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ABSTRACT 
 

The failure probability of the structures is one of the challenging problems in structural 

engineering. To obtain the reliability index introduced by Hasofer and Lind, one needs to 

solve a nonlinear equality constrained optimization problem. In this study, four of the most 

recent metaheuristic algorithms are utilized for finding the design point and the failure 

probability of problems with continuous random variables. These algorithms consist of 

Improved Ray Optimization, Democratic Particle Swarm Optimization, Colliding Bodies 

Optimization, and Enhanced Colliding Bodies Optimization. The performance of these 

algorithms is tested on nineteen engineering optimization problems. 
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1. INTRODUCTION 
 

The evaluation of the safety of structures has been one of the subjects of interest for 

engineers. The safety of a structure depends on the resistance of the structure and the actions 

on the structure that are functions of random variables. Due to the presence of inherent 

uncertainties in mechanical and geometrical properties of structural systems and external 

loads achievement of absolute safety is impossible [1-3]. 
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The methods of probability analysis for the sake of structural reliability can generally be 

classified into three categories: Moment methods [4-6], Simulation methods [7-11] and 

Heuristic methods [12-17]. In this paper, structural reliability assessment is studied based on 

metaheuristic algorithms. In this category, the shortest distance of the limit state function 

from the origin of the standard normal coordinate system is considered as a fitness function 

and is obtained by heuristic methods.  

This paper proposes a reliability model based on metaheuristic algorithms, which are 

population-based methods to find the optimum result. These algorithms consist of Improved 

Ray Optimization (IRO) [18], Democratic Particle Swarm Optimization (DPSO) [19], 

Colliding Bodies Optimization (CBO) [20] and Enhanced Colliding Bodies Optimization 

(ECBO) [21]. The IRO is the enhanced version of the ray optimization [22] which was 

conceptualized using the relationship between the angles of incidence and fraction based on 

Snell's law. Each agent is modeled as a ray of light that moves in the search space to find the 

global or near-global optimum solution. Particle Swarm Optimization (PSO) has become 

one of the most popular optimization techniques that simulates the social interaction 

behavior of birds flocking and fish schooling [23]. The main emphasis in DPSO is placed 

upon addressing the problem of premature convergence which is believed to be one of the 

PSO’s main drawbacks. In CBO, each agent is modeled as a body with a specified mass and 

velocity. A collision occurs between pairs of objects and the new positions of the colliding 

bodies are updated based on the collision laws. ECBO is proposed to improve the 

exploration capability of the CBO and thus to remove the problem of premature 

convergence in some problems. 

The rest of this paper is organized as follows. In Section 2, brief presentation of the 

concepts of structural reliability is provided. In Section 3, IRO, DPSO, CBO and ECBO 

methods are briefly presented. Nineteen benchmark functions of the literature are studied in 

Section 4, and conclusions are derived in Section 5. 

 

 

2. FAILURE PROBABILITY ASSESSMENT 
 

The structure failure probability, Pf, is given by the following formula: 
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where X=[x1, x2, …, xn]
T
 represents a vector of stochastic variables of the reliability 

problem, the superscript T denotes the transpose, and  f(X) represents a joint probability 

density function in X-space. The operation of each structure can be expressed by a function 

of basic random variables of that structure called limit state function (G(X)=0) so that 

G(X)>0 indicates a safe state and G(X)<0 indicates a failure state. Therefore the integral 

represents the volume of the joint probability density function in the failure domain. The 

evaluation of this multi-fold probability integral is a fundamental problem in structural 

reliability theory because direct calculation of this integral is very difficult, especially for 

real structures. 
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Hasofer and Lind [24] proposed the concept of design point which is the most probable 

failure point. Based on this definition, the reliability index (β) is the shortest distance 

between the limit state function and the center of the standard normal space (the distance 

between the origin and the design point).  

The independent normal distribution stochastic variables x can be standardized by 
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where xi is the ith component of xi, μi and σi are the mean value and the standard variance 

of xi , respectively. 

Finding the Hasofer-Lind’s reliability index can be treated as an optimization problem. In 

other words, the objective function is supposed to determine the coordinates of a specific 

point on failure surface which is closest to the origin in the U-space (independent standard 

normal distribution). The mathematical formulation of these problems can be expressed as 

follows: 
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In order to handle the constraints, the penalty approach is employed. Thus, the objective 

function is redefined as: 
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where υ denotes the sum of the violations of the constraints and nc is the number of the 

constraints. The constants ε1 and ε2 are selected considering the exploration and the 

exploitation rates of the search space. In this study, υ is considered closed to 0 if its absolute 

value is lower than 10
-4

 [13]. 

 

 

3. OPTIMIZATION ALGORITHMS 
 

3.1 Improved Ray Optimization (IRO) 

Ray Optimization (RO), which is based on the transition of ray from one medium to another 

from physics, was introduced by Kaveh and Khayatazad [22]. As the light passes through a 

surface of two certain transparent materials, its path is changed slightly. This phenomenon was 

formulated by the Snell’s law. In RO by utilizing Snell’s refraction law and a number of 

random terms, each agent moves in the search space to find the global or near-global optimum 

solution. Kaveh et al. [18] developed Improved Ray Optimization (IRO) and it is proved to be 
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competent in structural optimization problems. The formulation of generating solution vectors 

and returning violated agents to feasible search space is changed in IRO. This algorithm 

consists of the following steps: 

Step 1: Initialization 

The initial positions of the agents are determined randomly in the search space and the 

objective function is evaluated for each agent. A memory which saves all the best positions as 

local best memory (LBM) is considered, and the position of the best agent is saved as the 

global best (GB). 

Step 2: Initial velocity 

The initial movement vectors of agents are stated as: 

 

randij .21V   j=1,2,…,n  (5) 

 

where Vij is the initial movement value of the jth variable for the ith agent. New positions 

are obtained by adding the position of each agent with its movement vector. 

Step 3: Regenerating 

If any component of each agent violates a boundary, it must be regenerated by the 

following formula: 
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where Xij
k+1

 and Xij
k
 are the refined component and component of the jth variable for the ith 

agent in (k+1)th and kth iteration, respectively. Intij is the intersection point (in case an agent 

violates a boundary, it intersects the boundary at a specified point, because of having definite 

movement vector). After regenerating all violated components, the goal function is evaluated 

for each agent and the LBM and GB are updated. 

Step 4: Evaluating the Origin 

Consider the origin as a point which each agent wants to move toward it and specified by 
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where Oi
k
 is the origin of the ith agent for the kth iteration, and ite is the total number of 

iterations for the optimization process. For each agent, LB is a solution vector which is 

selected randomly from local best memory (LBM). Target vector is defined as:  
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where Tvi and Xi are target vector and current position of the ith agent, respectively. 

Step 5: Evaluating the direction of movement vector 

Direction of the new movement vector is defined by 
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where Vi
k+1

and Vi
k 

are movement vectors for the ith agent in (k+1)th iteration and kth 

iteration, respectively. Finally all the Vi
k+1 

vectors should be normalized. 

Step 6: Evaluating the magnitude of movement vector 

Possibility like stoch is considered and the magnitude of movement vectors are defined as: 

a. with probability like stoch, 
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where d is a number that divides a into smaller length for effective search. Xj,max and Xj,min 

are the upper and lower bounds for the jth design variable, respectively. In this study d is set to 

20. 

b.  with probability like (1–stoch),  

If  norm(Oi
k
 – Xi

k
 )=0, then 
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Otherwise, 
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Step 7: Terminating Criterion Control 
The optimization process is terminated after a fixed number of iterations. If it is not 

fulfilled, each movement vector is added with its current position vector and the process of 

optimization is continued from Step 3. 

 

3.2 Democratic Particle Swarm Optimization (DPSO) 

Particle Swarm Optimization (PSO) initially developed by Kennedy and Eberhart [25] is a 

metaheuristic algorithm which mimics the social behavior of certain species of animals like 

birds flocking and fishes schooling. PSO is one of the most widely used population-based 

technique having some advantages such as few parameters to adjust, easiness of 

implementation, global search capability in some problems and, in general, fast convergence. 
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However, despite having the above-mentioned benefits, the standard PSO is infamous of 

premature convergence. Democratic Particle Swarm Optimization (DPSO) is proposed by 

Kaveh and Zolghadr [19] to improve the exploration capabilities of the PSO and thus to 

address the problem of premature convergence. Each particle only leads by its historically best 

position and the historically best position of the entire swarm in standard PSO but in the DPSO 

all eligible particles have the right to be involved in decision making in order to overcome the 

problem of premature convergence. The steps of the DPSO are outlined in the following. 

Step 1: Initialization 

The positions of all particles are randomly set within predefined ranges and their associated 

velocities are set to 0. The objective function is evaluated for each particle and xlbesti 

(historically best position of ith particle) and xgbest (historically best position of the entire 

swarm) are stored. 

Step 2: Velocity and position updating 

The velocity and position update rules are given by: 
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where vi,j
k
 is the velocity or the amount of change of the design variable j of particle i in kth 

iteration, xi,j
k
 is the current value of the jth design variable of the ith particle. r1, r2 and r3 are 

three random numbers uniformly distributed in the range (1, 0), c1, c2 and c3 are three constant 

parameters. χ parameter is used to avoid divergence behavior. In this study, c1, c2, c3 and χ are 

set to 2, 2, 4 and 0.5, respectively. 

ω is the inertia weight for the previous iteration’s velocity and it can be set in order to 

control the exploration of the algorithm. This parameter is defined as [26]: 
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where cov is the coefficient of variation of the swarm’s objective function. 

In Eq. (17), di,j
k
 is the jth variable of the democratic vector i, Di, in the kth iteration. The 

vector D represents the democratic effect of the other particles of the swarm on the movement 

of the ith particle is evaluated by: 
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Where n is the number of particles and the ˅ symbol stands for union.  objworst and objbest 

are the values of the objective function for the worst and the best particles in the current 

iteration, respectively. 

Step 3: Updating xlbest and xgbest 

The objective function is evaluated for each particle and xlbest and xgbest are updated. 

Step 4: Terminating criterion controlling 

Repeat the optimization process until a fixed number of iterations is completed. Otherwise, 

go to Step 2 for a new round of iteration. 

 

3.3 Colliding Bodies Optimization (CBO) and its Enhanced version (ECBO) 

3.3.1 CBO 

Colliding Bodies Optimization (CBO) is a population-based meta-heuristic optimization 

algorithm introduced by Kaveh and Mahdavi [20], which is based on the governing laws of 

one dimensional collision between two bodies from the physics. One object collides with other 

object and they move toward minimum energy level. The CBO is simple in concept, shows 

fast-converging behavior and depends on no internal parameters. The following steps are 

developed to introduce the details of this method. 

Step 1: Initialization 

The initial positions of all Colliding Bodies (CBs) are determined randomly in search 

space. 

Step 2: Defining mass 

Each CB has a specified mass defined as: 

 

nk

ifit

kfit
m

n

i

k ,...,2,1,

)(

1

1

)(

1

1



 

 
(23) 

 

Where fit(i) represents the objective function value of the ith CB and n is the number of 

colliding bodies. CBs are sorted according to their objective function values in an increasing 

order. To select the pairs of CBs for collision, they are divided into two equal groups: (i) 

stationary group, (ii) moving group. 

Step 3: Criteria before the collision 

The velocity of stationary bodies before collision is zero and moving objects move toward 

stationary objects: 
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Step 4: Criteria after the collision 

The velocities of stationary and moving bodies after the collision are evaluated by: 
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ε is the coefficient of restitution (COR) that decreases linearly from unit to zero. Thus, it is 

stated as 
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where iter is the current iteration number and itermax is the total number of iteration for 

optimization process. 

Step 5: Updating CBs 

The new position of each stationary CB is: 
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where xi
new

, xi and v'i are the new position, previous position and the velocity after the 

collision of the ith CB, respectively. rand is a random vector uniformly distributed in the range 

of [-1,1] and the sign ‘‘°’’ denotes an element-by-element multiplication. The new position of 

each moving CB is calculated by: 
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Step 6: Terminal condition check 

The optimization process is terminated after a fixed number of iterations. If this criterion is 

not satisfied go to Step 2 for a new round of iteration. 

 

3.3.2 ECBO 

Enhanced Colliding Bodies Optimization (ECBO) was introduced by Kaveh and Ilchi 
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Ghazaan [21] in order to improve the performance of CBO yet preserving some above 

mentioned strength points of the standard formulation. Colliding Memory (CM) is considered 

to save some historically best CB vectors and their related mass and objective function values 

to improve the performance of the CBO and reduce the computational cost. In each iteration, 

the solution vectors saved in CM are added to the population, and the same numbers of current 

worst CBs are deleted. To prevent premature convergence, a parameter like Pro within (0, 1) 

is introduced and it is specified whether a component of each CB must be changed or not. For 

each colliding body Pro is compared with rni (i=1,2,…,n) which is a random number 

uniformly distributed within (0, 1). If rni < pro, one dimension of the ith CB is selected 

randomly and its value is regenerated as follows: 

 

).( min,max,min, jjjij xxrandomxx 
 

(31) 

 

where xij is the jth variable of the ith CB. xj,min and xj,max respectively, are the lower and 

upper bounds of the jth variable. In order to protect the structures of CBs, only one dimension 

is changed. In this paper, the value of Pro set to 0.35 and the size of the CM is taken as n/10 (n 

is the number of colliding bodies). 

 

 

4. NUMERICAL EXAMPLES 
 

In this section the IRO, DPSO, CBO and ECBO algorithms are applied to nineteen widely 

used test problems in literature, representing a broad range of possible limit states that can 

occur in practice. The final results are compared to the solutions of some other methods to 

demonstrate the validity and effectiveness of these algorithms. 

For all examples a population of 20 agents is utilized. In order to investigate the effect of 

the initial solution on the final result and because of the stochastic nature of the meta-heuristic 

algorithms, each example is independently solved for 20 times with random initial designs. 

Afterwards the best results are reported for performance evaluation of proposed algorithms. In 

all the algorithms, the predefined maximum iteration is considered as 200. The total number of 

limit state function evaluations is the same for all of the algorithms (population size × 

maximum number of iterations). 

The constants ε1 of penalty function is set to unity for all examples except G5 from Table 1, 

G3 from Table 5 and G4 from Table 9. For these functions ε1 is set to 2, 3 and 3, respectively. 

In all examples, in the first steps of the search process, ε2 is set to 1.5 and ultimately increased 

linearly to 3. 

 
Table 1: Limit state function (the components are independent standard normal distribution) 
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Eight benchmark limit state functions with independent standard normal random variables 

are summarized in Table 1. The optimal reliability index and corresponding probability of 

failure obtained by crude Monte-Carlo [27], PSO [13], CSS [17] and proposed algorithms are 

shown in Table 2. As can be observed, the results achieved by different methods are 

approximately identical. The optimal design points obtained by proposed methods are given in 

Table 3. Statistical information is presented in Table 4. Convergence history diagrams of 

average optimal reliability index for the first limit state function from Table 1 are depicted in 

Fig. 1. 

 
Table 2: Comparison of failure probability and reliability index obtained by different methods 

  
Grooteman 

[27] 

Elegbede 

[13] 

Kaveh et al. 

[17] 
IRO DPSO CBO ECBO 

G1 
Pf - 0.00183 0.00183 0.001831 0.001832 0.001832 0.001832 

β - 2.9056 2.906 2.9058 2.9056 2.9057 2.9056 

G2 
Pf - 0.00337 0.003365 0.003334 0.003361 0.003354 0.003314 

β - 2.7099 2.71 2.7129 2.7103 2.7109 2.7149 

G3 
Pf - 0.000405 0.000404 0.000404 0.000404 0.000404 0.000404 

β - 3.4971 3.35 3.3496 3.3496 3.3496 3.3496 

G4 
Pf 0.00534 - 0.0227498 0.022464 0.022746 0.022752 0.022747 

Β 2.103 - 2 2.005333 2.0000 1.9999 2.0000 

G5 
Pf 0.00018 - 0.0013498 0.001350 0.001350 0.001350 0.001350 

β 2.925 - 3 2.9999 2.9999 2.9999 2.9999 

G6 
Pf 0.0347 - 0.022750 0.022756 0.022756 0.022756 0.022755 

β 1.996 - 2 1.9999 1.9999 1.9999 1.9999 

G7 
Pf 0.00416 - - 0.006211 0.006210 0.00621 0.006211 

β 2.481 - - 2.4999 2.4999 2.4999 2.4999 

G8 
Pf 0.105 - - 0.04863 0.048629 0.048629 0.048628 

β 1.625 - - 1.6582 1.6582 1.6582 1.6583 

 
Table 3: Design points obtained by algorithms 

 Design point IRO DPSO CBO ECBO 

G1 
x1 -2.75145 -2.74074 -2.74499 -2.74014 

x2 0.93450 0.96498 0.95296 0.96677 

G2 
x1 -2.5872 -2.52197 -2.56748 -2.47706 

x2 0.81629 0.99268 0.87017 1.11142 

G3 
x1 -1.67975 -1.68462 -1.66811 -1.68013 

x2 2.89798 2.89521 2.9047 2.89777 

G4 x1 0.04490 -0.01055 0.00574 -0.00449 
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x2 -0.03938 0.00725 0.00347 -0.00461 

x3 0.04674 -0.0095 0.00452 -0.00867 

x4 0.06378 0.00037 -0.00460 -0.01044 

x5 -0.0192 0.01194 -0.0019 -0.01201 

x6 0.01470 -0.0067 -0.01274 0.00206 

x7 -0.07475 -0.00161 -0.00243 0.00320 

x8 -0.06726 0.00509 0.00127 0.00357 

x9 -0.00213 -0.01465 0.00012 0.01327 

x10 2.00020 1.99991 1.99990 1.99991 

G5 
x1 -0.00325 -0.00042 -2.91e-008 -0.00625 

x2 2.99990 2.9999 2.9999 2.99991 

G6 
x1 -0.00174 0.00102 -2.35e-008 0.00132 

x2 1.99989 1.9998 1.9999 1.99990 

G7 
x1 1.76760 1.76209 1.75802 1.76847 

x2 1.76778 1.7733 1.77742 1.7669 

G8 
x1 1.4699 1.46880 1.47398 -0.76116 

x2 -0.76747 -0.7697 -0.75980 1.47329 

 
Table 4: Statistical optimization results obtained by algorithms 

  IRO DPSO CBO ECBO 

G1 

Best β 2.9058 2.9056 2.9057 2.9056 

Worst β 3.1025 3.1430 3.5352 3.0951 

Avg β 2.9946 2.9881 3.0307 2.9274 

Std β 0.0957 0.0990 0.1768 0.0573 

Iteration 100 52 38 190 

Avg Iteration 105.8 121.25 39.75 118.85 

Std Iteration 27.2968 36.5180 14.0295 50.7805 

G2 

Best β 2.7129 2.7103 2.7109 2.7149 

Worst β 6.3233 5.4257 3.9674 5.6122 

Avg β 3.5772 3.7728 3.0350 3.2572 

Std β 1.1430 0.8326 0.3724 0.6505 

Iteration 162 88 47 118 

Avg Iteration 132.35 127.7 51.55 118.3 

Std Iteration 24.2036 40.9712 12.2193 37.9502 

G3 

Best β 3.3496 3.3496 3.3496 3.3496 

Worst β 3.3519 3.3653 3.5560 3.3620 

Avg β 3.3500 3.3522 3.3670 3.3513 

Std β 0.0005 0.0041 0.0479 0.0029 

Iteration 90 109 30 54 

Avg Iteration 82.5 108.75 27.4 99.25 

Std Iteration 19.1874 53.0698 10.049 52.3529 

G4 

Best β 2.0053 2.0000 1.9999 2.0000 

Worst β 2.1244 2.0045 6.9571 6.2084 

Avg β 2.0293 2.0009 3.0399 2.2107 
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Std β 0.0271 0.0010 1.5502 0.9409 

Iteration 185 111 128 121 

Avg Iteration 174.15 137.55 157.95 132 

Std Iteration 20.3812 16.8693 30.8075 25.0620 

G5 

Best β 2.9999 2.9999 2.9999 2.9999 

Worst β 3.0005 2.9999 3.0053 3.0237 

Avg β 2.9999 2.9999 3.0001 3.0020 

Std β 0.0001 5.17e-007 0.0012 0.0057 

Iteration 66 36 20 149 

Avg Iteration 71.3 40.6 27.15 127.15 

Std Iteration 13.4363 7.8028 7.6796 47.8476 

G6 

Best β 1.9999 1.9999 1.9999 1.9999 

Worst β 2.0059 2.0000 2.0004 2.1130 

Avg β 2.0006 1.9999 1.9999 2.0056 

Std β 0.0016 3.12e-005 0.000126 0.0252 

Iteration 47 63 26 43 

Avg Iteration 93.2 60.8 27.7 68.65 

Std Iteration 34.1984 22.4232 8.4859 37.4858 

G7 

Best β 2.4999 2.4999 2.4999 2.499 

Worst β 2.5013 2.5012 2.5256 2.5149 

Avg β 2.5000 2.5001 2.5031 2.5009 

Std β 0.0003 0.0002 0.0057 0.0033 

Iteration 67 32 39 19 

Avg Iteration 78.05 64.25 27.05 55.1 

Std Iteration 28.9945 31.6525 7.5077 61.3170 

G8 

Best β 1.6582 1.6582 1.6582 1.6583 

Worst β 1.6679 1.6617 1.7081 1.6609 

Avg β 1.6595 1.6589 1.6663 1.6588 

Std β 0.0022 0.0010 0.0122 0.0005 

Iteration 98 42 20 73 

Avg Iteration 96.25 84.8 36.05 78.35 

Std Iteration 16.9049 41.6092 9.5832 47.2966 

Avg β = average optimized β; Std β = standard deviation on optimized β; Iteration = required 

number of iteration for the best run; Avg Iteration = average required number of iteration; Std 

Iteration = standard deviation on required number of iteration. 
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Figure 1. Comparison of average values of reliability index recorded in the optimization history 

for the different algorithms (G1 from Table 1) 
 

Table 5 provides five limit state functions with independent normal random variables. 

Column 2 gives the mean and standard deviation values of the variables. Table 6 lists the 

optimal reliability index and corresponding probability of failure obtained by different 

methods. It can be seen that the optimal β values achieved by various techniques are 

approximately the same. The optimal design points in normal and standard normal spaces 

are shown in Table 7. In Table 8, the statistical results of independent runs are summarized. 

The average convergence curves of proposed algorithms for the first limit state function 

from Table 5 are compared in Fig. 2. 
 

Table 5: Limit state function (the components are independent normal distribution) 
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Table 6: Comparison of failure probability and reliability index obtained by different methods 

  
Grooteman 

[27] 

Elegbede 

[13] 

Kaveh et al. 

[17] 
IRO DPSO CBO ECBO 

G1 
Pf - 0.009879 0.009878 0.009879 0.009878 0.009878 0.009875 

β - 2.3309 2.33092 2.3309 2.3309 2.3309 2.3310 

G2 
Pf - 0.01161 0.01161 0.011394 0.009608 0.0116 0.008621 

β - 2.2697 2.26969 2.2769 2.3413 2.2701 2.3814 

G3 
Pf - 5.232e-7 8.07e-7 8.07e-007 8.05e-007 7.95e-007 7.97e-007 

β - 4.883 4.79654 4.796378 4.79704 4.7995 4.798937 

G4 
Pf 1.46e-07 - 4.82e-8 4.72e-008 4.35e-008 4.53e-008 4.67e-008 

β 5.443 - 5.33329 5.33702 5.3516 5.3442 5.3387 

G5 
Pf 0.00286 - - 0.006211 0.006210 0.006211 0.006210 

β 2.431 - - 2.4999 2.4999 2.4999 2.4999 

 
Table 7: Design points obtained by algorithms 

 Design point IRO DPSO CBO ECBO 

G1 

x1 0.00111 0.00111 0.00111 0.00111 

x2 165.48 165.48 165.53 165.24 

u1 0.59394 0.5944 0.59895 0.57012 

u2 -2.25397 -2.2538 -2.2526 -2.2602 

G2 

x1 559.71 565.22 555.71 540.56 

x2 1032.3 1044.8 1030.3 1012.9 

x3 1.8444 1.8484 1.854 1.8738 

u1 -1.34300 -1.15916 -1.47619 -1.9812 

u2 0.98002 1.35638 0.91719 0.39036 

u3 -1.55578 -1.5160 -1.46048 -1.26244 

G3 

x1 6.38e+010 6.39e+010 6.42e+010 6.39e+010 

x2 0.00199 0.00199 0.00199 0.00199 

x3 0.52789 0.52788 0.52867 0.52888 

x4 0.88833 0.8858 0.8862 0.88624 

x5 90364 90136 90752 90883 

x6 74181 74424 74333 73990 

u1 -1.75342 -1.73945 -1.65693 -1.71645 

u2 -4.04282 -4.0395 -4.03658 -4.01175 

u3 0.37142 0.37056 0.44558 0.46518 

u4 -0.51851 -0.63105 -0.61343 -0.61147 

u5 1.61930 1.58382 1.67996 1.70040 

u6 0.74657 0.79006 0.77378 0.71258 

G4 

x1 19516 51622 20470 55456 

x2 0.00748 0.00283 0.00713 0.00263 

u1 -4.9999 -2.25816 -4.91856 -1.93070 

u2 -1.86650 -4.8519 -2.0901 -4.97742 

G5 
x1 15.304 15.314 15.303 15.319 

x2 4.6974 4.708 4.6965 4.7125 
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u1 1.76788 1.77142 1.76760 1.77295 

u2 -1.76753 -1.7640 -1.76781 -1.7625 

 
Table 8: Statistical optimization results obtained by algorithms 

  IRO DPSO CBO ECBO 

G1 

Best β 2.3309 2.3309 2.3309 2.3310 

Worst β 2.4651 2.4613 2.6532 2.4026 

Avg β 2.3546 2.3497 2.3614 2.3447 

Std β 0.0320 0.0346 0.0813 0.0193 

Iteration 85 67 33 76 

Avg Iteration 126.15 139.35 38.3 117.2 

Std Iteration 30.9060 49.9634 13.5805 38.7292 

G2 

Best β 2.2769 2.3413 2.2701 2.3814 

Worst β 5.1388 5.9199 4.6905 5.0723 

Avg β 3.2534 3.6394 2.5852 3.2628 

Std β 0.9307 1.0863 0.5750 0.8835 

Iteration 170 31 43 88 

Avg Iteration 163.05 125.75 60.6 121.8 

Std Iteration 18.7714 46.2133 11.4542 40.2852 

G3 

Best β 4.7963 4.7970 4.7995 4.7989 

Worst β 4.8038 4.8100 5.1449 4.8434 

Avg β 4.7986 4.8001 4.8548 4.8139 

Std β 0.0021 0.0033 0.0805 0.0119 

Iteration 85 152 77 141 

Avg Iteration 133.1 123.35 91.1 161.45 

Std Iteration 38.7147 48.3030 23.5011 23.7807 

G4 

Best β 5.3370 5.3516 5.3442 5.3387 

Worst β 5.4181 5.4278 5.4277 5.4280 

Avg β 5.3568 5.3946 5.4008 5.3878 

Std β 0.0261 0.0256 0.0247 0.0317 

Iteration 57 117 46 53 

Avg Iteration 90.8 110 55.6 104.9 

Std Iteration 42.3712 46.6713 14.4637 42.4932 

G5 

Best β 2.4999 2.4999 2.4999 2.4999 

Worst β 2.5005 2.5009 2.5149 2.5038 

Avg β 2.5000 2.5001 2.5015 2.5009 

Std β 0.0001 0.0003 0.0035 0.0011 

Iteration 60 38 23 30 

Avg Iteration 67.65 54.95 25.3 63.7 

Std Iteration 16.6647 24.1997 6.5862 55.2821 

Avg β = average optimized β; Std β = standard deviation on optimized β; Iteration = required 

number of iteration for the best run; Avg Iteration = average required number of iteration; Std 

Iteration = standard deviation on required number of iteration. 
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Figure 2. Comparison of average values of reliability index recorded in the optimization history 

for the different algorithms (G1 from Table 5) 

 

Six limit state functions are listed in Table 9. All of the random variables are 

independent standard normal. Table 10 summarizes the optimal reliability index and the 

corresponding probability of failure obtained by crude Monte-Carlo and proposed 

algorithms. Again the results achieved by different methods are approximately identical. 

The optimal design points are shown in Table 11 and statistical results are provided in Table 

12. Fig. 3 depicts the average convergence history for the optimal reliability index of the 

first limit state function from Table 9. 

 
Table 9: Limit state function (the components are independent standard normal distribution) 

Limit state function Description 

),,,max()(

250.2

323.2

500.2

677.2

43211

541

433

322

211

ggggxG

xxg

xxg

xxg

xxg











 

Parallel system 

),min()(

3

33

212

32

3211

ggxG

xg

xxxg







 Series system 

),max()(

3

33

213

32

3211

ggxG

xg

xxxg







 Parallel system 



STRUCTURAL RELIABILITY ASSESSMENT UTILIZING FOUR ... 

 

221 

),min()(

5.4

)2.0()1.0exp(2

214

212

4

1

2

121

ggxG

xxg

xxxg







 Series system 

),max()(

5.4

)2.0()1.0exp(2

215

212

4

1

2

121

ggxG

xxg

xxxg







 Parallel system 

),,,max()(

25.3

25.3

3
2

)(
)(1.0

3
2

)(
)(1.0

43216

2111

2113

212

212

212

211

ggggxG

xxxg

xxxg

xx
xxg

xx
xxg

















 

Series system 

 
Table 10: Comparison of failure probability and reliability index obtained by different methods 

  Grooteman [27] IRO DPSO CBO ECBO 

G1 
Pf 2.11e-04 0.003529 0.003442 0.003439 0.003363 

β 2.738 2.6940 2.7023 2.7026 2.7100 

G2 
Pf 2.57e-03 0.00135 0.001350 0.001350 0.001350 

β 2.953 2.9999 2.9999 2.9999 2.9999 

G3 
Pf 1.23e-04 0.000365 0.000364 0.000365 0.000364 

β 3.434 3.3780 3.3781 3.3780 3.3782 

G4 
Pf 3.54e-03 0.001350 0.001350 0.00135 0.001350 

β 2.925 2.9999 2.9999 2.9999 2.9999 

G5 
Pf 2.50e-04 0.000647 0.000647 0.000647 0.000647 

β 3.219 3.2171 3.2172 3.2171 3.2172 

G6 
Pf 2.18e-03 0.001350 0.001350 0.001350 0.001350 

β 2.925 2.9999 2.9999 2.9999 2.9999 

 
Table 11: Design points obtained by algorithms 

 Design point IRO DPSO CBO ECBO 

G1 

x1 1.08776 1.03139 0.99898 1.18811 

x2 1.58933 1.64823 1.67792 1.49069 

x3 0.93877 0.86184 0.82198 1.0100 

x4 1.38594 1.4611 1.5020 1.40707 

x5 0.8640 0.80269 0.74781 0.84296 

G2 

x1 -0.00010 0.00337 -2.03e-008 0.00751 

x2 -0.02114 0.00657 1.56e-008 -0.00311 

x3 2.99990 2.9999 2.9999 2.9999 

G3 x1 1.10801 1.08304 1.10151 1.11241 
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x2 1.08813 1.11315 1.09463 1.08349 

x3 2.99990 2.99995 2.9999 3.00017 

G4 
x1 0.00839 0.00211 -5.56e-008 -5.43e-005 

x2 2.99989 2.99989 2.9999 2.99990 

G5 
x1 1.61840 1.61854 1.61840 1.61856 

x2 2.78044 2.78047 2.78044 2.78045 

G6 
x1 -2.12052 -2.1243 -2.12428 -2.12016 

x2 -2.12197 -2.1182 -2.11821 -2.1223 

 
Table 12: Statistical optimization results obtained by algorithms 

  IRO DPSO CBO ECBO 

G1 

Best β 2.6940 2.7023 2.7026 2.7100 

Worst β 2.8248 2.8696 4.7878 2.8324 

Avg β 2.7277 2.7413 2.9720 2.7592 

Std β 0.0420 0.0446 0.4713 0.0350 

Iteration 177 128 104 157 

Avg Iteration 160.55 146.4 110.4 138.05 

Std Iteration 21.3380 42.7285 22.2365 49.5160 

G2 

Best β 2.9999 2.9999 2.9999 2.9999 

Worst β 3.0089 3.0007 2.9999 3.0412 

Avg β 3.0022 3.0000 2.9999 3.0070 

Std β 0.0026 0.0001 1.45e-012 0.0104 

Iteration 76 61 29 52 

Avg Iteration 116.05 84.15 31.35 113.35 

Std Iteration 22.4768 34.6581 5.1837 58.6481 

G3 

Best β 3.3780 3.3781 3.3780 3.3782 

Worst β 3.4034 3.3869 3.3955 3.3967 

Avg β 3.3840 3.3811 3.3808 3.3823 

Std β 0.0070 0.0023 0.0040 0.0047 

Iteration 111 172 56 98 

Avg Iteration 127.3 127.2 50.05 116.35 

Std Iteration 25.1732 44.2880 14.5872 39.3864 

G4 

Best β 2.9999 2.9999 2.9999 2.9999 

Worst β 3.0508 3.0077 3.0388 3.0083 

Avg β 3.0081 3.0003 3.0035 3.0003 

Std β 0.0131 0.0017 0.0093 0.0018 

Iteration 106 34 28 90 

Avg Iteration 112.65 64.85 28.25 81.35 

Std Iteration 47.0668 38.7777 5.9105 41.3995 

G5 

Best β 3.2171 3.2172 3.2171 3.2172 

Worst β 3.2221 3.2209 3.3381 3.2194 

Avg β 3.2178 3.2182 3.2304 3.2180 

Std β 0.0013 0.0009 0.0297 0.0006 

Iteration 84 72 54 36 
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Avg Iteration 119.05 100.75 62.5 108.75 

Std Iteration 24.9071 42.2970 24.3688 45.5653 

G6 

Best β 2.9999 2.9999 2.9999 2.9999 

Worst β 3.0014 3.0027 3.0070 3.0038 

Avg β 3.0001 3.0005 3.0008 3.0006 

Std β 0.0004 0.0007 0.0016 0.0011 

Iteration 74 108 21 95 

Avg Iteration 81.05 76.7 27.95 83.95 

Std Iteration 12.9917 32.5383 8.5129 56.0549 

Avg β = average optimized β; Std β = standard deviation on optimized β; Iteration = required 

number of iteration for the best run; Avg Iteration = average required number of iteration; Std 

Iteration = standard deviation on required number of iteration. 

 

 
Figure 3. Comparison of average values of reliability index recorded in the optimization history 

for the different algorithms (G1 from Table 9) 

 

 

5. CONCLUSION 
 

Structural reliability analysis utilizing the recently developed metaheuristic algorithms 

consisting of Improved Ray Optimization, Democratic Particle Swarm Optimization, Colliding 

Bodies Optimization, and Enhanced Colliding Bodies Optimization is studied in this paper. 

The various problems serve to demonstrate the efficiency and robustness of these optimization 

methods. The optimal reliability indexes yielded by the proposed algorithms are approximately 

identical with respect to those results reported in literature such as crude Monte-Carlo that can 

be obtained a near exact solution by evaluating many times of the limit state function. 

Therefore the proposed methods always converge to the optimal values of reliability index and 

their accuracies are proved. Also, a little standard deviation from the mean value of the twenty 
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independent runs and the low computing time of these zero order algorithms show the 

reliability of search and the efficiency of proposed methods, respectively. Generally, 

comparison of the results proves the suitability and efficiency of the proposed algorithms. 
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