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ABSTRACT 
 

Deterring the optimum design of large-scale structures is a difficult task. Great number of 

design variables, largeness of the search space and controlling great number of design 

constraints are major preventive factors in performing optimum design of large-scale truss 

structures in a reasonable time. Meta-heuristic algorithms are known as one of the useful 

tools to deal with these problems. This paper presents an improved bat algorithm for 

optimizing large-scale structures. The capability of the algorithm is examined by comparing 

the resulting design parameters and structural weight with those of other methods from 

literature. 
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1. INTRODUCTION 
 

In the field of optimization, finding optimum design of structures are known one of difficult 

and complex problems. Engineers can often perform suitable designs by some trial and error 

approaches for small structures. However for large-scale ones, great number of design 

variables, largeness of the search space, and controlling great number of design constraints 

are major preventive factors in performing optimum design in a reasonable time [1]. 

Therefore, using optimization algorithms to solve such difficult problems is inevitable. In 

general, the optimization methods are divided into two groups, known as mathematical 
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methods and met-heuristic ones. The first group often uses gradient values of functions (or 

its approximated values) and can find local optimum points with a small effort. However, in 

contrast to meta-heuristic algorithms, they cannot guarantee reaching the global point (or 

even near to it) for large-scale problems with con-convex and non-smooth search spaces.  

The lack of dependency on gradient information, inherent capability to deal with both 

discrete and continuous design variables and automated global search features to produce 

near-optimum solutions (if not the global optimum) for complicated problems directed the 

researchers toward using meta-heuristic algorithms [2]. Therefore, meta-heuristic algorithms 

are known to be robust tools for dealing with today’s large-scale engineering problems of 

increased complexity. These approaches are derivative-free methods and make use of the 

ideas inspired from the nature or social phenomenon, such as the biological evolutionary 

process (e.g., genetic algorithm (GA) [3], differential evolution (DE) [4] and biogeography-

based optimization (BBO) [5]), physical phenomena (e.g. simulated annealing (SA) [6], 

charged system search (CSS) [7,8], Colliding Bodies Algorithm (CBO) [9]) or animal 

behavior (e.g., particle swarm optimization (PSO) [10], ant colony optimization (ACO) [11], 

artificial bee colony (ABC) [12], ant cuckoo search (CS) [13], firefly algorithm (FA) [14], 

krill herd (KH) [15] and bat algorithm (BA) [16]), etc. A detailed review of these algorithms 

as well as their applications in engineering optimization problems can be found in Yang et 

al. [17] and Kaveh [18]. 

In this paper, the BA is slightly improved and applied to optimal design of large-scale 

truss structures. Bat Algorithm (BA) has been developed based on the echolocation behavior 

of microbats. An extensive review of BA and its new variants can be found in the work of 

Yang and He [19]. They reviewed a wide range of diverse applications and case studies on 

this algorithm. However, because of the newness of BA compared to other techniques, few 

articles have been published concerning its application in structural optimization problems. 

Gandomi et al. [20] utilized BA to solve several constraint optimization problems. Optimum 

design of truss structures for minimizing the weight subject to stress, stability and 

displacement constraints according to American Institute of Steel Construction-Allowable 

Stress Design (AISC-ASD) specification is performed in [2]. Kaveh and Zakian [21] applied 

this algorithm to optimize some benchmark truss and frame structures. Also, BA is applied 

to discrete size optimization of steel frames by Hasançebi and Carbas [22]. 

The mechanism proposed in this paper is tested on two large-scale benchmark truss 

structures. Numerical results are compared to those of other methods available in literature. 

The performance study demonstrates the efficiency of the proposed method. 

 

 

2. INTRODUCTION TO BAT ALGORITHM 
 

In order to make the paper self-explanatory, the characteristics of BA is briefly explained in 

the following sub-sections. 

 

2.1. Standard bat algorithm (BA) 

BA is a multi-agent approach that simulates the behavior of microbats [23–24]. In 

echolocation, each pulse only lasts a few thousandths of a second (up to about 8–10 ms). 
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Nevertheless, it has a constant frequency which is usually in the range of 25–150 kHz 

corresponding to the wavelengths of 2–14 mm. In BA, the echolocation properties of 

microbats can be idealized as the following rules [16]: 

1. All bats use echolocation to sense distance, and they also ‘‘know’’ the difference 

between food/prey and background barriers in some magical way; 

2. Bats randomly fly with velocity vi at position xi with a fixed frequency fmin, varying 

wavelength k and loudness A0 to search for prey. They can automatically adjust the 

wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission 

rϵ[0,1], depending on the proximity of their target; 

3. Although the loudness can vary in many ways, it is assumed that the loudness varies 

from a large (positive) A0 to a minimum constant value Amin. 

The basic steps of BA can be summarized as the pseudo-code shown in Fig. 1, [20]. 

For each bat (i), its position xi and velocity vi in a d-dimensional search space should be 

defined. xi and vi should also be subsequently updated during the iterations. The new 

solutions 
t

ix
 and velocities t

iv  at time step t can be calculated by: 

 
)( minmaxmin ffff i   (1) 
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where   in the range of [0,1] is a random vector drawn from a uniform distribution. Here, 

x
*
 is the current global best location (solution), which is located after comparing all the 

solutions among all the n bats. As the product ii f  is the velocity increment, either fi (or 

i ) can be used to adjust the velocity change while fixing the other factor i  (or if ), 

depending on the type of the problem of interest. For implementation, fmin = 0 and fmax = 100 

are used, depending on the domain size of the problem of interest. Initially, each bat is 

randomly assigned a frequency that is drawn uniformly from [fmin, fmax]. 

For the local search part, once a solution is selected among the current best solutions, a 

new solution for each bat is generated locally using a local random walk, as 

 
t

oldnew Axx   (4) 

 

where the random number   is drawn from [−1,1], while t
i

t AA   is the average 

loudness of all the bats at this time step. The update of the velocities and positions of bats 

have some similarities to the procedure in the standard particle swarm optimization as fi 

essentially controls the pace and range of the movement of the swarming particles. To a 

degree, BA can be considered as a balanced combination of the standard particle swarm 

optimization and the intensive local search controlled by the loudness and pulse rate. Once a 

bat found its prey, the loudness usually decreases and the rate of pulse emission increases. In 

this case, the loudness can be chosen as any value of convenience. For simplicity, A0 = 1 and 

Amin = 0 can be used. Assuming Amin = 0 means that a bat has just found the prey and 

temporarily stop emitting any sound, we have: 
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t
i

t
i AA 1  (5) 

)1(01 t
i

t
i err    (6) 

 

where   and   are constants. In the simplest case,    can be used. For the simulations 

in this study, 9.0  , Ref. [6]. 

 

Objective function f (x), x = (x1, ...,xd)
T
 

Initialize the bat population xi (i = 1,2, ...,n) and vi 

Define pulse frequency fi at xi 

Initialize pulse rates ri and the loudness Ai 

while (t <Max number of iterations) 

         Generate new solutions by adjusting frequency, 

         and updating velocities and locations/solutions  

         if (rand > ri) 

                  Select a solution among the best solutions 

                  Generate a local solution around the selected best solution 

         end if 

         Generate a new solution by flying randomly 

         if (rand < Ai & f (xi) < f (x*)) 

                  Accept the new solutions 

                  Increase ri and reduce Ai 

         end if 

         Rank the bats and find the current best x
*
 

end while 

Postprocess results and visualization 

Figure 1. Pseudo-code of the bat algorithm (BA) 

 

2.2. Improved BA 

Exploration ability of the bat algorithm is acceptable, however its convergence speed needs 

to be improved for large-scale problems in order to reduce the required number of iterations. 

Here, the average loudness of bats, tA is defined dynamically as [21]: 

 

tc
i

t
i eAA .max1   , 

max

minmax )ln(

t

AA
c ii 
  (7) 

 

where max
iA  and min

iA are the minimum and maximum values for iA , respectively. tmax stands 

for maximum number of iterations. Proper tuning of this parameter reduces the number of 

the iterations 

Also in the improved BA, a microbat is allowed to update its echolocation parameters 

each time when it produces a solution that surpasses its individual best, not the global best 

necessarily, [2]. Also, the Eq. (6) is modified as follows for adaptation of pulse rate 

parameter, [2]: 
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max
101 )1(1 rrr t

i
t

i     (8) 

 

Eq. (6) facilitates a more gradual change of pulse rate parameter from its initial 

(minimum) value of 0
ir  towards maxr , whereas in Eq. (6) the pulse rate immediately 

approaches maxr  in a few iterations and remains stationary at this value thereafter, Ref. [2]. 

A graphical comparison of the Eq. (6) and Eq. (8) is presented in Fig. 2. 
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Figure 2. Comparison of pulse rate adaptation strategies 

 

 

3. STRUCTURAL OPTIMIZATION PROBLEMS 
 

3.1 Statement of the optimization design problem 

The general formulation of the weight minimization problem for a truss structure is as follows: 
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(9) 

 

where W(x) is the weight of the structure; n is the number of members making up the 

structure; m represents the number of nodes; nc denotes the number of compression 

elements; ng is the number of groups (number of design variables); i  is the material 

density of member i; iL  denotes the length of member i; ix  represents the cross-sectional 
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area of member i chosen from the set of areas between minx and maxx ; min is the lower 

bound and max is the upper bound; i  and i  are the stress and nodal deflection 

respectively; b
i denotes allowable buckling stress in member i when it is in compression. 

 

3.2 Constraint handling 

The penalty function is utilized to handle the constraints. After analyzing a structure, the 

deflection of each node and the stress in each member are obtained. These values are 

compared with allowable limits to calculate the penalty functions as: 
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In optimizing structures, objective is to find the minimum amount of merit function. 

Merit function is defined as 

 
3)(21
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Here, kMer is the merit function for ant k; 1 , 2  and 3  are the coefficients of merit 

function. k
 , k

  and k
b  are the summation of stress penalties, summation of nodal 

deflection penalties and summation of buckling stress penalties for ant k, respectively. 

For multiple loadings, after analyzing the structure and determining the penalty functions 

for each component of the load, the total penalty function is calculated through addition of 

penalty functions of stress, buckling stress for each member, and deflection for each node, as:  
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where np is the number of multiple loadings. In this paper, for a better control on other 

parameters, 1  is set to 1 and the coefficient 2  is taken as the weight of the structure and 

the coefficient 3  is set in a way that the penalties decrease. In the first iterations of the 

search process, 3  is set to 1.5 but gradually it is increased to 3, Ref. [1]. 
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4. NUMERICAL EXAMPLES 
 

In this section, two large-scale truss optimization examples are optimized utilizing the 

presented method. Then the final results are compared to the solutions of other methods to 

demonstrate the efficiency of this approach. The proposed algorithm is coded in Matlab and 

structures are analyzed using the direct stiffness method.  

 

4.1 A 244-bar transformation tower 

The first example is a 244-bar transmission tower shown in Fig. 3. Members of the 

transmission tower are initially collected into 26 groups as given by Saka [25] but in this 

study all members of the transmission tower are linked into 32 groups to enlarge the 

problem [26]. The value of the modulus of elasticity is taken as 30,450 ksi (210,000 MPa) 

and the material density is 0.1 lb/in
3
 (2767.990 kg/m

3
). The allowable value of 20.30 ksi 

(140 MPa) is employed for tensile stresses and the formulation of buckling obeying AISC-

ASD (1989) [27] code is considered for compressive stresses. The displacement limitations 

of ±1.77 in (4.5 cm) are imposed on nodes 1 and 2, and limitations of ±1.18 in (3.0 cm) on 

nodes 17, 24 and 25 in x-direction. These nodes are subjected to the displacement limits of 

±0.59 in (1.5 cm) in y-direction. The load cases considered are shown in Table 1. The 

minimum cross-sectional area of all members is 0.775 in
2
 (5.0 cm

2
) and the maximum 

cross-sectional area is 20.0 in
2
 (129.03 cm

2
). 

 

 
Figure 3. A 244-bar transformation tower 
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Table 1: Loading conditions for the 244-bar transformation tower 

 Case 2    Case 1   
PZ PY  kips (kN) PX  PZ PY kips (kN) 

PX kips 

(kN) 
Node 

0.0 -80.899 (360) 0.0  0.0 -6.744 (30) -2.448 (10) 1 
0.0 -80.899 (360) 0.0  0.0 -6.744 (30) 2.448 (10) 2 
0.0 -40.449 (180) 0.0  0.0 -20.224 (90) 8.568 (35) 17 
0.0 -20.224 (90) 0.0  0.0 -10.112 (45) 42.82 (175) 24 

0.0 -20.224 (90) 0.0  0.0 -10.112 (45) 42.82 (175) 25 
 

The maximum number of analyses is 15,000 for the BA. The BA achieves the best 

solution 2,374.05 kg while the different imperialist competitive algorithm (i.e. CICA, OICA 

and ICA algorithms [28]) achieves 2,478.95 kg, 2,517.29 kg and 2,562.09 kg, respectively. 

The HPSACO and PSOPC algorithms [26] achieved 2,415.02 kg and 2,652.56kg, 

respectively. Clearly, BA algorithm can find the best results comparing the other methods. 

Although, the differences between the results of HPSACO and BA are small, however it is 

worth to note that HPSACO utilizes the PSO with two auxiliary tools (ACO and HS) and if 

one adds these tools to this new algorithm, obviously the resultant method will be improved. 

Fig. 4 shows the convergence history for the minimum weight of 244-bar transformation 

tower solved by the BA-based method. 
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Figure 4. Convergence history of BA for the 244-bar transformation tower 

 

4.2 A 942-bar spatial truss 

A 26-story-tower space truss containing 942 elements and 244 nodes is considered as the 
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second large-scale example. Fifty-nine design variables are used to represent the cross-

sectional areas of 59 element groups in this structure, employing the symmetry of the 

structure. Fig. 5 shows the geometry and the 59 element groups. The material density is 0.1 

lb/in
3
 (2767.990 kg/m

3
) and the modulus of elasticity is 10,000 ksi (68,950 MPa). The 

members are subjected to the stress limits of ±25 ksi (172.375 MPa) and the four nodes of 

the top level in the x, y, and z directions are subjected to the displacement limits of ±15.0 in 

(38.10 cm) (about 1/250 of the total height of the tower). The allowable cross-sectional 

areas in this example are selected from 0.1 to 20.0 in
2 

(from 0.6452 cm
2
 to 129.032 cm

2
). 

The loading on the structure consists of: 

1) The vertical load at each node in the first section is equal to 3 kips (13.344 kN); 

2) The vertical load at each node in the second section is equal to 6 kips (26.688 kN); 

3) The vertical load at each node in the third section is equal to 9 kips (40.032 kN); 

4) The horizontal load at each node on the right side in the x direction is equal to 1 kips 

(4.448kN); 

5) The horizontal load at each node on the left side in the x direction is equal to 1.5 kips 

(6.672kN); 

6) The horizontal load at each node on the front side in the y direction is equal to 1 kips 

(4.448kN); 

7) The horizontal load at each node on the back side in the x direction is equal to 1 kips 

(4.448kN). 

This example has been optimized using 5 meta-heuristic algorithms, previously. The CSS 

method [8] achieved a good solution after 15,000 analyses and found an optimum weight of 

47,371 lb (210,716 N). The best weights for the GA, PSO, BB–BC and HBB–BC were 

56,343 lb (250,626 N), 60,385 lb (268,606 N), 53,201 lb (236,650 N) and 52,401 lb 

(233,091 N), respectively [1]. The new algorithm can find the best result among others as 

shown in Table 2. The best result of this algorithm is equal to 46,015lb (204,684 N). The 

new algorithm has better performance in terms of standard deviation and the average 

weight. It converges to a solution after 15,000 analyses of structures in average. Table 3 

provides the statistic information for this example and the convergence history is shown in 

Fig. 6.  
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Figure 5. A 942-bar spatial truss 

(b) Top view 

(a) Side view 
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Table 2: The results of the optimum design of the BA algorithm for the second example 

Optimal cross-sectional areas (cm
2
)   

Area Members  Area Members  Area Members  

0.516 A41 41 2.575 A21 21 1.037 A1 1 
0.698 A42 42 0.360 A22 22 2.078 A2 2 
20.445 A43 43 3.195 A23 23 1.472 A3 3 

0.5346 A44 44 5.087 A24 24 0.511 A4 4 
1.577 A45 45 18.907 A25 25 0.681 A5 5 

0.483 A46 46 0.523 A26 26 16.556 A6 6 

0.521 A47 47 2.570 A27 27 0.362 A7 7 

1.164 A48 48 18.787 A28 28 3.086 A8 8 

19.870 A49 49 4.869 A29 29 2.208 A9 9 

0.852 A50 50 4.864 A30 30 3.833 A10 10 

3.796 A51 51 13.328 A31 31 0.803 A11 11 

0.406 A52 52 0.870 A32 32 1.047 A12 12 

11.861 A53 53 0.901 A33 33 2.730 A13 13 

17.975 A54 54 1.290 A34 34 0.535 A14 14 

18.179 A55 55 0.135 A35 35 20.282 A15 15 

3.225 A56 56 0.202 A36 36 1.329 A16 16 

2.636 A57 57 18.407 A37 37 2.022 A17 17 

5.326 A58 58 0.652 A38 38 0.538 A18 18 

0.258 A59 59 1.425 A39 39 18.070 A19 19 

   0.357 A40 40 0.324 A20 20 

         

Weight                             204684 N 

 
 

Table 3: Performance comparison for the second example 

BA CSS HBB–BC BB–BC PSO GA   

46015 (204,684 N) 
47371 

(210716 N) 

52401 

(233091 N) 

53201 

(236650 N) 

60385 

(268606 N) 

56343 

(250,626 N) 

Best weight 

(lb) 

47856 (212874 N) 
48603 

(216197 N) 

53532 

(238122 N) 

55206 

(245568 N) 

75242 

(334693 N) 

63223 

(281230 N) 

Average 

weight (lb) 

712.36 (3,168 N) 
950.4 

(4,227 N) 

1420.5 

(6318 N) 

2621.3 

(11660 N) 

9906.6 

(44,067N) 

6640.6 

(29,539 N) 
Std Dev (lb) 

15,000 15,000 30,000 50,000 50,000 50,000 
No. of 

analyses 
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Fig. 6 Convergence history of BA for the 942-bar spatial truss 

 

 

5. CONCLUDING REMARKS 
 

Determining the optimum design of large-scale structures is known as one of difficult 

optimization problems. In this paper, the bat algorithm is improved and applied to solve 

these problems. Exploration ability of the bat algorithm is acceptable; however, its 

convergence speed needs to be improved for large-scale problems. In this paper, three 

improvements are suggested to solve this problem and improve the BA-based algorithm. 

The first improvement corresponds to the average loudness of bats which is defined 

dynamically. The second one belongs to updating echolocation parameters in which a 

microbat is allowed to update its echolocation parameters each time when it produces a 

solution. Finally, the pulse rate parameter is redefined to facilitate a more gradual change of 

it. These mechanisms reduce the required number of analyses. The robustness of the new 

algorithm is tested by optimum design of two large-scale trusses. The results illustrate the 

efficiency of the proposed algorithm. 
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