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ABSTRACT 
 

Meta-heuristics have already received considerable attention  in various fields of 
engineering optimization problems. Each of them employes some key features best suited 
for a specific class of problems due to its type of search space and constraints. The present 
work develops a Pseudo-random Directional Search, PDS, for adaptive combination of such 
heuristic operators. It utilizes a short term memory via indirect information share between 
search agents and the directional search inspired by natural swarms. Treated numerical 
examples illustrate the PDS performance in continuous and discrete design spaces. 
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1. INTRODUCTION 
 

Up to date, several heuristic and metaheuristic procedures have been investigated for 
optimization problems. They can be classified to gradient based methods, guided and greedy 
search algorithms and also stochastic sampling methods. Some of them are mathematical 
programming [1], intiuitive techniques like optimality criteria [2], single-agent heuristics 
such as simulated annealing [3], multi-agent stochastic methods  including genetic and 
evolutionary search, ant colony algorithms, and most recently harmony search [4-7], swarm 
algorithms [8,9], charged system search[10], gravitational search [11] and colonial 
competition [12].  

Deterministic methods mostly are affected by dependence to the starting point 
assumption, neighborhood structure definition and derivative computations while many real-
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world problems have discrete or multimodal complex search spaces with several local 
optima. Despite of their local search capability, they generally suffer from lack of providing 
sufficient diversity to capture the global and true optimum of the problem.  

The second class including single-agent methods use stochastic procedures to overpass 
the local optima, however, their efficiecny in practicle problems is relatively low because of 
their dependence to single starting point assumption and difficulties in tuning parameters 
before sampling the design space.  

The most successive class are parallel or multi-agent stochastic search methods, for 
which the balance between diversification and intensification has a critical rule. Some 
methods in this class like ant colony algorithms make the soultion part-by-part while the 
others sample complete design vectors among the search space.  

Every such algorithm employs its own method of search space decomposition in order to 
move in a neighborhood structure or to sample the candidate solutions for further fitness 
evaluation and selection. Genetic jumps are suited in a space of genotypes coded from 
corresponding main phenotypes. Simulated annealing and harmony search use bandwidth 
guided perturbation of the design variables. Particle swarm algorithms and provide a 
directional decomposition of the search space for further vector sum alteration of solution 
candidates. Almost no single method is generally efficient for all types of search spaces and 
problem complexities. The present research provides an adpative method to combine various 
procedures in searching the deaign space. It is based on a pseduo-random memory based 
selection of artificial states whose directions dynamically changes with the search progress. 
The proposed Pseduo-random Directional Search is further treated in a variety of 
illustrative test functions with different shape and modality of their search spaces in order to 
evaluate its performance for optimization problems. 

 
 

2. DIRECTIONAL SEARCH IN SWARM ALGORITHMS 
 

Swarm algorithms are a class of stochastic search dealing with design variable changes in a 
vector sum manner. Particle swarm optimization, PSO, is the first in this class introduced by 
Kennedy and Eberhart [8,9] to simulate natural swarm behaviours such as fish schools and 
bird flocks. They extracted the following factors for each particle to move around: 

• Inertial term representing tendency of a particle to move in its previous-i direction   
• Cognitive factor amplifies movement toward the best position of a particle in its 

memory of all previous steps 
• Social term that identifies the best position found by the entire swarm up to the 

current search iteration 
• Randomized bandwidths to add further stochastic property for partial movement in 

the above-mentioned directions 
Consequently, any search agent called particle take its new poition by a sum of 

movement vectors in each distinct search direction according to the following relation: 
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Where as ic , cc , sc  stand for inertial , cognitive and social factors and r1, r2 are random 

numbers uniformly distributed in range [0,1]. k
iP denotes the best pervious position that a 

particle has already experienced while kB  is the global best position of the entire swarm up 

to now. 1+k
iX , position of the ith particle at the new iteraion k+1 is calculated by adding the 

velocity term to its previous position vector. Time interval dt is usually taken 1 in the 
algorithmic formulations: 
 k

i
k
i

k
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In PSO terminology, the current position vector of a particle, iX , corresponds to the 

evaluated design variables vector of the problem in its decision space. All PSO variants are 
based on and recognized with such an especialized method of design vector pertubation, 
here-in-after, called the directional search. It associates the vector sum variation of iX with 

some baseline directions. Two arbitrary vectors 
i

q and 
j

q are defined to be in the same 

direction if any of them can be obtained by scaling the other with a scalar product, b; e.g., 

ji
qbq = . Hence, the ratio of corresponding components to the first is similar in both the 

vectors; that is a specific decomposition of the search space. 
As an instance of PSO variants, Particle Swarm Optimization with Random Direction, 

has added an extra move direction to the relation (1) as: 
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in which, k

iR introduces a search direction randomly chosen at iteration k for particle i, 
amplified by the corresponding randomized bandwidth, rcr3 . 

 
 

3. PSEUDO-RANDOM DIRECTIONAL SEARCH 
 

Search directions in PSO variants, are mixed through vector sum in every iteration of the 
search. However, it is not the only way to combine such terms. For any particle, i, in the 
swarm a search direction can be selected due to a stochastic procedure, instead. It will not 
limit the particle movement because different directions can be selected by a single particle 
during consequent iterations. Let’s call any such term a state as a candidate option to be 
chosen by the ith

  search agent.  
A characteristic bi-partite graph is thus defined so that a vertice i in its first part 

associates with the particle i adjecent to any vertice j in the second part of the graph that 
corresponds to the jth state of search directions . Any edge of such a graph, thus, relates a 
vertice in its first part to a second part vertice (Figure 1). Therefore, a subgraph of it with N 
edges represent N states each one selected by a distinct particle.  
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In the newly developed PDS, an ith particle of the swarm selects the jth  term (state) of 
search directions using the pseduo-random relation: 
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Where as jR stands for randomly chosen state and jP is determined using Roulette Wheel 
selection based on the Pi,l ; the probability of the lth direction term to be selected by the ith 
particle as: 
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Similar to ant algorithms, li ,τ is defined the remained amount of artificial pheromone trail 
on each edge of the characteristic graph. It is used as a short-term memory  to indirectly 
extend the previous steps experiences to the current.  The trail matrix is initiated by 1 in all 
the graph edges. Once the jth direction term is assigned with the ith particle, li ,τ is increased 
by a predetermined value, τ∆ : 
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the amount of trail in any graph edge is gradually decreased using a predetermined 
evaporation ratio, ρ , according to the relation: 
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Trail evaporation in further iteration may cause it to tend zero in some graph edges and 

consequently eliminate the chance of such edges to be selected in further iterations. Thus, 
normalizing the trail and limiting its lower bound to LBτ  the trial update strategy is completed 
as: 
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Hence, the trail deposit, evaporation and round-off truncation provides an artificial short-

term memory for the algorithm in order not to get trapped in local optima during state 
transition. Once a direction j is selected by the particle i, the k

jStateX )( is used as a target for 

the movement velocity vector, 1+k
iV :  
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The corresponding bandwidth for the jth state is a predetermined coefficient, )( jc , 

multiplied by r; taken unity for inertial term or chosen a uniformly generated random 
number in the range 0 to1 for other states. New position of particle, i, is then obtained by: 
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As an instance of such general methodology, in this paper four states are taken into 

account as k
iX ; previous position of the particle representing inertial term, k

iP ; the previous 

best position of the ith particle being the cognitive term, kB the global best position or social 

term and k
iR ; a randomly oriented particle for higher search diversity: 
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Figure 1. Sample chosen direction state (bold) of the PDS characteristic subgraph (dash arrows) 

4. NUMERICAL EXAMPLES 
 

A number of problems are consider to test PSO and PDS as follows. The employed version 
of PSO has a random additional term with respect to standard particle swarm optimizaton as 
described in Eq.3. The same values for the 4 coefficients are used in both the methods. Table 
1 reveals the employed control parameters taken similar in all the examples for true 
comparison. The other control parameters are selected regarding evaporation ratio, ρ ,  as 

ρτ =LB , ρτ∆ = , ρ=0q and 1q1 = .  
A number of well-nown test functions in literature are arranged and employed due to 

complexity of their search spaces [13,14]. For the treated test functions, a unified problem 
formulation is used as: 
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where >=< ixX is the vector of N design variables constrained to be in the continuous 

domain of [ LBx , UBx ]. These lower and upper bounds are selected according to Table 2. In 
this study the dimension N is taken 2 for illustration purposes. 

 
Table 1. Control parameters for the PSO and PDS 
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ρ  Ci Cc Cs Cr 
Number of 
Particles 

Number of 
Iterations 

0.1 2.0 2.0 2.0 2.0 15 500 
 
Performance of PDS and PSO for each problem is treated for a number of trials and the 

resulted statistical parameters are given in Table 2. For the sake of true comparison, the 
randomly initiated population in the first method is saved and identically used for the second 
so that the resulting convergence curves have the same starting point. Thus, a fitness 
improvement factor F.I. is defined for each run of the optimization algorithm as: 
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Fitness
FitnessFitnessFI

NI −
=  (13) 

 
in which, NI denotes the total number of iterations in the search. This way, the F.I. values 
can be combared between PDS and PSO by the following relation: 
 

 PSO

PDS

Ratio FI
FIFI =  (14) 

 
Such a dimensionless ratio will be a measure of how better is the PDS performance over 

PSO. Sorting the trial runs are in ascending order of their RatioFI , the median results are 
extracted and ploted as the Present Works; PW-1~4 for treated test problems in the 
consequent Figures. A brief reiew of each function is given, followed by its obtained results 
in both the methods.The results’ statistics for all test functions are summarized in Table 2. 

 
Table 2. Comparison of PDS and PSO results for continuous test problems 

Test Function Domain 
[xLB , xUB] Statistical Item F.I.ratio 

PDS/PSO 
F.I. 
PSO 

F.I. 
PDS 

DeJong [-5.12,5.12] ValueMean.  1.004 0.995 0.999 

  Min  1.000 0.998 1.000 

  .Max  1.010 0.989 0.999 

  PW-1(Median) 1.004 0.996 1.000 

      

Rastrigin [-5.12,5.12] ValueMean.  1.125 0.864 0.964 

  Min  1.017 0.936 0.953 

  .Max  1.243 0.749 0.987 

  PW-2(Median) 1.116 0.834 0.930 
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Griewangk [-10,10] ValueMean.  1.314 0.822 0.996 

  Min  1.015 0.984 1.000 

  .Max  2.207 0.452 0.999 

  PW-3(Median) 1.138 0.878 1.000 

Ackley [-32.7,32.7] ValueMean.  1.215 0.798 0.964 

  Min  1.472 0.668 0.982 

  .Max  1.109 0.874 0.967 

  PW-4(Median) 1.179 0.796 0.939 
 
4.1. De Jong’s first function 

The first example is De Jong’s first function having one of the simplest search spaces. It is a 
unimodal and convex test function given by the following general relation. There is no local 
optima but one global optimum 0 at 0=X for this minimization problem (Figure 2).  
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Figure 2. De Jong 2-dimensional test function for >=< yxX ,  [14] 
 
Figure 3 shows the result of present work-1 for this example, in which both methods got 

close to global optimum but PDS efficiency has been more than PDS. It is confirmed by 
other statistical achievements in Table 2. 

 
4.2. Rastrigin’s function 

In the second example, Rastrigin’s formula is considered as a multimodal test function: 
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Figure 3. Convergence curves for De Jong’s function in PW-1 

The cosine term has added several local optima to the search space with respect to De 
Jong’s first function while one global optimum yet exists at at 0=X  (Figure 4).  

According to the result of PW-2 in Figure 5, the PDS has stood considerably higher than 
PSO for this example with more rapid convergence. 

 

 
Figure 4. A view of Rastrigin’s test function [14] 
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Figure 5. Convergence curves for Rastrigin’s test function in PW-2 

 
4.3. Griewangk’s function 

Optimization methods are tested by Griewangks’s function  in this example with the 
relation: 
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The function has several local optima in detail scale with one global optimum of 

0)0( =f (Figure 6). Despite the PDS, in this example (for PW-3) the PSO is trapped in 
local optima or premature convergence as shown in Figure 7.  
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Figure 6. Griewangk’s test function [14] 
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Figure 7. Convergence curves for Griewangk’s test function in PW-3 

4.4. Ackley’s function 

For this example, Ackley’s test function, with a multimodal search space is selected, by the 
following definition: 
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This function has several local optima in detail scale with one global optimum of 0)0( =f , 
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but the local minima is far abow the global minimum in a relatively narrow region (Figure 8). 
Result of the present work PW-4 shows that using PSO,the best-so-far fitness has fallen well 
below the proposed PSD even in earlier iterations of the search (Figure 9). 

 
Figure 8. Ackley’s test function [14] 
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Figure 9. Convergence curves for Ackley’s test function in PW-4 

As can be realized the mean FIRatio has increased in last more complex test functions. 
While its the maximum has reached about 2 times in the studied cases, the minimal ratio is 
obtained at least 1 or greater denoting superirity of  the proposed method. 

 
4.5. discrete Ackley’s function 

In this example, the domain of which ix  can be peaked is discrete; that is integer numbers in 
range {-32,-31,...,31,32} for the Ackley’s 2-dimensional test function. According to Figure 10, 
the PSO may result in much slower convergence speed than the present PDS for such a 
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discrete problem, however, might capture the global optimum in further runs (Table 3). 
 

Table 3. Comparison of PDS and PSO results for discrete test problem 

Test Function Domain 
[xLB , xUB] 

Statistical 
Item 

F.I.ratio 
PDS/PSO 

F.I. 
PSO 

F.I. 
PDS 

Ackley {-32,...,32} Mean Value 1.034 0.971 1.000 

  Min 1.000 1.000 1.000 

  Max 
(PW-5) 1.168 0.855 1.000 
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Figure 10. Convergence curves for discrete Ackley’s test function in PW-5 

 
4.6. sizing of a 26-bar truss example 

A 14-node 26-bar truss example is considered for this example. Boundary conditions and 
loading are depicted in Figure 11. For all truss members material properties are taken as 

2/95.68 mGNE = , 3/2712 mkg=ρ  while the allowable stress is 2/172 mMN±=σ . The 
displacement constraint is given as mm8.50≤∆ .  Member sections may be selected from 
Table 4. Since each truss member will be assigned a section separately, it is a 26-fold 
(number of variables) problem. Thus, size of the discrete search space is 626; that is of order 
1020. In this example, some of the search space points corresponds truss sizing models which 
are infeasible because of their constraint violation.  
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Figure 11. The 26-bar truss  
 

Table 4. Section list for sizing 26-bar truss 

Section area (mm2) 1045 5142 9161 14193 14774 21613 

 
The algorithms are run for 200 iterations and even with 5 particles the results are as good as 
in Table 5. The objective function is the total truss weight being minimized under the stress 
and displacement constraints.  Hence the penalized objective function is utilized in the 
fitness as: 

 )*1(*)(
1
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i
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Where W denotes the total structural weight, Kp, is the penalty coefficient desired by the 
user and Ci stands for the amount of violation in any violated constraint. The design variable 
Xj can take its value as a section index between 1 and 6 to, assigned for the corresponding 
truss member. The equilibrium is satisfied for evaluation of member stresses and nodal 
displacements.  
 

Table 5. Comparison of PDS and PSO results for 26-bar truss  

Statistical 
Item 

F.I.ratio 
PSO 

F.I.ratio 
PDS 

F.I.ratio 
PDS/PSO 

PSO Elitist 
TrussWeigh

t 
(kg) 

PDS Elitist 
TrussWeigh

t 
(kg) 

ValueMean.  0.52 0.52 1.00 2280 2280 
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Min  0.38 0.25 0.65 2001 2130 
.Max  

(PW-6) 0.67 0.63 1.45 2560 2480 

 
According to Table 5, the achieved mean values in this example are similar for both the 

methods. However, arising more infeasible designs in the elitist results of the PSO is a 
drawback of it against PDS when using the penalty coefficient, Kp, of 10. 

 
 

6. CONCLUSION 
 

A class of metaheuristic procedures were reviewed which decompose the search space using 
search vector directions. Well known particle swarm optimization and its variants take 
benefits of such a directional search approach using a vector sum within each iteration.  

A variety of test functions were then selected form literature with various search spaces 
to test performance of the developed method vs. particle swarm regarding similar states. In 
this study the states are taken as inertial, cognitive, social and an additional random direction 
in the search space.  

Superiority of the developed PDS over PSO in the treated examples was declared as the 
search space altered from uni-modal to multi-modal with additional several local optima. In the 
Griewangks’ function global and local optima are difficult to identify because of their close 
fitness values and the search space shape; for which PSO led to premature convergence while 
PDS successfully overcame such a challenge. PDS also showed reasonable higher 
effectiveness and efficiency even in the Ackley’s test function with realtively narrow global 
optimum region and steep fitness variation. In addition, testing both methods with a discrete 
search space confirms that PDS can lead to more effectiveness than PSO.  

The search effectiveness achieved in the results confirmed that the proposed directional 
state-tranistion rule can work even if each state addresses a formula rather than its particle 
position that is dynamically changing via iterations of the search.  

It is worth mentaining that only one direction of movement is accomplished in every step 
of  PDS while a sum of different move vectors is used in any search iteration of PSO. 
Considering this matter, the convergence speed of PDS might be expected lower, however,  
the treated examples showed at least comparable performance of the proposed PDS with 
respect to PSO with a minor parameter tuning and specially for unconstrained problems. 
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