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ABSTRACT 
 

To deal with severe drought when water supply is insufficient hedging rule, based on 

hedging rule curve, is proposed. In general, in discrete hedging rules, the rationing factors 

have changed from a zone to another zone at once. Accordingly, this paper is an attempt to 

improve the conventional hedging rule to control the changes of rationing factors. In this 

regard, the simulation model has employed a fuzzy approach, and this causes rationing 

factor changing during a long term simulation gradually. To optimize different parameters of 

the purposed hedging a Multi-objective Particle Swarm Optimization (MOPSO) algorithm 

has been considered. The minimum of two objectives Modified Shortage Index (MSI) 

involving water supply of minimum flow and agriculture demands can be taken as the 

optimization objectives. The results of the proposed hedging rule indicate long term and 

annual MSI values have considerably improved compared to the conventional hedging rule. 

This determines that the proposed method is promising and efficient to mitigate the water 

shortage problem. 
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1. INTRODUCTION 

 
Inadequate water supplies are frequently induced by prolonged and severe droughts that are 

inevitable and unpredictable. A common measure adopted to mitigate such adverse impacts 

is water rationing, which reduces water supplies in advance and conserves more water for 
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future use [1, 2]. In order to, hedging rules in reservoir operation have been employed to 

save some of the available water in current period to reduce severe future deficits [3]. 

Hedging rules have been categorized into two group continuous and discrete approaches. 

Shih and Revelle [4, 5] were the first to introduce a systematic hedging rule. The application 

of hedging rules has been investigated in many other studies including Bayazit and Unal [1]; 

Shih and ReVelle [2]; Srinivasan and Philipose [3]; Shiau and Lee [4]; Shiau [6] for the 

continues rule, and Shih and ReVelle [5]; Neelakantan and Pundarikanthan [7,8]; Tu et al. 

2003, 2008; and Barros et al. 2008 for the discrete (zone based) hedging rule [5, 7-10]. In 

the latter method, which is more appropriate for practical applications and is the focus of this 

work, using a set of rule curves the total storage space is divided into a number of zones. In 

fact, rule curves are the function of the current storage level to trigger hedging. In hedging 

rule introduced by Tu et al. [9, 10], the model optimized rule curves and rationing factor 

simultaneously; however, that was a one year model without considering the possibility of 

multi-year droughts. Taghian et al. [11] improved the introduced hedging rule by Tu et al. 

[10] using a hybrid model to optimize both the conventional rule curve and the hedging rule 

simultaneously. The authors considered a constant rationing factor for each zone. 

Commonly, the rule curve operations divide the reservoir volume into several operation 

zones and water supply reduction ratio (rationing factor) for different water use sectors is 

specified for each zone. A review on previous studies demonstrates the rationing factors 

change from a zone to another suddenly and have a constant value for each zone. 

Accordingly, this literature review indicates that there is a need to develop an appropriate 

method to control sudden changes in rationing factors. In this regard, an alternative approach 

is the application of fuzzy set theory and fuzzy logic. The fuzzy set theory proposed by 

Zadeh [12] allows various degrees of membership functions compared to classical set theory 

that has only two values of logic either zero or one. In the last decade, a large number of 

papers have been allocated to the solution of reservoir management problems based on fuzzy 

set theory. Many successful applications of fuzzy systems were reported in the field of 

reservoir management problems. For example, Russell and Campbell [13] developed 

reservoir operating rules with fuzzy programming and found that it is a promising area but 

suffers from a “curse of dimensionality”. Comparing fuzzy and non-fuzzy optimal reservoir 

operating policies have been presented by Tilmant et al. [14]. Akter and Simonovic [15] 

also, combined fuzzy sets and GA to deal with the uncertainties in short-term reservoir 

operation. Other applications of Fuzzy set theory to reservoir operations problem can be 

found in [16-20].  

In the real world, there are many problems involving multiple objectives, which should 

be optimized simultaneously and are often conflicting and incommensurable. Many methods 

have been formulated for multi-objective analysis. Particle swarm optimization (PSO) is one 

of the newest techniques within the family of evolutionary optimization algorithms [21]. 

Recently few proposals on extension of PSO technique to multi-objective optimization have 

been reported. Coello and Lechuga [22] and Coello et al. [23] used an external repository to 

store non-dominated solutions, an adaptive grid approach to select the global best, and a 

mutation operator for further promote diversity. This operator ensures the search efficiency 

and increase diversity of population to achieve the optimum solution. Some successful 

applications of the MOPSO algorithms in the water resource management and planning have 

been performed: Baltar & Fontane (2008) applied the proposed MOPSO algorithm by 
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Coello and Lechuga [22, 24] in single-reservoir operation to find non-dominated solutions. 

Also, Reddy and Kumar [25] proposed a multi-objective optimization algorithm based on 

swarm intelligence using a mutation strategy called Elitist Mutation (EM). After achieving 

satisfactory performance in the test problems, EM-MOPSO was then applied to a single 

reservoir operation with conflicting objectives. Following the previous work, Reddy and 

Kumar [26] used the EM-MOPSO algorithm for water management and compared results of 

the proposed method with those of NSGA-II, showing the EM-MOPSO approach as having 

more ability to find the optimal Pareto front. Recently, Fallah-Mehdipour et al. [27] adopted 

a new technique in multi-objective optimization, called warm-up, based on the PSO 

algorithm is applied to improve the quality of the Pareto front by single-objective search. 

The proposed method applied as an optimization tool in real multi-objective problems in 

multi-reservoir system operations. Afshar et al. [28] also presented a multi-objective particle 

swarm optimization (MOPSO) solver to generate Pareto optimal solutions for calibration of 

any complex water quality model with up to two conflicting objectives. Ahmadianfar et al. 

[29] presented a Multi-objective Evolutionary Algorithm based on Decomposition 

(MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. 

They compared the algorithm with Non-dominated Sorting Genetic Algorithm (NSGA-II) 

using a set of common test problems and the real-world Zohre reservoir system in southern 

Iran. The Experimental results demonstrated that MOEA/D can improve system 

performance to reduce the effect of drought compared with NSGA-II superiority. 

The purpose of this paper is to develop an operation policy to solve a multi-reservoir 

system optimization by combining the conventional hedging rule with fuzzy logic concept to 

avoid severe water shortage. In fact, fuzzy logic is applied to increase the flexibility of the 

rationing factors. The proposed method was applied to the Zohre multi-reservoir system 

located in southern Iran as a case study. To solve the problem, a multi-objective 

optimization algorithm based on swarm intelligence (MOPSO) is coupled to the proposed 

simulation. The combined model obtained a trade-off between minimum flow and 

agriculture deficits. In the following sections the proposed methodology is explained in 

details. 

 

 

2. SIMULATION METHOD 
 

In this section, a new monthly operation simulation model based on fuzzy set theory is 

introduced. The developed simulation model is stated as follows;  

Commonly the rule curves identify the storage zones associated with a certain operational 

behavior. In the hedging policy, the rule curves divide reservoir storage into several zones 

corresponding to several rationing factors. Thus, the zone-based hedging rules were 

characterized by two parameters: the monthly initial storage level and the rationing factors. 

In the study, two rule curves (upper and lower curve) are considered for each reservoir; thus, 

there are three zones. For the single reservoir with two kinds of water demands, details of 

the hedging rule curves used in this paper and its corresponding water-supply operation rule 

are illustrated in Fig. 1. In the hedging rule the reservoir releases at any time of the year is 

the function of existing storage volumes and water demands. The equations (1), (2), and (3) 

represent the function relationship:  
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Where St is beginning the reservoir storage at period t; D1t and D2t are planned minimum 

flow and agriculture water demands; Rt is reservoir release,α1, α2, 𝛼1
′ , 𝛼2

′  are rationing 

factors, and 10 21   , 1''0 21     . The value of rationing factors can be 

obtained either by optimization.  

As it was mentioned above, in the conventional hedging rule, considered only a constant 

rationing factor for each zone, the rationing factor changed from one zone to another 

suddenly. This makes instability in reservoir storage potential for water supply.  To 

overcome this limitation, the fuzzy logic is employed to apply transition zones around the 

rule curves. Thus, when the reservoir level is moving from a zone to another, the rationing 

factor will be increased or decreased gradually (Fig.1). In the following, the developed 

model is briefly explained. 

In Fig. 1, there are two rule curves (upper and lower rule curve) and four transition rule 

curves. In this figure, suppose that the initial reservoir storage is located in zone 2. So, the 

developed hedging rule can be described as following:  

1) When the beginning reservoir storage is located in zone 2 (between transition rule 

curves B and C), the reservoir releases water to meet the 𝛼2 level of the original target 

demand.  

2) When the beginning reservoir storage is placed between transition rule curve B and 

upper rule curve and it is approaching to upper rule curve, the rationing factor is between 𝛼2 

and 1. Therefore, the rationing factor is more than𝛼2. 

3) When the beginning reservoir storage is placed between transition rule curve C and 

lower rule curve and it is approaching to lower rule curve, the rationing factor is between 𝛼2 

and 𝛼1. Therefore, the rationing factor is less than𝛼2.  

Similarly, the other zones have the same procedure, too. As a result of the presented 

explanations when the reservoir storage level is located in the transition zone the operator 

can release water more or less than the current status.  

To determine the transition zone the trapezoidal membership functions are used. These 

transition zones are assigned by four coefficients (𝛽1,𝛽2 and𝛽3 ,𝛽4). In Fig. 2 have been 

shown membership functions and in equations (4) - (7) have been presented the parameters 

of the each of the membership functions. Also during each time period t, the relationship 

between the rule curves, the employed hedging rules and its corresponding water-supply 

operation rule are illustrated in equation (8). 
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Figure 1. The proposed hedging rules for a multipurpose reservoir 

 

 
Figure 2. Trapezoidal membership functions for rationing factors 
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Where 𝑆𝑡  is beginning reservoir storage at period t; 𝐷𝑡  is planned water demand; Rt is 

reservoir release; 𝜇 is the degree of "belongingness" to a fuzzy set; 𝛼1and 𝛼2 are rationing 

factors; 𝑆𝑚𝑖𝑛  is the minimum water storage of reservoir; 𝑆𝑚𝑎𝑥  is the maximum water storage 

of reservoir; 𝑅𝐶1𝜏  ,𝑅𝐶2𝜏  are lower and upper rule curves, respectively (𝜏 = 1,…, 12); and 

0 ≤ 𝛼1 < 𝛼2 ≤ 1.  

In this study, the water demands are divided into three categories, such as agriculture, 

public and minimum flow requirements for environmental purposes. Also, the public 

demand has the highest priority compared to the other demands. In this regard, the public 

demands are full supplied as possible.  

 

Multi-objective particle swarm optimization (MOPSO) 

Particle swarm optimization introduced by Kennedy and Eberhart (1995), is based on the 

social behavior of birds [21]. There are many alternatives of the single objective PSO, but in 

most of them the movement of the swarm particles toward the optimum is governed 

according to the following equations: 
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(10) 

 

Where w is an inertia coefficient that has an important role to control particles; Pi best 

position vector of particle i so far (personal best); Pg best position vector of all particles so 

far (global best); c1 and c2 are constants that indicate the attraction from Pi and Pg 

respectively; xi(t) is the current position vector of particle i; and Vi(t) is the current velocity 

of particle i.  

In this paper, a multi-objective particle swarm optimization (MOPSO) is presented which 

allows the PSO algorithm to be able to deal with multi-objective optimization problems. The 

optimization algorithm has been considered here is similar to the introduced algorithm by 

Coello Coello et al. [23] in which they used an external archive or repository which stores 

non-dominated solutions. The external repository consists of two main parts: archive 

controller and grid. The aim of the archive controller is to decide whether a certain solution 

should be added to the archive or not. The decision-making process uses the concept of 

dominating. To produce well-distributed Pareto fronts it used a variation of the adaptive grid 

proposed in Knowles and Corne [30].  

The main difference between PSO and MOPSO is on the determination of both the 

personal best (Pi) and global best (Pg) (Equation (9)). In MOPSO, both Pi and Rh from 

equation (11) are used instead of Pi and Pg, respectively. Consequently, these two 
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parameters need to be determined repetitively during PSO. The particles’ positions will be 

subsequently updated as follows [24]:  

 

))(())(()()( 211 txRcrandtxPcrandtxtx ihiiii   (11) 

 

Where Rh represents a selected solution from the external repository in each iteration t, and 

Pi represents the best position vector of particle i. Then, the particles’ velocities updated are 

carried out using equation (10). The flowchart of the MOPSO algorithm is presented in Fig. 3. 

 

 
Figure 3. Flowchart of MOPSO applied to the proposed and simple hedging rule 
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3. CASE STUDY 
 

The reservoir system chosen for the test of the proposed rule is Zohre multi-reservoir 

system, which is located in Sothern Iran.  This river basin covers an area of 16,000 km2. The 

schematic configuration was shown in Fig. 4. The system is comprised of 3 reservoir dams, 

7 input stream flows, 9 irrigation network, 3 public demand channels, 2 minimum flow 

channels, 9 junction nodes, and some general channels. The useful storage volumes for the 

reservoir dams include Kosar, Chamshir, and Kheirabad, 418, 1576 and 104 million cubic 

meter, respectively. 

 

 

4. FORMULATION OF THE OPTIMIZATION-SIMULATION MODEL  
 

In this paper, a hybrid of MOPSO is connected to the simulation model to optimize the rule 

curves, rationing factors and the coefficients that determine the transition zones in Zohre 

multi-reservoir system simultaneously. In the compound model the modified shortage index 

(MSI) of Hsu and Cheng (2002) can be taken as the optimization objective [31]. Also, two 

objective functions are considered: (1) satisfaction of the minimum flow requirement; and 

(2) minimization of MSI for agricultural demands. 
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Figure 4. Schematic configuration of the water supply system 
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Where 𝑇𝑆𝑡  is the total shortage in the tth period (month); 𝑇𝐷𝑡  is the total demand; T is the 

total number of time periods. 𝑀𝑆𝐼𝑚  and 𝑀𝑆𝐼𝑎  are modified water shortage indexes for 

minimum flow and agriculture demands, respectively. These two competing system 

objectives are both considered and minimized. The complete multi-objective problem is 

solved based on MOPSO.  

 

 

5. SYSTEM CONSTRAINTS 
 

In this research, decision variables are consisted of 24 target levels (12 monthly levels for 

each reservoir) which refer to the position of hedging rule curves, 4 rationing factors for the 

agricultural demands, the minimum flow requirements, and 4 coefficients for determining 

the transition zone in rule curves. Thus, there are 80 variable decisions. 

The mathematical model of the reservoir system is represented to use the continuity 

Equation: 

 

tttttt ESpRQSS 1  (14) 

 

The model’s formulation is constrained by the following relation: 

 

maxmin
SSS

t
  (15) 

 

Where 𝑆𝑡  is the reservoir storage at period t; 𝑄𝑡  is the water inflow to reservoir at period 

t. Et is volume of evaporation during period t; Spt is volume of spilled water from reservoir 

at period t. 

 

 

6. RESULTS AND DISCUSSION 
 

This paper aims to show hybrid modeling efficiency of hedging policy with fuzzy approach. 

To optimize the parameters of the purposed hedging rule, the MOPSO algorithm is 

considered. Inflow data used for this study was obtained from historical records spanning 48 

years, from 1956 to 2003. The record includes severe drought periods from 1958 to 1966 for 

nine successive years particularly. Fig. 5 shows the annual time series for the inflow and 

demand in the system. According to the developed hedging rule the multi-reservoir 

operation is simulated.  

As it was mentioned earlier, MOPSO is coupled with the simulation model to optimize 
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the parameters of the hedging rule; these parameters are consisted of a set of rule curves and 

fuzzy-rationing factors. The setting parameters of the algorithm are: Maximum iteration = 

500, population size= 100, number of repository = 100, w = 0.7, c1= 1.5, c2 = 1.5, CR = 0.5, 

𝛽= 20. 

After model optimization, the optimal quadruplet coefficients to determine the transition 

zones are 0.76, 0.52, 0.70 and 0.50. The optimum rationing factors for agricultural and 

minimum flow demands are shown in Table 1. Also, the Pareto set presented according to 

Fig. 6 and 7. 

To verify the developed hedging rule performance compared to the conventional hedging 

rule, two balanced optimal solutions are selected from the Pareto frontiers in Figs. 6 and 7. 

 
Table 1: Rationing factors for different demands 

Reservoir storage 
Rationing factors for each demand 

Agriculture Demands Minimum flow requirements 

Zone 1 𝛼1 = 0.31 𝛼′1 = 0.70 

Zone 2 𝛼2 = 0.72 𝛼′2 = 0.88 

Zone 3 1 1 

Rationing factors 𝛼1,𝛼2 𝛼′1,𝛼′2 

 

 
Figure 5. Total annual inflows and demands in the system 

 

In the case study, the severe drought periods from 1958 to 1971 have been observed. 

According to the obtained results, the diagram of rationing factors of both hedging rules 

during the severe drought periods has been presented in Fig. 8. As it can be seen in this 

figure, the proposed and conventional hedging factors have changed gradually and suddenly. 

Also, some sharp dropping of the conventional hedging factors has been shown, while due 
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to gradual changes of the proposed hedging factors have avoided the sharp dropping. 

 

 
Figure 6. Non-domination solutions with MOPSO on the proposed hedging rule 

 

 
Figure 7. Non-domination solutions with MOPSO on the simple hedging rule 

 

Following, the results of selected points of Pareto frontiers have been presented in Tables 

(2), (3) and (4). The long term MSI value of both hedging rules has been presented in Table 

(2). The maximum MSI value for minimum flow and agriculture demand of the proposed 

hedging has been improved 30% and 20% compared to the conventional hedging, 

respectively (Tables 3, 4). Also the maximum total MSI value of the proposed hedging has 
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been improved 20% compared to the conventional hedging (Tables 3, 4). These results 

imply that the proposed hedging rule is able to distribute the shortage more evenly. 

Optimal rule curves coupling to hedging rules for Kosar, Kheirabad and Chamshir 

reservoirs are shown in Fig. 9. Note that according to the irrigation practices in Iran the 

water year begins from October. 

 
Table 2: Long-term system performance during period (1956-2003) 

Hedging Rule 
MSI For Different Demands 

Objective Function Value 
Minimum Flow Agriculture 

Simple 1.50 3.45 4.95 

New 1.37 3.43 4.80 

 
Table 3: Annual system performance of the conventional hedging during failure years 

Failure years 
Objective Function Value 

Min. Flow Agriculture Total 

1959 2.53 3.25 5.78 

1960 7.39 10.83 18.22 

1961 6.51 22.68 29.19 

1962 11.94 38.01 49.95 

1963 18.18 49.24 67.42 

1964 9.17 17.52 26.69 

1965 3.49 6.52 10.00 

1966 2.88 4.02 6.90 

1967 2.54 2.81 5.35 

1968 0.45 0.65 1.09 

1970 2.29 3.13 5.43 

1971 0.32 0.86 1.17 

1983 0.14 0.28 0.42 

1999 0.50 0.23 0.73 

2000 2.73 3.45 6.18 

2001 0.86 2.05 2.92 

 
Table 4. Annual system performance of the proposed hedging during failure years 

Failure years 
Objective Function Value 

Min. Flow Agriculture Total 

1959 3.18 6.05 9.23 

1960 6.53 13.72 20.25 

1961 8.04 23.38 31.43 

1962 9.93 30.84 40.77 

1963 12.84 39.82 52.66 

1964 7.75 16.90 24.65 

1965 5.14 10.11 15.26 
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1966 4.36 7.00 11.36 

1967 1.56 1.96 3.52 

1970 1.47 3.99 5.46 

1971 0.42 1.29 1.71 

1983 0.14 0.46 0.60 

1999 0.16 0.59 0.75 

2000 3.30 5.74 9.03 

2001 1.10 2.74 3.84 

 

 
Figure 8. Diagram of Fuzzy and simple rationing factors changes 
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(b) 

 

 
(C) 

Figure 9. Rule curves of the proposed hedging rules for (a) Chamshir, (b) Kosarand (c) 

Kheirabad reservoirs 

 

 

7. CONCLUDING REMARK 
 

In this study, development of optimal reservoir operation policies for a multipurpose and 

multi-reservoir system, namely Zohre system was presented. In this regard, the combination 

of a simple fuzzy logic concept with the conventional hedging rule has been proposed to 

increase the rationing factors flexibility and improvement of the system operation during 

severe drought periods. To optimize the simulation model, it has been employed the 

MOPSO algorithm. The optimization objectives are consisted of the MSI of minimum flow 

and agricultural water supply. To demonstrate the compound model ability, that was 

compared to the conventional hedging rule. The results demonstrated the annual and the 
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long term system performance improved compared to the conventional hedging 

considerably. In the paper the main objective was the minimum flow shortage reduction. 

The results have shown a very good performance of the model to achieve this aim. 

Therefore, the proposed hedging rule is able to find improved hedging rules for a multiple 

reservoir system during drought periods. 
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