss, the 

coordinates of the nodes are considered as design variables, while the connecting member is 

fixed nodes [15-16]. In the topology optimization of the truss, connecting members as 

design variables considered [6, 11, 17-18]. 
Many optimization problems in science and engineering involve constraints. The 

presence of constraints reduces the feasible region and complicates the search process. In 

addition, when solving constrained optimization problems, solutions that satisfy all the 

constraints are feasible individuals while individuals that fail to satisfy any of the constraints 

are infeasible individuals [19]. 

Various methods have been developed and used for optimization of truss structures. 

Optimization methods using mathematical programming techniques are used for discrete 

structural optimization and they are found to be useful in solving a few classes of problems 

[20-22]. Many evolutionary algorithms such as genetic algorithms [7, 12, 23], particle 

swarm optimization [13, 14], ant colony optimization [24], and artificial bee colony 

algorithms [25] are used to solve truss optimization problems. In this paper, semi-discrete 

optimization of truss and several standard test functions using proposed genetic algorithms 

will be considered. 
Optimization by genetic algorithm is one of the useful methods for optimization, but slow 

process and the lack of recognition and understanding of the parameters that govern them, 

such as the number of generations, crossover rate, mutation rate and the type of selection, in 

some cases, cause the algorithm to get trapped in a local optimums or globally converges but 

in a slow approach. So, number of generations or the number of analyzes and then find the 

global optimum time will increase. In this work, this problem has been resolved with a new 

approach offered in the selection of individuals to combine together and produce a new 

generation, then the proposed algorithm will be able to find the global optimum more quickly. 

 

 

2. THE GENETIC ALGORITHMS 
 

The basic ideas of genetic algorithms proposed by John Holland and his colleagues at the 

University of Michigan in the United States in 1962 [26]. 
The performance of the genetic algorithm is based on a selected random individuals from 

a population. Everyone has the potential to answer the problem and it is generally expressed 

as a fixed-length string of binary numbers. This string is very similar to the natural 

chromosome. Then repeat the process with the enforcement of specific operators and 

population will modified to the optimal solution. 

In each iteration, every string is decoded (real values are determined corresponding to 

each string) and the objective function will be obtained. Based on the obtained objective 

function values, each string is assigned a fitness value. This fitness value will be determined 

the probability of selection for each string. After that, a set of strings are selected, after of 

which are replaced with the initial population strings by employing the genetic operators 

new strings in order to keep the number of strings population in each computational 

iterations fixed. 
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Random mechanisms that act on the selection and remove the strings so that the strings 

are fitter and more likely to mix and produce new strings and in the replacement process are 

more resistant than other strings. In this way, population competed in a competition based 

on objective function in different generations and the average objective function value in the 

strings population is close to optimum value. For this reason, in each calculation, the three 

operators including operator selection and two genetic operators; crossover and mutation are 

affected on strings and cause new parts of the search space to be investigated. This is done in 

two steps. In the first step a mating pool was made using selection operator and in the next 

step crossover and mutation operators are applied on the mating pool to produce the next 

generation [27]. 

It is worth to note here that one of the most significant features of genetic algorithm is 

that its limitless ability of handling any size of optimization problems including linear or 

non-linear and continuous or discrete ones. This vast generality is however not possible with 

gradient-based mathematical algorithms, a reason for which a major tendency towards 

heuristic procedures is more sound. 

 

 

3. THE PROPOSED GENETIC ALGORITHMS 
 

3.1 Constraint-handling 

An optimization problem using GAs can be generally expressed as 

 

Minimize/Maximize 𝑓 𝑿 ,      𝑥 = (𝑋1,𝑋2,… ,𝑋𝑛) ∈ 𝑅𝑛  (1) 

 

Under constrain define as 

 

𝑔𝑖 𝒙 ≤ 0,        i=1,…,K, 

𝑕𝑗  𝒙 = 0,        j=1,…,P 
(2) 

 

For structural design optimization, x is an N-dimensional vector called the design vector, 

representing design variables of N structural components to be optimized, and 𝑓 𝒙  is the 

objective function. Also, 𝑔𝑖 𝒙  and 𝑕𝑖 𝒙  are inequality and quality constrains, respectively. 

They represent constrains, such as stress and displacement limits to be satisfied by the 

optimum design. 

In GAs, constrains are usually handled using the concept of penalty function as follows: 

 

Minimize          𝐹 𝑗 = 𝐹𝑗 . (1 + 𝑃𝑗 ) (3) 

Maximize          𝐹 𝑗 = 𝐹𝑗 .  1 − 𝑃𝑗   (4) 

 

Where 𝐹 𝑗  represents an augmented fitness function after the penalization. Here, 𝑃𝑗  is a 

penalty function whose value is greater than zero for infeasible search space and zero for 

feasible search space. In this paper the Squared Normalized Degree of Constraints Violation 

(SNDCV) are used. 
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𝑃𝑗 =   𝐺𝑖 𝑥 

𝐾

𝑗=1

+ 𝐻𝑖(𝑥)

𝑃

𝑗=1

 

2

 (5) 

 

Here, 𝐺𝑖 𝑥  and 𝐻𝑖 𝑥  represent the degrees of inequality and equality constraint 

violations, respectively. 

 

 
Figure 1. Flowchart of the proposed GA method 
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As stated earlier, the genetic algorithm benefits from various unique operators in its routine. 

Clearly in GA the role of selection operator is more highlighted than the crossover and mutation 

operators. In fact, if the best individual is defined based only on selection, it may assist fast 

convergence but it does not guarantee a global achievement for all cases and it may lead to 

premature convergence. In contrast, if a slight importance is given to the best individual in the 

selection process, time required to achieve the optimal solution will be very long. 

Several well-known techniques including roulette wheel selection, ranking selection, 

tournament selection, probabilistic tournament selection and etc., are used for the selection 

in GA-based methods [27]. In this study, a new strategy is provided for the selection 

operator. For this purpose an individual who has more fitness than the other individuals of 

its current generation is combined with a certain percent of the elitist individuals of the same 

generation. These new individuals often will have superior features. In this study, 10 percent 

of the population of the next generation are produced with this method and the rest of the 

individuals (the remaining 90%) are combined by utilizing the tournament selection 

technique in order to prevent premature convergence. As we will see later, the proposed 

method produces excellent convergence in the benchmark problems considered. Also, the 

concept of “rebirthing” [7] is used to improve the results. 
 

 
Figure 2. Representation of the proposed selection operator 

 

 

4. NUMERICAL EXAMPLES 
 

In this section, proposed algorithm is tested with various examples. Selected examples have 

been optimized by other researchers and the results obtained in this study were compared 

with those. The Table 1 contains the proposed GA properties for each example studied. It is 

to be noted that in all results tables, NFEs denotes the Number of Function Evaluations. 
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Table 1: The proposed GA properties 

Example Population size 
Mutation 

probability 
Crossover type 

Maximum number of 

generations 

Bumpy function 

n=2 30 1 Single point 35 

n=20 250 1 Single point 400 

n=50 350 1 Single point 400 

10-bar planar truss 
Case 1 100 1 Single point 120 

Case 2 100 1 Single point 140 

200-bar planar truss 1000 1 Single point 100 

 

4.1 Bumpy function 

This is an unconstrained optimization problem that introduced by keane [28]. The 

mathematical formulation of this problem is given below. 

 

Maximize:   
𝑎𝑏𝑠( cos4 𝑥𝑖 

𝑛
𝑖=1 − 2 cos2(𝑥𝑖))𝑛

𝑖=1

  𝑖𝑥𝑖
2𝑛

𝑖=1

 
(6) 

For 

 0 < 𝑥𝑖 < 10, 𝑖 = 1, 2, 3,… ,𝑛 
Subject to 

 𝑥𝑖

𝑛

𝑖=1

> 0.75     𝑎𝑛𝑑       𝑥𝑖

𝑛

𝑖=1

<
15 𝑛

2
 

(7) 

 

Fig. 3 depicts the objective function and the boundaries of the constraint functions. 

Within the feasible region, there is one constrained global maximum on the boundary of the 

first constraint and many other local maxima. 

 

 
Figure 3. The constrained Bumpy problem (n=2) [29] 
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Table 2: Global solutions of Bumpy function for n=2 

Variables 
Exact 

Solution [28] 

Chen and 

Cheng [30] 
Lee [31] DPF

 
[31] APF

 
[31] This study 

𝑋1  1.593 1.601 1.639 1.650 1.563 1.6233 

𝑋2 0.471 0.468 0.459 0.456 0.480 0.4623 

Obj. 0.365 0.365 0.362 0.361 0.363 0.3642 
NFEs N.A. 1900 900 2500 2500 840 
 

Table 2 gives the solutions obtained by various methods. The solution performed based on 

the proposed method is the second best one and the result is very close to exact solution. Besides 

number of analyses required was found the least among all. 

 

 
Figure 4. Convergence history of Bumpy function for n=20 & n=50 

 

Fig. 4 illustrates the comparison of the convergence rates of two cases with n=20 and 

n=50. Also, in Table 3 the results obtained in this study were compared with the results of 

Keane for twenty- dimensional [32] and fifty- dimensional [28] bumpy function. Results 

show proposed GA can find global optimum and decrease the number of function 

evaluations rather than results presented by Keane. 

 
Table 3: Global solutions of Bumpy function for n=20 & n=50 

No. Variables 
 Keane [32,28]  This study 

 Obj. NFEs  Obj. NFEs 

20  ~ 0.75 * 100,000  0.7917 92,500 

50  0.7905 140,000  0.8120 122,500 

*Note: The number is derived from the figure 
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4.2 The 10-bar planar truss structure 
The 10-bar planar truss structure, shown in Fig. 5. This famous optimization problem is 

described by Sunar and Belegundu [33]. In this problem the cross-sectional area for each of 

the 10 members in the structure are being optimized towards the minimization of total 

weight. The cross-sectional area varies between 0.1 in
2
 and 35 in

2
. Constraints are specified 

in terms of stress and displacement of the truss members. The allowable stress for each 

member is ±25 ksi for both tension and compression, and the allowable displacement on the 

nodes is ±2 in, in the x and y directions. 

 
Figure 5. A 10-bar planar truss structure 

 

 
Table 4: Optimization results for a ten-bar truss (Case 1). 

Variables Optimal cross section area (in2) 

No 
Design 

name 

Perez and 

Behdinan 

[13] 

Lee and Geem 

[34] 
Li et al. [35] 

Gellatly and 

Berke [36] 

Dizangian and 

Ghasemi [37] 

This study 

Propose 

method (1) 

Proposed 

method (2) 

1 𝐴1  33.500 30.150 30.704 31.350 31.1650 30.55 31.100 

2 𝐴2 0.100 0.102 0.100 0.100 0.1000 0.100 0.100 
3 𝐴3 22.766 22.710 23.167 20.030 23.1000 25.4125 21.100 
4 𝐴4 14.417 15.270 15.183 15.600 14.7230 15.55 13.850 
5 𝐴5 0.100 0.102 0.100 0.140 0.1000 0.100 0.100 
6 𝐴6 0.100 0.544 0.551 0.240 0.4139 0.100 0.850 
7 𝐴7 7.534 7.541 7.460 8.350 7.5712 8.3917 7.850 
8 𝐴8 20.467 21.560 20.978 22.210 21.1630 20.0375 21.850 
9 𝐴9 20.392 21.450 21.508 22.060 21.4230 20.6417 21.100 

10 𝐴10  0.100 0.100 0.100 0.100 0.1000 0.100 0.100 
Weight (lb) 5024.21 5057.88 5060.9 5112.00 5064.40 5088.62 5007.00 
Constraint 

violation 
23.95×10-3 0.907 × 10−3 0.907 × 10−3 None None None 29.2 × 10−3 

NFEs NA 400,000 75,000 NA 650 3,000 3,600 

Note: 1 in
2
 = 6.452 cm

2
; 1lb = 4.45 N. 

 



A FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION  

 

109 

The material density is 0.1 lb
in3  and the modulus of elasticity is 10,000 ksi. Two cases are 

considered: Case 1, 𝑃1 = 100 𝑘𝑖𝑝𝑠 and𝑃2 = 0; and Case 2, 𝑃1 = 150 𝑘𝑖𝑝𝑠 and𝑃2 =
50 𝑘𝑖𝑝𝑠. 

The comparison of best solution with previous methods is given in Tables 4 and 5. These 

Tables also contain the optimum results from the two proposed optimization algorithm with 

the results reported by other researchers. 
 

Table 5. Optimization results for a ten-bar truss (Case 2). 

Variables Optimal cross section area (in
2
) 

No 
Design 

name 

Sonmez 

[25] 

Lee and Geem 

[34] 
Li et al. [35] 

Dizangian 

and Ghasemi 

[37] 

This study 

Proposed 

method (1) 

Proposed 

method (2) 

1 𝐴1  23.4692 23.25 23.353 25.0000 27.10 22.8453 

2 𝐴2 0.1005 0.102 0.100 0.1000 0.10 0.2368 

3 𝐴3 25.2393 25.73 25.502 25.0000 25.60 23.0378 
4 𝐴4 14.3540 14.51 14.250 14.4320 12.10 16.2387 
5 𝐴5 0.1001 0.100 0.100 0.1000 0.10 0.1061 
6 𝐴6 1.9701 1.977 1.972 1.9876 2.10 2.1051 
7 𝐴7 12.4128 12.21 12.363 12.4250 12.10 12.2040 
8 𝐴8 12.8925 12.21 12.894 12.3590 11.10 11.8261 
9 𝐴9 20.3343 20.36 20.356 19.9820 22.60 20.8582 
10 𝐴10  0.1000 0.100 0.101 0.1000 0.10 0.1213 
Weight (lb) 4677.077 4668.81 4677.29 4682.476 4752.44 4616.03 
Constraint 

violation 
None 3.561 × 10−3 0.025 × 10−3 None None 25.7 × 10−3 

NFEs 500,000 400,000 75,000 1000 3,600 5,900 

Note: 1 in
2
 = 6.452 cm

2
; 1lb = 4.45 N. 

 

The Figs. 6 and 7 shown the convergence history plots of these two proposed 

optimization methods for the two loading cases. Based on these convergence plots one could 

claim that the proposed methods lead to fast convergence rather than the classical GA. 

 

  
Figure 7. Comparison of the convergence rates 

between the two algorithms for a 10-bar planar truss 

structure (Case 2). 

Figure 6. Comparison of the convergence rates 

between the two algorithms for a 10-bar planar 

truss structure (Case 1). 
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4.3 The 200-bar planar truss structure 

A 200-bar plane truss, shown in Fig. 8. The members were linked together into twenty-nine 

groups. The material density and modulus of elasticity are 0.283 lb/in3 and 30,000 ksi, 

respectively. The members are subjected to stress limitations of ±10 ksi. There are no 

displacement limit but the minimum cross-section area was not allowed to be less than 0.1 

in2. There are three independent loading conditions: (1) 1.0 kips acting in the positive x-

direction at nodes 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71; (2) 10 kips acting in the 

negative y-direction at nodes 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 

28, 29, . . ., 72, 73, 74 and 75; (3) conditions 1 and 2 acting together. 

 

 
Figure 8. The 200- bar planar truss 
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It can be observed from the Table 6 that the computational performance of the proposed 

GA is reasonably appropriate with respect to that of the other researchers. Fig. 8 also 

demonstrates that the 

 
Table 6: Optimization results for a two-hundred-bar truss structure 

Variables  Optimal cross section area (in
2
) 

Design 

group 
Members 

Sonmez 

[25] 

Lee and 

Geem 

[34] 

Lamberti 

[38] 

Kaveh et 

al. [39] 

Dizangian 

and Ghasemi 

[40] 

This study 

1 1, 2, 3, 4 0.1039 0.1253 0.1468 0.1480 0.1335 0.1222 

2 5, 8, 11, 14, 17 0.9463 1.0157 0.9400 0.9460 1.0365 1.0374 
3 19, 20, 21, 22, 23, 24 0.1037 0.1069 0.1000 0.1010 0.1000 0.1000 
4 

18, 25, 56, 63, 94, 101, 132, 

139, 170, 177 
0.1126 0.1096 0.1000 0.1010 0.1001 0.1036 

5 26, 29, 32, 35, 38 1.9520 1.9369 1.9400 1.9461 1.9550 2.0077 
6 

6, 7, 9, 10, 12, 13, 15, 16, 27, 

28, 30, 31, 33, 34, 36, 37 
0.2930 0.2686 0.2962 0.2979 0.2830 0.2746 

7 39, 40, 41, 42 0.1064 0.1042 0.1000 0.1010 0.1017 0.1000 
8 43, 46, 49, 52, 55 3.1249 2.9731 3.1042 3.1072 3.1021 3.2418 
9 57, 58, 59, 60, 61, 62 0.1077 0.1309 0.1000 0.1010 0.1087 0.1000 
10 64, 67, 70, 73, 76 4.1286 4.1831 4.1042 4.1062 4.0886 4.1219 
11 

44, 45, 47, 48, 50, 51, 53, 54, 

65, 66, 68, 69, 71, 72, 74, 75 
0.4250 0.3967 0.4034 0.4049 0.4084 0.3899 

12 77, 78, 79, 80 0.1046 0.4416 0.1912 0.1944 0.1782 0.1000 
13 81, 84, 87, 90, 93 5.4803 5.1873 5.4284 5.4299 5.3992 5.3823 
14 95, 96, 97, 98, 99, 100 0.1060 0.1912 0.1000 0.1010 0.1419 0.1724 
15 102, 105, 108, 111, 114 6.4853 6.2410 6.4284 6.4299 6.4417 6.3619 

16 

82, 83, 85, 86, 88, 89, 91 92, 

103, 104, 106, 107, 109, 

110,112, 113 

0.5600 0.6994 0.5734 0.5755 0.5838 0.5421 

17 115, 116, 117,118 0.1825 0.1158 0.1327 0.1349 0.1171 0.1000 
18 119, 122, 125, 128, 131 8.0445 7.7643 7.9717 7.9747 7.9493 7.9211 
19 133, 134, 135, 136, 137, 138 0.1026 0.1000 0.1000 0.1010 0.1863 0.1000 
20 140, 143, 146, 149, 152 9.0334 8.8279 8.9717 8.9747 8.9506 8.8643 

21 

120, 121, 123,124, 129, 127, 

129, 130, 141, 142, 144, 

145,147, 148, 150, 151 

0.7844 0.6986 0.7049 0.70648 0.7322 0.6449 

22 153, 154, 155,156 0.7506 1.5563 0.4196 0.4225 0.1327 0.1000 
23 157, 160, 163, 166, 169 11.3057 10.9806 10.8636 10.8685 10.777 10.6280 
24 171, 172, 173, 174, 175, 176 0.2208 0.1317 0.1000 0.1010 0.1084 0.1000 
25 178, 181, 184, 187, 190 12.2730 12.1492 11.8606 11.8684 11.8057 11.5131 

26 

158, 159, 161, 162, 164, 165, 

167, 168, 179, 180, 182,183, 

185, 186, 188, 189 

1.4055 1.6373 1.0339 1.03599 0.8506 0.7289 

27 191, 192, 193, 194 5.1600 5.0032 6.6818 6.6859 7.2174 9.0623 
28 195, 197, 198, 200 9.9930 9.3545 10.8113 10.8111 11.4243 11.6744 
29 196, 199 14.70144 15.0919 13.8404 13.8464 13.5966 13.0687 

Weight (lb) 25533.79 25447.1 25447.528 25467.9 25530 25772.16 
Constraint violation 0.54234 0.40023 0.00310 None None None 

NFEs 1,450,000 48,000 NA 31,700 6,600 41,000 

Note: 1 in
2
 = 6.452 cm

2
; 1lb = 4.45 N. 
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Performance of the proposed GA is better than the classical one. 

 

 
Figure 9. Comparison of the convergence rates between the two algorithms for the 200-bar 

planar truss structure 

 

 

5. CONCLUSION 
 

In this paper a new version of GA based on the modification of the selection operator was 

introduced. To do this, selection operator was defined to combine with a percent of the 

elitists individuals to product the next generation. In order to prove the adequacy and 

accuracy of the proposed GA, we first review a bumpy function. After that two challenging 

truss problems are studied. Results indicate that this version of GA could help for the fast 

convergence in all cases and a little improvement in the optimum solution for some 

problems. 
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