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ABSTRACT 
 

This paper presents a new model updating approach for structural damage localization and 

quantification. Based on the Modal Assurance Criterion (MAC), a new damage-sensitive 

cost function is introduced by employing the main diagonal and anti-diagonal members of 

the calculated Generalized Flexibility Matrix (GFM) for the monitored structure and its 

analytical model. Then, the cost function is solved by Democratic Particle Swarm 

Optimization (DPSO) algorithm to achieve the optimal solution of the problem lead to 

damage identification. DPSO is a modified version of standard PSO algorithm which is 

developed for presenting a fast speed evolutionary optimization strategy. The applicability 

of the method is demonstrated by studying three numerical examples which consists of a 

ten-story shear frame, a plane steel truss and a plane steel frame. Several challenges such as 

the efficiency of the DPSO algorithm in comparison with other evolutionary optimization 

approaches for solving the inverse problem, impacts of random noise in input data on the 

reliability of the presented method, and effects of the number of available modal data for 

damage identification, are studied. The obtained results reveal good, robust and stable 

performance of the presented method for structural damage identification using only the first 

several modes’ data. 
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1. INTRODUCTION 
 

Performance of civil infrastructures, such as high-rise buildings, bridges, tunnels, offshore 

platforms and other structures may be critically influenced by existence of structural damages 

or even lead to devastating consequences. Hence, a great deal of attention has been drawn to 

detect structural damages induced by earthquakes, explosions or hurricanes immediately after 

the event or monitoring long-term for remedy or repair. Generally, damage is defined as some 

changes in the physical properties of a structure, such as stiffness matrix. On the other hand, 

presence of damage causes changes in structural dynamic characteristics, such as mode shape 

vectors and natural frequencies, and due to the relation between structural physical properties 

and dynamic characteristics, it seems that damages can be detected by inspecting changes in 

the dynamic characteristics. This idea has been considered as basic concept behind of 

vibration-based techniques for damage identification [1]. 

Various approaches and several response parameters for identifying damage on structures 

have been proposed [1, 2]. Generally, vibration-based damage detection can be classified as 

model-based and non-model-based methods. Non model-based methods or index methods 

(such as [3–6]) rely on signal processing techniques which are developed due to the fact the 

defects cause usually the reduction in the rigidity of the structure which results in the change 

of the vibratory characteristics (like eigen frequencies and eigen modes). Although these 

methods can efficiently localize structural damage, they cannot be useful for damage 

quantification.  

Model-based methods identify damage severity as well as damage location by correlating 

damaged and analytical models based on the finite element theory. The finite element 

method can be employed for damage detection by inverse techniques or models updating. 

The basic concept of finite element model updating is seeking the solution domain to find a 

good arrangement of unknown damage severities in the analytical model of damaged 

structure which can generate the same measured modal data from monitored structure. 

Although there are different approaches which update structural model by a direct 

methodology for damage estimation [7–10], defining damage detection problem as an 

inverse model updating problem and solving it by optimization algorithms have received 

considerable attention in the recent years [11–25]. Begambre and Laier [26] calculated 

frequency response function of a structure under sinusoidal excitation by employing 

structural modal data and introduced a new damage-sensitive cost function which was 

solved by a hybrid Particle Swarm Optimization-Simplex algorithm. Ghodrati Amiri et al. 

[13] employed Pattern Search and Genetic Algorithm for damage identification in different 

kinds of plates. Meruane and Heylen [27] proposed several modal data-based cost functions 

and solved them by hybrid real Genetic Algorithm for detecting structural damages. 

Imperialist Competitive Optimization Algorithm was utilized by Bagheri et al. [17] for 

presenting a new structural damage detection method which was based on free vibration 

equilibrium of structures. By considering natural frequency changes as a damage-sensitive 

parameter, Saada et al. [19] defined damage detection problem as an inverse problem and 

solved it by means of Particle Swarm Optimization for identifying damage in beams. 

Tabrizian et al. [20] used Big Bang-Big Crunch algorithm for finding optimal solution of the 

proposed modal data-based cost function for structural damage detection and estimation. 

Nouri Shirazi et al. [25] identified structural damage by employing an adaptive multi-stage 
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optimization method based on the modified Particle Swarm algorithm for solving an inverse 

problem which was based on evaluating the first several natural frequencies of the structure 

before and after damage. Cha and Buyukozturk [28] utilized a hybrid multi-objective 

Genetic Algorithm for minor damage localization and quantification in steel structures by 

means of modal strain energy. Kaveh and Maniat [29] proposed an optimization-based 

methodology for detecting structural damage and illustrated that the Magnetic Charged 

System Search algorithm performs better than Particle Swarm Optimization in finding 

optimal solution. Recently, Zare Hosseinzadeh et al. [30] suggested a new method for 

damage identification in engineering structures using estimated static displacements by 

flexibility matrix and Cuckoo Optimization Algorithm. 

Despite the good performance of the mentioned optimization-based methods, approaches 

which need smaller amount of data are much preferred. Although it may seems that using 

more data can boost the accuracy, its disadvantages, such as intensification of noise effects, 

outnumber its benefits and it seems that methods with utilizing as low as possible input data 

for damage identification are more reasonable especially in real Structural Health 

Monitoring (SHM) programs. In addition, researchers try to find simple and fast methods, 

and estimate damages with low costs. 

In this paper a new methodology for localizing and also estimating severity of structural 

damage is proposed. By considering the main diagonal and anti-diagonal members of the 

calculated Generalized Flexibility Matrix (GFM) in the damaged and undamaged states 

(which can be calculated using only the first several lower modes’ data), a new damage-

sensitive cost function is proposed that is based on geometrical correlation measurement via 

Modal Assurance Criterion (MAC). Finally, Democratic Particle Swarm Optimization 

(DPSO) algorithm, a modified version of the standard Particle Swarm Optimization (PSO), 

is utilized to minimize the objective function and report structural damages. To validate the 

applicability of the presented method for structural damage identification, three numerical 

examples of engineering structures are studied and different challenges such as the 

performance of the suggested method in the presence of random noises and the effects of the 

number of available modal data as well as the robustness of the DPSO algorithm in 

comparison with other evolutionary optimization methods for solving inverse problems, are 

investigated. 

The paper is organized as follows. The overview of the DPSO algorithm is presented in 

Section 2. Then, the damage identification method is described in Section 3. It is followed 

by Section 4 which introduces the numerical examples and presents the obtained results. 

Finally, the paper ends with some conclusion remarks. 

 

 

2. DEMOCRATIC PARTICLE SWARM OPTIMIZATION (DPSO) 
 

Particle Swarm Optimization (PSO) is a famous population-based stochastic optimization 

technique that optimizes a problem by iterative tries to improve a potential solution with a 

given measure of quality developed by Kennedy and Eberhart [31], inspired by social 

behavior of bird flocking or fish schooling. Each particle moves with a velocity around the 

multidimensional search space which is continuously updated by the particle’s own 

experience and the experience of the particle’s neighbors or the experience of the entire 



G. Ghodrati Amiri, A. Zare Hosseinzadeh and S.A. Seyed Razzaghi 

 

448 

particles. Advantages of PSO caused to draw a great deal of attention in different fields of 

science. Nevertheless, PSO does show some disadvantages: sometimes it can be trapped in 

local optima easily, and the convergence rate decreased considerably in the later iteration of 

evolution; when reaching a near optimal solution, the algorithm stops optimizing which 

cause to decrease the accuracy of the algorithm. 

Democratic Particle Swarm Optimization (DPSO) has been introduced by Kaveh and 

Zolghadr [32] as an improved version of the standard PSO to tackle original PSO own set of 

drawbacks mentioned above. In fact DPSO is an effort to provide a better tactic for 

searching the solution domain by taking the experiences of all kinds of particles either 

qualified particles or bad particles and this strategy can avoid the premature convergence. 

The improvement is obtained by adding a new term to the velocity vector. The velocity 

vector of DPSO is expressed as: 

 
1

, , 1 1 , , 2 2 , 3 3 ,[ ( ) ( ) ]k k k k k k k

i j i j i j i j j i j i jv wv c r xlbest x c r xgbest x c r d        (1) 

 

where, w indicates the inertia weight for the previous iteration’s velocity and χ is a 

parameter for preventing divergence behavior. These parameters can be calculated and 

selected based on the stated formulation in Kaveh and Zolghadr [32]. vi,j
k is the velocity of 

variable j of the i-th particle, xi,j
k is the current value of the j-th variable of the i-th particle, 

xlbesti,j
k is the best value of the j-th variable which can be found by i-th particle and xgbestj

k 

is the best value of the variable j experienced by the whole particles so far. r1, r2 and r3 are 

three random constants which are distributed uniformly in the range of (0,1). c1 and c2 are 

parameters for demonstrating rate of particle’s confidence in itself and in the swarm, 

respectively. c3 is a parameter which control the weight of the democratic vector. di,j
k stands 

for j-th variable of the vector D for the i-th particle. The vector D denotes the democratic 

influence of the other particles of the swarm on the movement of the i-th particle and is 

considered as: 

 

1

( )
n

i ik k i

k

D Q X X


   (2) 

 

where Qik is the weight of the k-th particle in the democratic movement of the i-th particle 

and is calculated as: 

 

1

( )

( )

best
ik

ik n
best

ij

j

f
E

f k
Q

f
E

f j




 (3) 

 

in which f is cost function value. In addition, fbest is the value of cost function for the best 

particle in current iteration, X is the particle’s position vector, and E is the eligibility 

parameter. For minimization problems E is defined as: 
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
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 (4) 

 

where fworst is the value of cost function for worst particle, and fbest is the value of cost 

function for best particles in the current iteration. After calculating velocity by Eq. (1), the 

new positions of the particles in DPSO algorithm are defined similar to the standard PSO as 

below: 

 
1 1

, , ,

k k k

i j i j i jx x v    (5) 

 

in which the time interval is equal to 1.0 and thus the velocity vector can be added to the 

position vector. It is clear that the information produced by all of members of the swarm is 

utilized by DPSO with the purpose of determine the new position of each particle. Actually, 

according to the above mentioned procedure for calculating particles’ velocity, the new 

position of the particle is defined with consideration all of the better particles and also some 

of the worse particles. DPSO can be assumed as a perfect searching approach in which all 

candidate points of the solution domain can be scanned approximately for finding the global 

extremum and associated variables. 

 

 

3. PROPOSED METHOD 
 

This section is devoted to explain the details of the suggested method for structural damage 

prognosis. For a structure with N degrees of freedom (DOFs) and Ne elements, the free 

vibration equation can be presented as: 

 

 Mx Kx 0  (6) 

 

where M and K are the global structural mass and stiffness matrices, respectively. Also, x  

and x are the acceleration and displacement vectors, respectively. Structural modal data can 

be extracted by solving free vibration equilibrium which is introduced as below:  

 
2 , 1,2,...,i i i i N Kφ Mφ  (7) 

 

Where ωi and φi are the i-th natural frequency and related mass-normalized mode shape 

vector, respectively. The relation between modal data and stiffness matrix can be expressed 

as: 

 
1T K Φ ΛΦ  (8) 

 

in which Ф is a matrix which consists of structural eigenvectors and Λ is a diagonal matrix 

that is defined as below: 
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2

1
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





 
 
 
 
 
  

Λ  (9) 

 

By inspecting Eq. (8) it is obvious that all modes’ data should be accessible for 

calculating the global stiffness matrix via modal data. Although this relation is correct 

mathematically, from practical viewpoint, estimating stiffness matrix employing only the 

first several modes’ data is so respected. An acceptable approach for this purpose can be 

stated by considering the flexibility matrix. Flexibility matrix (F) is the inverse of stiffness 

matrix and can be written as below: 

 
1 TF ΦΛ Φ  (10) 

 

Based on Eq. (10), the flexibility matrix depends inversely on ωi
2. Therefore, by 

increasing the number of utilized modes, the impacts of the natural frequencies on 

calculating flexibility matrix decrease, extremely. It means that an acceptable estimation for 

inverse of global stiffness matrix can be achieved by employing only the first ‘m’ modes’ 

data. Li et al. [33] suggested Generalized Flexibility Matrix (GFM) as an effort to strongly 

decrease the effects of higher modes’ data on calculating the flexibility matrix. l-th order of 

GFM by employing the first ‘m’ modes’ data is defined by multiplying of (MFm)l in the 

flexibility matrix as below: 

 
( ) ( )g l l

m m mF F MF  (11) 

 

Subscript ‘m’ denotes number of utilized modes for constructing matrices. Using Eq. (10) 

and doing some mathematical simplification, the GFM can be expressed as: 

 
( ) 1 , 0,1,2,...g l l T

m m m m l  F Φ Λ Φ  (12) 

 

This paper uses the first-order of the GFM (l=1): 

 
(1) 2g T

m m m m

F Φ Λ Φ  (13) 

 

Therefore, it can be concluded that the GFM decreases the effects of the natural 

frequencies of higher modes, strongly and a suitable estimation of the flexibility matrix can 

be available by utilizing only the first several lower modes’ data. 

In this paper we use GFM for formulating a new damage-sensitive cost function, by 

measuring amount of geometrical correlation between vectors. If the calculated GFM based 

on the first ‘m’ modes’ data of the monitored (or damaged) structure is denoted by Fm
g(1), the 

vectors a1 and a2 are defined as the main diagonal and anti-diagonal members of Fm
g(1) as 

below: 
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 (1) (1) (1)

1 (1,1) (2,2) ... ( , )
T

g g g

m m m N Na F F F  (14) 

 (1) (1) (1)

2 (1, ) (2, 1) ... ( ,1)
T

g g g

m m mN N N a F F F  (15) 

 

In addition, if the GFM employing the first ‘m’ modes’ data for undamaged structure is 

shown by Fm
g(1),u, the GFM’s alterations between damaged and undamaged states can be 

calculated as: 

 
(1) (1),g g u

m m  F F F  (16) 

 

Hence, the main diagonal and anti-diagonal members of this matrix are denoted as 

followings: 

 

 3 (1,1) (2,2) ... ( , )
T

N N   a F F F  (17) 

 4 (1, ) (2, 1) ... ( ,1)
T

N N N    a F F F  (18) 

 

In the analytical model of damaged structure (with unknown damage severity), damage is 

defined as some deterioration in the stiffness matrix of the damaged structure. So, the 

stiffness matrix of the i-th element in the damaged state (ki
d), can be written as: 

 

(1 )d u

i i id k k  (19) 

 

where ki
u and di are the stiffness matrix of the i-th element in the undamaged state and 

unknown damage ratio for the i-th element, respectively. It is worth noting that di will be 

zero and 1.0 for undamaged and fully damaged elements, respectively. Overall, the global 

stiffness matrix of the analytical model of damaged structure with unknown damage 

severities can be expressed as: 

 

1

eN
d d

i
i 

K k  (20) 

 

The GFM of the analytical model of damaged structure using the first ‘m’ modes’ data 

(Fm
g(1)|d) can be calculated by employing Eq. (13). Then, the vectors a1, a2, a3 and a4 can be 

constructed for analytical state (with unknown damages) using Eqs. (14), (15), (17) and (18), 

respectively. For analytical model, these vectors are referred by adding a superscript ‘d’ 

(i.e.: a1
d, a2

d, a3
d and a4

d). 

The proposed cost function is aimed at measuring amount of correlation between vectors 

(a1, a2, a3 and a4) and (a1
d, a2

d, a3
d and a4

d). In this paper, to measure amount of correlation 

between two vectors, the MAC parameter is employed. Generally, MAC can be interpreted 

as a criterion for measuring amount of geometrical correlation between two vectors. For two 

given vectors of x and y, MAC is defined as [34]: 

 



G. Ghodrati Amiri, A. Zare Hosseinzadeh and S.A. Seyed Razzaghi 

 

452 

 
   

2

.
,

. . .

T

T T
MAC 

x y
x y

x x y y
 (21) 

 

The vectors are in complete accordance if MAC is equal to 1.0. For introducing the 

suggested cost function, first we define: 

 

 
   

         

2

.
, , 1, 2,3,4

. . .

T d

i i
d

i i i TT d d

i i i i

MAC i 
a a

a a

a a a a
 (22) 

 

Then, the cost function is defined as below: 

 

2 2

1 2
1 2

1 2

1 1
( , ,..., ) , 0 1.0

eN i

e e
f d d d d

e e

    
      

   
 (23) 

 

where:  

 

1 1 3e MAC MAC   (24) 

2 2 4e MAC MAC   (25) 

 

Finally, the DPSO algorithm is employed for solving the presented optimization problem. 

DPSO is a modified version of standard PSO algorithm propose by Kaveh and Zolghadr 

[31] and described in Section 2. 

 

 

4. NUMERICAL STUDIES 
 

In this section the applicability of the presented method is demonstrated by studying three 

numerical examples of structures under different damage patterns. Moreover, not only is the 

efficiently of the DPSO in solving inverse problems compared with other evolutionary 

optimizations, but also, the robustness of the suggested damage detection method in 

practical cases is investigated by considering some of the important challenges which are 

available in the real SHM programs.  

 

4.1 A ten-story shear frame 

In the first example, the presented method is applied for damage detection in a ten-story 

shear frame structure. Table 1 describes the physical properties of this structure. In this 

example studied two damage patterns are summarized in Table 2. In real SHM programs, the 

input data are contaminated with different levels of random noises. So, for an actual 

judgement about the feasibility of a damage detection method in real conditions, it is 



GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA … 

 

453 

essential to investigate the case with polluted input data by noise, in addition to 

consideration of an ideal case (i.e. free noise state). In this paper, the natural frequencies are 

contaminated by random noises via the presented strategy by Eq. (26) [10]: 

 

(1 )n
i i i     (26) 

 

where ωi
n and ωi are the i-th natural frequency with and without noise, respectively. σ is the 

noise level, and κi is a random value between [-1 1] which is generated by MATLAB 

software. In this example, 5% random noise is considered in the natural frequencies.  

 
Table 1: Physical properties of ten-story shear frame 

Story No. Mass (ton) Stiffness (MN/m) 

1~3 80 7.5 

4~7 55 7.5 

8~10 30 5.0 

 

Table 2: Simulated damage patterns in the ten-story shear frame 

Damage Pattern I Damage Pattern II 

Story Damage (%) Story Damage (%) 

4 10 2 5 

 5 15 

 9 10 

 

To investigate the impacts of the number of utilized modal data for calculating GFM (m) 

on the performance of the suggested method, two different cases are considered using one 

and three first modes: m=1, and m=3. The presented method is applied for damage 

identification in the simulated damage scenarios. The optimization parameters are selected 

as follows: number of particles=100, number of iterations=1000, c1=2, c2=2, and c3=4. There 

is not any regular strategy for choosing these parameters and they are selected by trial and 

error approach. 

The obtained results are shown in Fig. 1. From this figure it is obvious that the method 

can efficiently detect structural damages either the ideal input data are fed or the noisy one. 

In addition, it can be concluded that by increasing number of utilized modal data for 

constructing GFM in noisy state, some of the healthy stories are seldom reported as a 

damaged story, but their damage severities are very small and negligible, so this issue cannot 

have an influence on the correct judgment about situation of stories. Therefore, the presented 

method can be considered as a viable method for damage identification. 
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Figure 1. Damage detection results of the ten-story shear frame for (a) damage pattern I and (b) 

damage pattern II. ‘m’ denotes the number of modal data utilized for damage identification and 

‘n’ shows noise level 

 

Moreover, to demonstrate the applicability of the DPSO algorithm, other evolutionary 

optimization algorithms are also applied for optimizing the cost function. In this regards, 

both of the simulated damage patterns, using the first three modes’ data (with 5% noise), are 

assumed again and the suggested cost function is resolved by applying standard PSO 

algorithm and Genetic Algorithm (GA). For both PSO and GA, the maximum number of 

iterations is selected equal to 2000. It is worth noting that for precisely selection of 

parameters of optimization algorithms, at first, a typical scenario without noise is solved by 

employing PSO and/or GA, then, a trial and error procedure was followed for finding 

appropriate parameters. Finally, the optimization parameters were selected when the 

simulated damages got identified with high level of accuracy. Fig. 2 shows the obtained 

results for the simulated damage patterns. Although the PSO algorithm is able to find 

damaged stories, there are differences between the predicted damage severities and 

simulated ones. These differences are even more considerable for the second damage pattern 

with multiple deteriorations. Premature convergence of the standard PSO because of the 

complexity of solution domain can be considered as a good reason for this occurrence. 

However, when the GA is used for damage identification, it is possible that some false-

positive and -negative results can be obtained. For instance, in the second damage pattern 

which consists of damages with small and moderate severities, the small damage in the 

second element cannot be distinguishably detected. Actually, the GA is arrested by local 

extremums in searching complex solution domain and therefore, it cannot convergence to 

global extremums. 
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Figure 2. Damage detection results of the ten-story shear frame using PSO and GA for (a) 

damage pattern I and (b) damage pattern II, when the first three modes’ data with 5% noise are 

utilized 

 

For clearly evaluation the performance of the mentioned optimization algorithms, the 

convergence curves for DPSO, PSO and GA in solving above addressed scenarios are 

shown in Fig. 3. As it can be seen, despite using noisy input data, the DPSO algorithm 

converges to the minimum cost after ~200 iterations, in both damage patterns. Therefore, not 

only is it approved the presented claims about PSO and GA, but also the DPSO algorithm is 

introduced as a fast speed optimization procedure in searching complex solution domains. It 

should be noted that although by increasing number of iterations the performance of the PSO 

and/or GA may improve; overall, the DPSO shows a fast speed convergence to the global 

extremum. Therefore, it can be concluded that the DPSO performs better then PSO and GA 

in finding optimal solution for the presented inverse problem.  

 

 
Figure 3. Convergence curves for the DPSO, PSO and GA in solving (a) damage pattern I and 

(b) damage pattern II of the ten-story shear frame, when the first three modes’ data with 5% 

noise are used 

 

4.2 A planar steel truss 

The second example is devoted for damage localization and quantification in a plane steel 

truss. As shown in Fig. 4, this truss consists of 29 elements and each free node has two 

degrees of freedom (DOFs). The material properties of this truss are as below: modules of 
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elasticity E=200 GPa, mass density ρ=7850 kg/m3, the mass per unit length and cross 

sectional area for vertical members are m=39.25 kg/m and A=0.005 m2, and those for bottom 

horizontal members are m=3000 kg/m and A=0.010 m2, and those for top horizontal 

members are m=78.50 kg/m and A=0.010 m2, and those for the diagonal members are 

m=62.80 kg/m and A=0.008 m2, respectively. 

 

 
Figure 4. Finite element model of plane steel truss 

 

Table 3 describes simulated damage patterns. Although the first damage case consists of 

a moderate damage case, the second and third scenarios simulate multiple damage patterns 

with moderate and severe deteriorations. Similar to the previous example, it is assumed that 

just the first mode’s data and then three first modes’ data are available for calculating GFM. 

In addition, for investigating the noise effects, the input data are contaminated by two levels 

of random noises (i.e. 3% and 5%). The parameters of the DPSO are selected similar to the 

previous example. The obtained damage detection results are shown in Figs. 5–7 for the 

studied three damage patterns. As it is obvious, the suggested cost function is sufficiently 

sensitive to damage occurrence and is able to localize and quantify damages accurately in 

the ideal state (i.e. free noise state) as well as noisy state. Therefore, such conclusion can be 

drawn that the method is a powerful and reliable approach for damage prognosis in real 

SHM programs. 

Table 3: Simulated damage patterns in the plane steel truss 

Damage Pattern I Damage Pattern II Damage Pattern III 

Element Damage (%) Element Damage (%) Element Damage (%) 

15 10 11 15 3 30 

 22 20 9 10 

   25 25 

 

8 at 2.5 m = 20.0 m

2
.5

 m

1 2 3 4 5 6 7 8

24 25 26 27 28 29

9 11 13 15 17 19 21 2310 12 14 16 18 20 22
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Figure 5. Damage detection results for the first damage pattern of the plane steel truss using (a) 

the first one mode’s data and (b) the first three modes’ data. ‘n’ shows noise level 

 

 
Figure 6. Damage detection results for the second damage pattern of the plane steel truss using 

(a) the first one mode’s data and (b) the first three modes’ data. ‘n’ shows noise level 
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Figure 7. Damage detection results for the third damage pattern of the plane steel truss using (a) 

the first one mode’s data and (b) the first three modes’ data. ‘n’ shows noise level 

 

This section ends with some studies about evaluating the robustness and stability of the 

DPSO algorithm in comparison with standard PSO and GA when a unique inverse problem 

is solved for several times. Although the evolutionary optimization approaches are 

independent of the initial guesses of the optimal solution or initial population, in the 

complex problems, it is possible that the method cannot correctly find an appropriate path to 

reach the optimal solution. Therefore, if an optimization algorithm can reach to an 

approximately unique solution in different runs of a unique problem, it can be considered as 

a stable optimization approach. This issue is considered here by resolving simulated damage 

patterns I and III in the truss (by utilizing the first three modes’ data with 5% noise) for 10 

times with DPSO, PSO and GA. The optimization parameters are selected similar to the 

pervious example for all optimization algorithms. For saving space, only the obtained 

damage severities in the damaged elements are shown in Figs. 8 and 9 for the first and third 

damage patterns, respectively. Based on these figures, PSO and GA cannot reach to a unique 

solution in all runs. However, DPSO algorithm shows a good performance and not only it 

can reach to an approximately unique optimal solution in all runs, but also, it shows an 

acceptable level of accuracy in estimating severity of damages and it means that the DPSO 

algorithm is a stable and efficient strategy in searching complex solution domain for finding 

optimal solution.  
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Figure 8. Estimated damage severities in 10 runs for the 15th element of the plane steel truss in 

the first damage pattern by employing DPSO, PSO and GA, using the first three modes’ data 

with 5% noise 

 

 
Figure 9. Estimated damage severities in 10 runs in the third damage pattern of the plane steel 

truss by employing DPSO, PSO and GA, using the first three modes’ data with 5% noise for (a) 

3rd element, (b) 9th element and (c) 25th element 

 

4.3 A plane steel frame 

The last example is concentrated on damage identification in a plane steel frame. The finite 

element model of this frame is shown in Fig. 10. Each free node of this structure has three 

DOFs (two translational DOFs in the horizontal and vertical directions and one rotational 

DOF). For all elements, modules of elasticity and mass density are considered equal to those 

which were introduced in the previous example. In addition, the mass per unit length, 

moment of inertia and cross sectional area are equal to 117.7 kg/m, 3.3010-4 m4 and 

0.0150 m2 for columns, and 1250 kg/m, 3.6910-4 m4 and 0.0152 m2 for beams, 

respectively. 

In this example three damage patterns are considered for investigating the performance of 

the presented method in damage prognosis that are explained in Table 4. The first damage 

pattern consists of damages with minor and moderate severities. However, the second and 

third patterns are devoted for multiple damage cases with moderate and severe 

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Run Number

D
a
m

a
g

e
 (

%
)

 

 

DPSO

PSO

GA

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

Run Number

D
a
m

a
g

e
 (

%
)

(a)

 

 

DPSO

PSO

GA

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Run Number

(b)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

Run Number

(c)



G. Ghodrati Amiri, A. Zare Hosseinzadeh and S.A. Seyed Razzaghi 

 

460 

deteriorations. Similar to the previous example, the problem is solved by employing only the 

first mode’s data and then the first three modes’ data in the free noise state as well as noisy 

states (3% and 5% noises in input data). In the following, the presented model updating 

procedure is applied for damage identification in the simulated patterns. The optimization 

parameters are selected similar to the previous examples. Damage detection results are 

shown in Figs. 11–13. In the noisy states, although some differences can be seen between 

simulated and obtained damages which are justifiable because of using noisy input data; 

overall, the method is able to localize and quantify damages with high level of accuracy. 

Therefore, we found the presented method as a powerful method for structural damage 

identification and quantification. 

 

Table 4: Simulated damage patterns in the plane steel frame 

Damage Pattern I Damage Pattern II Damage Pattern III 

Element No. Damage (%) Element No. Damage (%) Element No. Damage (%) 

5 10 3 15 4 25 

18 5 12 10 7 20 

  19 20 14 15 

    21 30 

 

 

 
Figure 10. Finite element model of plane steel frame 

 

3
.0

 m
3
.0

 m
3
.0

 m

3.0 m 3.0 m 3.0 m 3.0 m 3.0 m

1 2 3 4 5 6

7 8 9 10 11

12 13

14 15 16 17 18

19 20 21 22



GENERALIZED FLEXIBILITY-BASED MODEL UPDATING APPROACH VIA … 

 

461 

 
Figure 11. Damage detection results for the first damage pattern of the plane steel frame using 

(a) the first one mode’s data and (b) the first three modes’ data. ‘n’ shows noise level 

 

 
Figure 12. Damage detection results for the second damage pattern of the plane steel frame using 

(a) the first one mode’s data and (b) the first three modes’ data. ‘n’ shows noise level 
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Figure 13. Damage detection results for the third damage pattern of the plane steel frame using 

(a) the first one mode’s data and (b) the first three modes’ data. ‘n’ shows noise level 

 

 

5. CONCLUSIONS 
 

This paper introduced an effective model updating-based approach for structural damage 

identification by employing main diagonal and anti-diagonal members of the Generalized 

Flexibility Matrix (GFM), which can be estimated using only the first several lower modes’ 

data. The proposed cost function was solved by Democratic Particle Swarm Optimization 

(DPSO). DPSO is an effort for overcoming to the drawbacks of the standard PSO algorithm 

by major concentration on preventing from premature convergence to the local extremums 

[32]. The applicability of the method was demonstrated by studying different damage 

patterns on three numerical examples. Moreover, the stability of the DPSO algorithm is 

evaluated by different comparative studies with other evolutionary optimization algorithms, 

namely, PSO and GA. Some other studies were carried out on evaluating the applicability of 

the method for damage identification with noisy input data. Results introduced the DPSO 

algorithm as a fast speed optimization approach which is stable in searching complex 

solution domain for finding optimal solution. Moreover, the good and acceptable 

performance of the method for damage detection in real SHM programs was derived out. 
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