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ABSTRACT 
 

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition 

(MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. 

Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of 

scalar optimization sub-problems and optimizes them simultaneously. It uses information of 

its several neighboring sub-problems for optimizing each sub-problem. This simple 

procedure makes MOEA/D have lower computational complexity compared with non-

dominated sorting genetic algorithm II (NSGA-II). The algorithm (MOEA/D) is compared 

with the Genetic Algorithm (NSGA-II) using a set of common test problems and the real-

world Zohre reservoir system in southern Iran. The objectives of the case study include 

water supply of minimum flow and agriculture demands over a long-term simulation period. 

Experimental results have demonstrated that MOEA/D can improve system performance to 

reduce the effect of drought compared with NSGA-II superiority. Therefore, MOEA/D is 

highly competitive and recommended to solve multi-objective optimization problems for 

water resources planning and management. 
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1. INTRODUCTION 
 

Operation policies for reservoir management in drought periods are important for mitigating 

drought-related impacts. During the drought season, system managers would rather incur a 

sequence of smaller water supply shortages than one potential catastrophic shortage [14]. 

Reservoir operators must decide on how much quantity of water to release and what to store. 

In this regard, several types of reservoir operating rules have been previously suggested. 

Revelle et al. [18] first introduced the linear decision rule, which assumes releases linearly 

related to storage and decision parameters. Shih and Revelle [20, 21] developed a 

multiphase hedging rule with a discrete curtailment ratio which corresponds to the available 

water calculated from the current storage and projected inflow. Later, Neelakantan and 

Pundarikanthan [15] employed a simulation-optimization methodology using neural network 

and multiple hedging rules to improve reservoir operation performance for a drinking water 

reservoir system. A few years later, Tu et al [25, 26] developed the discrete hedging rule 

presented by Shih and Revelle [21]. They considered a set of rule curves that is the function 

of the current storage level to trigger hedging for a multi-purpose multi-reservoir system. 

Recently, several papers have developed the hedging rule presented by Tu et al [25] such as 

Guo et al [6] employed an operating rule for multi-reservoir by combining parametric rule 

with the hedging rule to avoid catastrophic water shortage during droughts. Taghian et al 

[24] also, employed a hybrid model to optimize both conventional rule curve and the 

hedging rule simultaneously. Ngoc et al [16] designed a reservoir operation model with 

interactive balancing of water releases and water storage including environmental base flow 

requirements and flood control storage. They used a genetic algorithm with a penalty 

strategy for optimizing reservoir operation rule curves for multi-use water resources 

management.  

Many real-world optimization water resources management problems involve several 

conflicting objectives. For optimizing these problems to come into existence two types of 

methods, classical optimization methods and evolutionary algorithms. Some of the classical 

optimizing methods are linear programming (LP), non-linear programming (NLP) and 

dynamic programing (DP) [27, 12, 22 and 23]. Traditionally, all listed methods considered 

multiple objective functions using the weighting method or the  -constraint method without 

considering all the objectives simultaneously [1]. Recently, there is an increasing interest in 

using of biologically based evolutionary algorithms (EAs) for optimizing complex systems 

with either a single or multiple objectives. Multi-objective evolutionary algorithms present a 

set of non-dominated solutions/Pareto Fronts (PF) for multi-objective problems, which give 

a decision maker more flexibility in the selection of a suitable alternative. Almost all well-

known Multi-objective optimization evolutionary algorithms (MOEAs) such as NSGA-II 

and SPEA [29] use the Pareto dominance relation together with a crowding measure for the 

fitness evaluation of each individual. Pareto dominance-based algorithms work generally 

well to approximate PF in two or three objectives. However, their search ability is severely 

deteriorated by increasing the number of objectives, because almost all the solutions are 

non-dominated by each other under many objectives. To overcome this problem, recently, a 

new MOEA framework, multi-objective evolutionary algorithm based on decomposition 

(MOEA/D) [28, 13], has been proposed. It decomposes a multi-objective problem (MOP) 

into a set of scalar optimization sub-problems with neighborhood relations. Also, in the first 
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version of MOEA/D employed simulated binary crossover (SBX) [3] and polynomial 

mutation [5] as the search engines [28]. 

The main characteristic of MOEA/D is that a multi-objective problem is handled as a 

collection of a large number of single-objective problems.  

This study introduces a new multi-objective optimization algorithm based on 

decomposition (MOEA/D) as a new and capable multi-objective algorithm to obtain hedging 

rule parameters in a multiple reservoir system. Explicitly, MOEA/D decomposes the MOP 

into scalar optimization sub-problems. It simultaneously optimizes a number of single 

objective optimization sub-problems. In the following, to demonstrate the ability of purpose 

algorithm it has analyzed general MOEA/D algorithm in solving three benchmark functions, 

then it has compared the efficiency of the algorithm in solving benchmark functions with 

NSGA-II algorithm. After that, MOEA/D is used for obtaining the Pareto optimal rule 

curves for a multi-objective reservoir system management problem that considers minimum 

flow and agriculture demands as objective functions of Zohre reservoir system in southern 

Iran. In the following, a discussion is presented about the finding of this work. 

 

 

2. MULTI-OBJECTIVE OPTIMIZATION 

 

A multi-objective optimization problem (MOP) can be stated as follows:  

 
T

m
xfxfxFMinimize ))(),...,(()(

1
  

xtoSubject  
(1) 

 

 

where   is the decision (variable) space, F: 
mR consists of m real-valued objective 

functions, and    is called the objective space. The attainable set is defined as the set

 xxF ),( . An x solution is said to dominate solution y if and only if )()( yfxf
ii

 for 

every i  {1,…,m} and )()( yfxf
ii

  for at least one index j  {1,…,m}. A point *x  is 

Pareto optimal to (1) if there is no point x  such that )(xf  dominates )( *xf . )( *xf  is 

Pareto-optimal objective vector. The set of all the Pareto-optimal points is called the Pareto 

Set (PS). 

 

 

3. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM BASED ON 

DECOMPOSITION (MOEA/D) 
 

In this section, firstly, several scalarizing function-based algorithms are introduced and 

then the basic settings of MOEA/D are defined. 
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3.1. Scalarizing Functions 

 

The search ability of Pareto dominance-based algorithms is severely deteriorated by 

increasing the number of objective functions [11, 17, 7 and 8]. This is because when all 

individuals in a population are non-dominated, and the fitness evaluation of each individual 

is based on only a crowding measure in each Pareto dominance-based algorithm. Thus, their 

search ability is severely deteriorated. This leads to poor search ability of these algorithms 

for many-objective problems. Recently, it has been reported that better results can be 

obtained for many-objective problems by the use of scalarizing functions [9, 10]. The 

scalarizing functions have advantages such as the scalability to many-objective problems 

and need much less computation load than Pareto dominance-based one, especially for 

many-objective problems. In order to, MOEA/D is introduced as a multi-objective 

algorithm. This algorithm is based on a decomposition approach to convert the PF 

approximation into a number of single objective optimization problems. There are several 

approaches to convert the problem of the PF approximation into a number of scalar 

optimization problems. In the following, two approaches, which are used in our 

experimental studies, are introduced. 

1) Weighted Sum Approach  

Several approaches have been considered for converting a MOP into a number of single-

objective optimization sub problems. In the following, two most commonly used approaches 

are introduced. Let ),...,(
1 m

   be a weight vector, i.e., 



m

i

i

1

1  0
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  for all I = 1,… 

m. Then, the optimal solutions to the following single optimization problems: 
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are Pareto optimal to (1) if the PF of (1) is convex, where )|( xg ws

  is used to 

emphasize that   is a coefficient vector in this objective function, while   is the variable to 

be optimized. Where )|( xg ws
 is used to emphasize that   is a weight vector in this 

objective function, while x is the variable to be optimized. However, when the PF is not 

convex, the weighted sum approach may not be able to find some Pareto-optimal solutions.  

2) Tchebycheff Approach  
The single-objective functions to be minimized are in the following form: 
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)(
min

* xf
x

z
i


  (4) 

 

For each i=1,…,m, }),(max{*  xxfz
ii

. Under some mild condition, for each 

Pareto-optimal point
*x , there exists a weight vector λ such that 

*x  is the optimal solution of 

(3), and each optimal solution of (3) is Pareto-optimal to (1). Therefore, one is able to obtain 

different Pareto optimal solutions by altering the weight vector. 

At each generation, MOEA/D with the Tchebycheff approach maintains: 

1) A population of N points Nxx ,...,1
 where    is the current solution to the ith sub-

problem is;  

2)
NFVFV ,...,1

, where 
iFV  is the F-value of  , i.e., )( ii xFFV   for each i=1… N; 

3)
T

m
zzz ),...,(

1
 , where    is the best value found so far for objective  ; 

An external population (EP), which is used to store non-dominated solutions found 

during the search [28]. The flowchart of the MOEA/D algorithm is presented in Fig 1. 

 
3.2 Basic Setting: 

Setting of N and
N ,...,1

: This is controlled by parameter H. More precisely,
N ,...,1

are all the weight vectors in which each individual weight takes a value from 
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Therefore, the number of such vectors is 

 

        
    (5) 

 

Setting of Neighborhood: The Euclidean distance is used to compute the distance 

between any two weight vectors. 

Decomposition Approach: Tchebycheff approach is used in this paper. In the 

Tchebycheff approach, the reference point    is substituted by ),...,(
1 m

zzz  , where   is the 

best value of function     found so far. 
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Figure 1. Flowchart of MOEA/D algorithm 

 

 

4. NON-DOMINATED SORTING GENETIC ALGORITHM (NSGA-II) 
 

Non-dominated Sorting Genetic Algorithm (NSGA-II) is a popular and efficient multi-

objective evolutionary algorithm based on non-dominated sorting and elitist approach. The 

main difference between NSGA-II and other EAs is the method of operator selection. The 

NSGA-II employs the non-dominated sorting and ranking selection with the crowded 

comparison operator [4]. Three new innovations are described in the following: 

1) Fast non-dominated sorting: The fast non-dominated sorting approach has been 

employed to reduce the computing time complexity to O (MN2) (N is population size and M 

is the number of objective function).  

2) Crowding Distance: In the proposed NSGA-II, the crowding distance [2, 5] is used to 

get an estimate of the density of solutions surrounding a particular solution i in the 

population. For every chromosome in a Pareto front, a crowding distance is measured as the 

distance of the biggest cuboid contacting the two neighboring solutions. It adapts a suitable 
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automatic mechanics based on the crowding distance in order to guarantee the diversity and 

spread of solutions. 

3) Crowded Comparison Operator: The crowded comparison operator guides the 

selection process at the various stages of the algorithm towards a good spread of the 

solutions in the optimum fronts. This operator apply between two solutions with differing 

non-domination ranks, it prefer the solution with better ranking. Otherwise, if both solutions 

belong to the same front, the solution which is located in a lesser crowded region is 

preferred [5]. 

 

 

5. PERFORMANCE METRIC 
 

In order to allow a quantitative assessment of the performance of a multi-objective 

optimization algorithm, three performance metrics were calculated: the spacing metric (SP), 

the generational distance (GD), and the diversity metric (DM) [19]. 

The spacing metric is a measure of the distribution of the non-dominated solutions set 

found and is calculated as: 
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Generational distance is a measure of the closeness of the non-dominated solutions set 

found to the true Pareto front, and it is calculated as: 
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(7) 

 

where, n = number of points on the non-dominated solution set; and di = Euclidian distance 

between each solution to the nearest point on the true Pareto front. 

 

Application of the Methodology 

The preceding two algorithms are applied to a set of test problems first and then to a real 

case study. These two applications are selected to investigate advantages and disadvantages 

of the MOEA/D algorithm compared with the NSGA-II algorithm. 

 

Test Problem 

In order to demonstrate the search performance of MOEA/D, three benchmark test 

functions are selected. Equations for and the optimal Pareto front of each test function are 

shown in Table 1. The parameter settings of both algorithms are given in Table 2. 
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Table 1: Test Problems 

Problem n Objective function Constrains 

ZDT1 30 

f1(x) = x1 

10  x  
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3
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SRN 2 
f1(x) = (x1-2)2 + ( x2-1)2 + 2 g1(x) = x1

2  +  x2
2 ≤ 225 

f1(x) = 9 x1 - ( x2-1)2 g2(x) = x1 - 3 x2 ≤ -10 

 
Pareto fronts for the three test problems are presented in Fig. 2(a) for ZDT1 test, Fig. 2(b) 

for FON’s test, and Fig 2(c) for SRN’s test. 

 
Table 2: The parameters of the algorithms 

MOEA/D parameters NSGA-II parameters 

Max iteration 500 Max iteration 500 

Npop 100 Npop 100 

Number of Archive 100 Crossover rate 0.8 

Number of Neighbors 30 Mutation rate 0.3-0.01 

 
The first function ZDT1 is perhaps the easiest of all of the ZDT problems, and the only 

difficulty of MOEA may face in this problem is that it has a large number of variables. Table 

3 shows the quantitative results and Fig 2 shows qualitative results using the current 
algorithm. 

 
Table 3: Performance Metrics for Test Problems 

Algorithm 
Problem ZDT1 FON SRN 

Statistic\metric GD SP GD SP GD SP 

MOEA/D 

Mean 0.00091 0.00790 0.00096 0.00957 0.1819 1.4093 

Worst 0.00096 0.00868 0.00098 0.01000 0.1890 1.5808 

Best 0.00083 0.00618 0.00094 0.00905 0.1749 1.2124 

SD 0.00004 0.00094 0.00002 0.00034 0.0047 0.1193 

NSGA-II 
Mean 0.00486 0.06609 0.00212 0.00837 0.4116 1.5850 

Worst 0.00493 0.06706 0.00216 0.00918 0.4320 1.4601 
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Best 0.00469 0.06364 0.00209 0.00764 0.3966 1.7075 

SD 0.00009 0.00128 0.00003 0.00065 0.0152 0.1337 

 

The second function, FON is the three-variable formulation of Fonseca and Fleming. 

Here, the objective function is scalable and the Pareto front is a single concave curve. From 

Fig. 2 it can be seen that the MOEA/D effectively finds diverse solutions along the optimal 

PF. Its good performance is also evident from Table 3.  

The third test problem, SRN is a MOOP with two objectives subject to two constraints. 

Here, the constrained Pareto optimal set is a subset of the unconstrained Pareto-optimal set, 

which gives difficulty in finding the true Pareto optimal region for the algorithm. From 

Table 3, it is clear that MOEA/D was able to attain the both goals. It can be seen clearly 

from figure 2 that the Pareto front is well predicted and a large number of optimal 

solutions spread out over the entire front are obtained. 
The performance metrics results are presented in Table 3 for both MOEA/D and NSGA-

II. The results have shown MOEA/D performance is better on GD metric in all test 

problems, whereas the NSGA-II performance is better on SP metric of FON test problem. 

 

Multi-purpose and multi-reservoir operation problem 

In this section, the MOEA/D algorithm is used to determine the optimal hedging rule 

curves of the Chamshir, Kosar, and Kheirabad reservoirs located in Zohre reservoir system 

in southern Iran. This system has an area of about 16,000 km2. The schematic configuration 

is shown in Fig. 3. The future system comprises 3 reservoir dams, 7 input stream flows, 9 

irrigation network, 3 public demand channels, 2 minimum flow channels, 9 junction nodes, 

and some general channels. The useful storage volumes for the reservoir dams including 

Kosar, Chamshir and Kheirabad are 418, 1576 and 104 million cubic meter, respectively. 
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(c) 

Figure 2. Results for test problems: (a) ZDT1; (b) FON; (c) SRN 

 

Figure 3. Schematic configuration of the water supply system 

 

 

6. METHODOLOGY 
6.1 Simulation method  

This paper presents a monthly reservoir operation of the multi-purpose and multi-

reservoir systems according to hedging rule curves. These rule curves are established at the 

planning stage to provide guidelines for operating the reservoir. In this simulation model, the 

total reservoir storage space is divided into a number of zones using a set of rule curves. In 
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fact, rule curves show the current storage level to trigger hedging. Additionally, the amounts 

of the hedging rule are specified through the rationing factors as a percent of target demands 

for each zone [25, 26]. This study considered two rule curves (upper and lower curve), thus 

there are three zones of normal, drought, and severe drought conditions (Fig. 4). MOEA/D is 

applied to the simulation model for optimizing simultaneously the rule curves and rationing 

factors in the multi-purpose multi-reservoir system. The simulation model creates the 

operation rules based on hedging rule for the multi-reservoir system water supply. Decision 

variables in the proposed rule are given by the optimization model. How to apply 

simultaneously both the rule curves coupled with hedging rules is described next.  

1) When the beginning reservoir storage is in zone 3 (Fig. 4), all target demands are met 

at the 100% level. 

2) When the reservoir storage is in zone 2, the reservoir release for meeting the planned 

demand must be cut back for instance by 30%.  

4) When the beginning reservoir storage is in zone 1, the reservoir release for meeting the 

planned demand must be cut back for instance by 60%. 

The equations (8), (9), and (10) represent the function relationship:  

 

ttt DRthenzoneSif
1

,1   (8) 

ttt DRthenzoneSif
2

,2   (9) 

ttt DRthenzoneSif  ,3  (10) 

 

where    is beginning reservoir storage at period t; Dt is planned water demand; Rt is 

reservoir release, 1  and 2  are rationing factors, and 10 21   . The value of 

rationing factors can be obtained either by optimization.  

 

 
Figure 4. The new hedging rules for a multipurpose reservoir 
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In this research, the water demands are divided into three categories, such as agriculture, 

public and minimum flow requirements for environmental purposes. The public demands 

have the highest priority in comparison with the other demands. Thus, the public 

demands are full supplied as possible. Fig. 5 shows the flowchart of the proposed 

simulation method. 

 

 

7. OBJECTIVE FUNCTION 
 

The first objective of this study is the minimization of the minimum flow demand shortage 

and the second objective is to minimize the agriculture demand shortage. In this proposed, 

the modified shortage index (MSI) of Hsu and Cheng (2002) is used in the present study, 

that is:  
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Where,     is the total shortage in the tth period (month);     is the total demand; T is the 

total number of time periods.      and      are modified water shortage indexes for 

minimum flow and agriculture demands, respectively. These two competing system 

objectives are both considered and minimized. The complete multi-objective problem is 

solved based on MOEA/D. The next section illustrates the detailed description of system 

constraints. 

 

System Constraints 

In this paper, numbers of decision variables consist of 24 target levels (12 monthly levels 

for each rule curve of each reservoir) which refer to the position of hedging rule curves, 4 

rationing factors for the agricultural demands, the minimum flow and 4 coefficients for 

determining the transition zone in rule curves. Thus, there are 80 decision variables. 

The water balance of a reservoir system is considered as the system constraint, that is: 

 

tttttt ESpRQSS 1  (12) 

 

In addition, minimum and maximum allowable values for the storage volume at each 

period: 

 

maxmin SSS t   (13) 

 

Where,    is the reservoir storage at period t;    is the water inflow to reservoir at period 

t;      is the minimum water storage of reservoir;      is the maximum water storage of 

reservoir. Et is volume of evaporation during period t; and Spt is volume of spilled water 
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from reservoir at period t. 

 

 
Figure 5. Flowchart of the simulation method 
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This paper aims to investigate the utility of the hybrid of hedging policy with MOEA/D 

algorithm in reservoir operation. In the paper, the following two operational objectives are 

considered: (1) satisfaction of the minimum flow requirement; and (2) minimization of MSI 

for agricultural demands. To compare the performance between the conventional and new 

hedging rules, we considered the historical records spanning 48 years, from 1956 to 2003. 

The record includes severe drought periods particularly from 1958 to 1966 for nine 

successive years. Fig. 6 shows the monthly time series for the inflow and demand in the 

system. The MOEA/D is coupled with the reservoir simulation model to optimal operation 

of the multi-reservoir system for water supply.  
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To evaluate the obtained optimal Pareto set of MOEA/D, non-dominated sorting genetic 

algorithm (NSGA-II) has been considered during two scenarios, these scenarios has been 

described in the following:  

1) A point of Pareto set has been selected that it's the agriculture MSI value is equal for 

two optimization methods. 

2) A point of Pareto set has been selected that it's the minimum flow MSI value is equal 

for two optimization methods. 

The parameter settings of both algorithms are given in Table 2. Considering the previous 

scenarios, the procedure simulation-optimization is solved then the Pareto set presented in 

Figs. 7 and 8.  

The performance metrics results are presented in Table 4 for both MOEA/D and NSGA-

II. The results show MOEA/D performance better on all statistic metric of GD and 

maximum and standard deviation of SP, whereas the NSGA-II results are slightly better on 

minimum and mean of SP.  

With the same optimization objective and constraints, the rationing factors and the rule 

curves are optimized using the same algorithm of MOEA/D and get the similar values in 

Table 5 and Figs. 9, 10 and 11. In order to analyze the differences of the operation results 

derived from the hedging rule, the MSI and the maximum MSI of water supply were 

considered. 

The hedging rule curves for minimum flow and agriculture divide the storage of 

reservoirs into three zones. When the reservoir storage stays in some zones during operation, 

the water supply decision for each water demand is made according to the Eqs. 8, 9 and 10. 

Minimum flow usually requires better water supply than agriculture. Therefore, if the 

restriction of water supply has to be made, the water supply for agriculture should be 

reduced first instead of Minimum flow. In this paper, the proposed operating policy can deal 

with this problem. 

As shown in Table 6, the long term minimum flow MSI value of the proposed algorithm 

is equal to 1.03, which is 40% better (less) than the NSGA-II value of 1.72. Also, the total 

MSI value equal to 4.18 in the proposed algorithm was slightly better than the NSGA-II 

value of 4.88.  Also, Table 7 shows that the maximum of annual minimum flow MSI values 

given by the proposed algorithm are smaller than those of the NSGA-II. In Table 7, in all 

failure years it has been determined that the minimum flow MSI values of the proposed 

method is less than NSGA-II. It shows that the proposed algorithm is slightly superior to 

reduce the maximum and total MSI value in compared with NSGA-II.  

In Tables 6 and 8, the results of the second scenario have been presented. In this case the 

long term minimum flow MSI value is equal for two optimization algorithms, and the long 

term agriculture MSI value improved 9 percent. Comparing these scenarios, it was indicated 

the method with lower the maximum and total MSI prevents critical shortages and spreads 

shortages across operational periods. 

Finally, optimum rule curves coupling to hedging rules for Kosar, Kheirabad, and 

Chamshir reservoirs are shown in Figs. 9, 10, and 11. Note that according to the irrigation 

practices in Iran, the water year begins from October. 

The following may be concluded from the presented results: 

- Table. 3 clearly indicates that for all the test instances, the GD-metric obtained by 

MOEA/D is better than that obtained by NSGA-II.  
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-Table 3 also shows that the standard deviation of both GD-metric and SP-metric in 

MOEA/D is smaller than that in NSGA-II for all the instances, which implies that MOEA/D 

is more stable than NSGA-II. 

-The proposed algorithm is much better to minimize the maximum of annual minimum 

flow MSI than that obtained by NSGA-II. This means Pareto distribution is better for the 

proposed algorithm. The proposed algorithm has better Pareto distribution. 

- According to Table 5, it can be concluded that the proposed algorithm has a better 

ability to reduce the total MSI.  

 
Table 4: Performance Metrics for Zohre Water resources System Problem 

Statistic\metric 
MOEA/D NSGA-II 

GD SP GD SP 

Max 0.0067 0.0760 0.0142 0.0806 

Min 0.0035 0.0376 0.0070 0.0285 

Mean 0.0048 0.0568 0.0094 0.0485 

SD 0.0012 0.0150 0.0025 0.0191 

 
Table 5: Rationing factors for different demands 

Rationing Factor 
Agriculture 

Demands 

Minimum flow 

requirements 

   0.21 0.65 

   0.79 0.92 

 
Table 6: Long-term system performance during period (1956-2003) 

Hedging 

Rule 

The first scenario The second scenario 

MSI For Different Demands MSI For Different Demands 

Min. Flow Agriculture Total Min. Flow Agriculture Total 

MOEA/D 1.03 3.16 4.18 1.19 3.02 4.21 

NSGA-II 1.72 3.16 4.88 1.19 3.43 4.62 

 
Table 7: Annual system performance during failure years (the first scenario (S1)) 

Failure 

years 

MOEA/D NSGA-II 

Objective Function Value Objective Function Value 

Min. Flow Agriculture Total Min. Flow Agriculture Total 

1959 0.70 1.91 2.61 1.52 4.20 5.72 

1960 2.64 8.10 10.74 4.29 10.12 14.41 

1961 5.40 21.78 27.19 9.22 18.68 27.90 

1962 9.56 38.66 48.22 19.07 34.34 53.41 
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1963 15.95 45.32 61.28 26.18 41.85 68.03 

1964 8.61 15.01 23.62 11.74 14.83 26.57 

1965 2.29 7.29 9.58 3.25 7.2 10.45 

1966 2.18 5.33 7.50 3.10 6.97 10.07 

1967 0.76 1.36 2.13 0.85 1.91 2.76 

1968 0 0.47 0.47 0 0 0 

1970 0.47 1.50 1.97 0.63 2.6 3.23 

1971 0 0.66 0.66 0.13 1.4 1.53 

1984 0 0.25 0.25 0 0 0 

2000 0.83 2.03 2.86 1.82 4.40 6.22 

2001 0.24 1.25 1.50 0.93 3.04 3.97 

 
Table 8: Annual system performance during failure years (the second scenario (S2)) 

Failure 

years 

MOEA/D NSGA-II 

Objective Function Value Objective Function Value 

Min. Flow Agriculture Total Min. Flow Agriculture Total 

1959 1.01 1.63 2.64 0.53 4.17 4.70 

1960 3.45 7.81 11.26 2.04 11.17 13.20 

1961 5.91 21.08 26.99 6.33 20.63 26.97 

1962 11.40 37.35 48.75 15.37 39.65 55.01 

1963 18.38 45.40 63.79 18.51 43.38 61.89 

1964 8.50 14.27 22.77 8.09 14.78 22.87 

1965 2.77 7.28 10.06 1.71 7.94 9.65 

1966 2.37 4.09 6.46 2.69 8.57 11.26 

1967 0.97 1.04 2.01 0.38 1.94 2.32 

1968 0.12 0.36 0.47 0 0.37 0.37 

1970 0.56 1.06 1.62 0.19 2.67 2.86 

1971 0 0.48 0.48 0 1.57 1.57 

2000 1.14 1.74 2.89 0.70 4.17 4.87 

2001 0.55 1.27 1.81 0.54 3.50 4.04 
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Figure 6. Total monthly inflows and demands in the system 

 

 
Figure 7. Non-domination solutions with MOEA/D 

 
Figure 8. Non-domination solutions with NSGA-II 
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Figure 9. Rule curves of the new hedging rules for Chamshir reservoir 

 

 

 
Figure 10. Rule curves of the new hedging rules for Kosar reservoir 
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Figure 11. Rule curves of the new hedging rules for Kheirabad reservoir 

 

 

9. CONCLUSIONS 
 

This work has presented a simple and generic evolutionary multi-objective optimization 

algorithm based on decomposition; called MOEA/D. The MOEA/D first decomposes the 

MOP into a number of sub optimization problems. Then, these sub-problems are optimized 

by an EA. A neighborhood relationship among all the sub-problems is defined based on the 

distances of their weight vectors. To evaluate the algorithm performance, the MOEA/D has 

been applied to solve the three benchmark test functions. The experimental results indicate 

that MOEA/D could significantly outperform NSGA-II on these test instances. Also, the 

proposed algorithm has been successfully applied for optimization of a multi-objective and 

multi-reservoir system operation namely Zohre system in southern Iran. Considering the 

main objective of the paper that is reduction of minimum flow shortage, the results have 

shown the minimum flow MSI value improved considerably. It was shown that the proposed 

algorithm is successful in field of water resources management and reduction of severe 

drought periods. In real life, the optimal tradeoff surface (or Pareto front) is then presented 

to the decision makers who will select one solution based on their preferences. Therefore, 

the results show that the proposed algorithm is able to find improved hedging rules for a 

multiple reservoir system. 
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