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ABSTRACT 
 

A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for 
stochastic variations in structural parameters and operating conditions. The reliability index 
calculation is itself an iterative process, potentially employing an optimization technique to 
find the shortest distance from the origin to the limit-state boundary in a standard normal 
space.  

Monte Carlo simulation (MCs) is embedded into a design optimization procedure by a 
modular double loop approach, which the self-adaptive version of particle swarm 
optimization method is introduced as an optimization technique. Double loop method has 
the advantage of being simple in concepts and easy to implement. First, we study the 
efficiency of self-adaptive PSO algorithm in order to solve the optimization problem in 
reliability analysis and then compare the results with the Monte Carlo simulation. While 
computationally significantly more expensive than deterministic design optimization, the 
examples illustrate the importance of accounting for uncertainties and the need for regarding 
reliability-based optimization methods and also, should encourage the use of PSO as the best 
of evolutionary optimization methods to more such reliability-based optimization problems. 
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The main objectives in the design of structural systems are to design systems which have 
satisfactory reliabilities and are as inexpensive as possible. In deterministic structural 
optimization problems the objective function is usually the volume or the weight of the 
structure and the constraints are related to code requirements for stresses, displacements or 
e.g. eigenfrequencies. 

For the rational design it is crucial to account for uncertain properties of material, loading 
and geometry as well as the mathematical model of the system. Moreover, reliability 
performances should be introduced as the most rational safety measures. Deterministic 
optimization enhanced by reliability performances and formulated within the probabilistic 
frameworkis called Reliability-Based stractural Design and Optimization (RBDO). 

These contradictory requirements are usually fulfilled using code-based, deterministic 
design procedures. In this paper it is described how reliability-based structural optimization 
problems using the evolutionary algorithm PSO, can be formulated and used as a robust tool 
in the overall reliability based design optimization process [1 -4]. 

A large number of numerical procedures have been developed to solve this type of 
problem. Most of the numerical algorithms used in deterministic structural optimization are 
based on sequential linear programming and dual methods that these methods are time 
consuming and usually don’t gain a exact results.  

In the last few decades, meta-heuristics on the basis of life evolution and swarm 
intelligence have been widely researched. They have been applied to various optimization 
problems and effective solutions were obtained for certain problems. For example, genetic 
algorithm (GA), evolutionary programming (EP), and ant colony optimization (ACO) are 
applied instead of strict optimization methods for the optimization of complex systems [5,6]. 

PSO has been successfully applied in many different application areas due to its 
robustness and simplicity [7 and 8]. In comparison with other stochastic optimization 
techniques, PSO have fewer complicated operations and fewer defining parameters, and can 
be coded in just a few lines. 
 
 

2. ENGINEERING OPTIMIZATION 
 
Most engineers when using optimization for design purposes, assume that the design 
variables in the problem are deterministic. This is referred to as deterministic design 
optimization. A deterministic design optimization does not account for the uncertainties that 
exist in modeling, simulationand manufacturing processes. A general deterministic 
optimization problem is defined in a mathematical form as 
 

Minimize: The objective function f(X) 
Subject to: 
 

(1)

 

( ) 0 1,..., inequality constraints

( ) 0 1,..., equality constraints (4)
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Where 1 2{ , ,..., }T
nb b b b are design variables. The optimizer searches for the best design 

within the design space defined by the above problem statement. There are many algorithms 
available that can solve this problem, such as mathematical optimization schemes, iteration 
algorithms(Sequential quadratic programming, Quasi-Newton methods, Conjugate gradient 
methods, Gradient descent and Reduced gradient method) or Heuristic algorithms (Particle 
swarm optimization, Simulated annealing, Genetic Algorithm, Ant Colony Optimization, etc.). 

 

 
Figure 1. Each particle forms avelocity vector to continue searching base on his own and 

swarm history of behavior 
 
 

3. PARTICLE SWARM OPTIMIZATION 
 

PSO is one of the latest evolutionary optimization techniques, that is one of the nature-
inspiredmeta-heuristics which is based on a metaphor of social interaction such as bird 
flocking and fish schooling [1]. PSO is the only evolutionary algorithm that does not 
implement survival of the fittest. As simple and economic in concept and computational 
cost, PSO has been shown to successfully optimize a wide range of continuous optimization 
problems. The swarm consists of NP particles, and each particle has a position 

1 2{ , ,..., }i i i inX x x x  between lower bound 1 2{ , ,..., }i i i inL l l l  and upper bound

1 2{ , ,..., }i i i inU u u u , 1 2{ , ,..., }i i i inV v v v between Vmin and Vmax, where i = 1, 2, …,NP 

and moves through a n-dimensional search space. According to the global variant of the 
PSO algorithm, each particle moves towards its best previous position and towards the best 
particle G of the current swarm. Let us denote the best previously visited position of the ith 
particle that gives the best fitness value as 1 2{ , ,..., }i i i inP p p p and the best previously 

visited position of the swarm that gives the best fitness as 1 2{ , ,..., }i i i inG g g g . The change 
of position of each particle each iteration can be computed according the distance between 

the current position ( iX ) and its previous best position ( iP ) and the distance between the 

current position and the best position of the hole swarm (G ). Then the updating of velocity 
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and particle position can be obtained as follow [1]. 
 

1 1 1 1 1
1 1 2 2( ) ( )t t t t t t

ij ij ij ij j ijv v c r p x c r G x         1t t t
ij ij ijx x v   (2)

 
where t = 1,2,…,Tmax, represents the iteration number, j denotes the design variable 

number, c1 is the cognition learning factor, c2 is the social learning factor and r1 and r2 are 
random numbers uniformly distributed in [0, 1]. Shi and Eberhart (1998) [7] proposed a 
modification in which a constant inertia weight ω is used to control how much a particle 

tends to follow its current direction as compared to the memorized iP and the G. In this 

version, the velocity update is given as Eq. 3. 
 

1 1 1 1 1
1 1 2 2( ) ( )t t t t t t t

ij ij ij ij j ijv v c r p x c r G x           (3)
 

3.1. Fitness of Particles 

For engineering problems we regularly look for the designs that minimize the cost (e.g. 
minimizing the volume of materials such as area of bars in trusses), so in these problems we 
consider the fitness as the smallest value of objective function by considering the amount of 
violation of the design constraints as they design for the structure. We consider the net 
objective function value as f(X) and the penalized objective function f'(X) in this paper as 

 
( ) ( )' ( )f X f X X   (4)

 
That, 
 

( ) (1 ( ))r XX      

(5)

 
and; 
 

max (100, 20 (1+0.2 (t-1)))r     

(6)

 
Where; t and X are current iteration of algorithm and design vector of each particle 

respectively; ( )X  is quadratic penalty function, r is the exterior penalty parameter and γ 
denotes the net value of penalazation due to the vaiolations. 

 
2 2 2 2

1 1 1

( ) {max[0, ( )]} [ ( )] {(max[0, ( 1)]) (min[0, ( 1)]) }
m s n

t
i j k u l

j k i i i

X X
P X g X h X

b b  

         (7)

 

3.2. Self-adaptive particle swarm optimization 

To improve the global searching capability by escaping the lcal solutions, we consider the 
following modification. 

In the most published papers about the use of PSO algorithm, they consider the inertia 
weight factor linearly changes with the current iteration. As using this concept, at the start of 



RELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS … 

 

155

PSO ω must has a great value (close to 1) and then linearly decrease to value close to zero. 
For the problems with complexity of objective function we couldn’t sure about the behavior 
of particles that how and when particles enter to feasible region and how to tune the ω to 
avoid diverging of solution. To solve this, we consider the inertia weight factor ω as a 
function of success of particles that could find a better fitness than the self previous design. 
We here use the exponensial function to define ω in each iteration as follow: 

 

 





 

exp( (1 ))Ps   if Ps ≥ 0.5 

(8)t =   

 exp( )Ps  if Ps < 0.5 

 
Where, exp(.) denotes the exponential function and PS is the percent of particles that 

succeed to find the better solution in the iteration t compare to the previous iteration t-1. 
Using the feasible function to manage the movement of each particle and don’t let it to go 

outside of feasible region after it enters this domain:  
 

 





 

1 if ( )t
iX =0 

(9) 
t
ifeasible =   

 0 else 

 
That, t stands for current iteration and i for particle number. Based on this tracking 

method, if each particle finds the solution that locate in the feasible region, then for all 
remaining iterations, it couldn’t move to the outside of this region and restores the previous 
position. 
 
 

4. CONSTRAINTS HANDLING 
 
While searching the design space, particles may violate either the problem constraints or the 
bound limits of design variables. In the current work, a modified feasible-based mechanism 
is used to handle the problem specific constraints based on the following four rules [9] 

Rule 1: Any feasible solution is preferred to any infeasible solution. 
Rule 2: infeasible solutions containing small violation of the constraints are considered as 

feasible solution (from 0.01 in the first iteration to 0.001 in the last iteration). 
Rule 3: Between two feasible solutions, the one having the better objective function value 

is preferred. 
Rule 4: Between two infeasible solutions, the one having the smaller sum of constraint 

violation is preferred. 
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5. RELIABILITY ANALYSIS 
 

Reliability is understood as the probability of a component or system performing required 
functions over its lifetime. The evaluation of the probabilistic design criteria requires a 
stochastic analysis of the system. Today, several reliability methods are available for 
calculating the probability of an event occurringwhile accounting for uncertainties. 

The Monte Carlo simulation method has been the most widely used probabilistic analysis 
method due to its generality, simplicity, and effectiveness on problems that are highly non-
linear with respect to uncertainty parameters [10]. 

Statistical moment methods provide a computationally less costly alternative for 
evaluating the reliability of systems but may lead to large approximation errors. The mean 
value First-Order Second Moment (MVFOSM) method, for example, is inaccurate and 
sensitive to the mathematical formulation of the limit state function if the mean value point 
is not on the failure surface [12]. 

First- and Second-Order Reliability Methods (FORM and SORM) are more accurate and 
robust. Both FORM and SORM require a search for the Most Probable Point (MPP) on the 
failure surface. FORM employs a first-order approximation of the failure function at the 
MPP for evaluating the probability of failure. Therefore, FORM is considered accurate if the 
curvature of the failure surface in the standard normal space of the random variables is not 
too large at the MPP. 

 
a) Monte Carlo simulation 

Monte Carlo Simulation (MCS) is known as a simple random sampling method or statistical 
trial method that make realizations based on randomly generated sampling sets for uncertain 
variables according to their distributions. The computation procedure of MCS is quite 
simple: 
1. Select a distribution type for the random variable; 
2. Generate a sampling set from the distribution; 
3. Conduct simulations using the generated sampling set; 
4. Compute the performance function base on the sampling set; 
5. check if the computed performance function is less than zero or not; 

In each trial, sample values can be digitally generated and analyzed. If N trials are 
conducted, the probability of failure is given approximately by 

 

f
f

N
P

N
  (10)

 
where Nf is the number of trials for which g(.) is violated out of the N experiments 

conducted. 
6. BASIC RBDO FORMULATION 

 
Reliability based design optimization (RBDO) deals with obtaining optimal designs 
characterized by a low probability of failure. Integration of reliability analysis into the 
design optimization process as a constraint, or even an objective, has been widely 
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accomplished in the design of structural systems [14 and 15]. 
Fig. 2, illustrates such a case, where the chance that the deterministic solution fails due to 

uncertainties in design variable settings. The reliable solution is characterized by a slightly 
higher function value and is located inside the feasible region. 

 

 
Figure 2. The concept of reliability base design optimization procedure 

 
The probability distributions of the random variables are obtained using statistical 

models. We consider here a reliability-based single-objective optimization problem of the 
following type 

 

d
min : ( )

Pr[ ( , ) 0] 1,...,
. . :

( ) 0 1,...,
i

T
i f

j

C

G P i m
s t

h j m M

   
   

d

d X

d

 (11)

 
Here, C is the cost or objective function to be minimizedby variation of determinstic 

design variables d, X is a set of design variables which are uncertain (random variables), Gi 
is the i th performance function, hj are deterministic constraints, Pr [·] is the probability 

operator,
i

T
fP  is the allowable failure probability, m is the number of performance functions 

and M isthe total number of constraints. It is to be noted that the design variables dmay be 
either independent deterministic variables or probability distribution parameters (e.g. the 
mean mX of random variables X). The deterministic constraints h j are typically the upper and 
lower bounds of the design variables. In the above model, the probabilistic constraints define 
the feasible region by restricting the probability of violating the limit state Gi to the 

admissible probability
i

T
fP . To find whether a given probability of constraint Gi is satisfied at 

a design point, weneed to compute the following probability of the complementary failure 
event: 

 

x2

x1 

Reliable 
solution 

point 

Deterministic
Optimum 

point 

Probability  
density function 

Feasible
Region
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i
i XG ( ) 0

Pr[G ( , ) 0] ... f (x)dx


    d,X
d X  (12)

 
where ( )Xf x is the joint probability density function of X. It is usually impossible to find 

an analytical expression for the above integral.The only difficulty the above problem poses 
is to compute the probability,Pr[.]. The existing reliability-based design optimization 
procedures can be classified into four classes [15], mainly based on the way the probability 
term Pr[.] iscomputed: 

1. Simulation methods;              2. Double-loop methods; 
3. Decoupled methods;               4. Single-loop methods. 
Here, in this paper we discuss Double-loop method and use it as the direct solution of 

RBDO problems in our examples. 
 

6.1. Double-Loop Method 

In the double-loop method, a nested optimization is considered. To compute the probability 
of success of each constraint, an optimization procedure (an inner-level optimization) is 
used. The outer loop optimizes the original objective function and the inner loop ends an 
equivalent deterministic version of each probabilistic constraint by formulating and solving 
an optimization problem. In the present study, PSO algorithm is used in outer loop for 
finding the best solution of the objective function and governs the MCs method to compute 
the failure probability of each design that was chosen before with particles. Flowchart of 
Fig. 3 illustrates this procedure finding the best reliable point base on constraints. 
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Figure 3. Flowchart of double-loop approach of RBDO base on PSO-MCS 

 
 

7. NUMERICAL EXAMPLES 
 

This section focuses on the efficiency of using the PSO algorithm in both inner and outer 
loops of RBDO approache as tested against several benchmark functions with continuous 
variables. Calibrated parameters of PSO For all examplesare listed in Table 1. 

 
Table 1. Calibrated parameters of PSO 

Start

Produce Initial particles randomly 
(Fill d vector) 

Is this design is 
located in the 

feasible region? 

Yes No Govern the interior-
penalty method 

Govern the exterior-
penalty method 

- Penalize the particles and compute the F(b) 
- Sort F(b)of particles; 

- Specify and store the Gj and Pij; 

- Produce the new velocity vector for each particle; 
- Determine the new position of particles base on the new   
velocity vector (Fill d vector) 

Solution 
converged? 

Use MCS and 
compute the Prob. of 
failure (Pr[G(d,X)]) 

Distribution type of X 

Check Constraints 

No 

-Save Gj design 

-Plot the Gj.vs. 
iterations 

Sample X 
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No. of particles 80 
Maximum iteration 50-100 

Social parameter 2 
Cognitive parameter 2 

 
7.1. Function Optimization 

In this Section, to show the efficiency of the proposed self-adaptive PSO algorithm, a non-
linear unconstrained benchmark performance functions is attempted for the reliability-index 
computation. 

Consider two normally distributed random variable x1 and x2 with the highly nonlinear 
performance function as [15] 

 
3 3

1 2 1 2

1 2

( ) ( , ) 18

10 10

5 5

g X g x x x x

x x
 
 

   

  
    

 
(13)

 
The goal is to compute the reliability index. The convergence history of the reliability 

index are illustrated in Fig. 4. 
 

 
Figure 4. Convergence history of reliability index 

 
Table 2. Estimated reliability index, Example 1 

u1              u2 x1              x2  

-1.6008        -1.5684 1.9959         2.1579 MPFP 

0.0000293 G(X) 
2.2411 (0.01251)Reliability Index (Pf) 

 
Table 2 also shows the optimum results obtained by the proposed technique. Comparing 

the results and the reliability index obtained in [15] (β=2.2401), the PSO shows fast 
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convergence and accurate results which it could find the best solution after 14 iterations. 
 

7.2. Numerical examples of RBDO functions 

7.2.1. Non-linear benchmark RBDO problem 

This is an analytical multidisciplinary problem. Even though the problem is just two-
dimensional, it is sufficiently nonlinear and has the attributes of a general multidisciplinary 
problem. This problem has two deterministic design variables; d1 and d2, and there are two 
random variables, x1 and x2. This problem involves a coupled system analysis and has two 
constraints. One of the constraints is deal with the upper and lower bond limitation of the 
deterministic design variables; another constraint is the probabilistic type and should use the 
stochastic analysis procedure for bound the probability computed from the performance 
function, to the target probability. The desired value of allowable probability is chosen as 
0.01. This benchmark RBDO example is [16] as 
 

2 2
1 2

2
2 1

1 2
1 2

min :

1
0]

,5

1% ( 2.32)

5 3Pr[
:

1.5 0.90 15

d

T
f

i

T T
f

d d

d x X P

P corresponding to

d
subject to x x

d



 
 



     
  

 
 

 
 

  
 (14)

 
At first glance, this can quickly found that regardless of the probabilistic constraint in this 

problem, the optimum solution is zero; however, by considering the probabilistic constraint 
and order a greater safety margin, we should use the RBDO formulation to minimize the 
objective function. 

The results and convergence history of this example are presented in Table 3 and Fig. 5. 
 

Table 3. Results of benchmark RBDO function 
Run Time 

(sec.)
Constraint 
Violation d2* d1* 

Pf*
(β*)

f*  

143 0.0 5.5053 5.3340 0.00994 
(2.3286) 

58.7611 
Current 
Study 

 -- -- 5.65 5.65 0.01 63.88 
Aoues and 

Chateauneuf 
[16] 

Improvement of objective function   = 8.711 % 
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Figure 5. Convergence history of reliability index of Example 2 

 
According to the best objective function achieved, this improvement preposition to the 

results of reference [16] is very salient. 
 

7.2.2. Highly non-linear benchmark RBDO problem 

In order to investigate the robustness of the proposed RBDO method, a highly nonlinear 
limit state function is considered with high curvatures in the neighborhood of the optimum 
point [16] 
 

2 2
1 2

1 2

1 2 2 1

min : ( )

5 3Pr[ ( , ) 0]
: ,

1.5 0.90 15

( , ) ln( )

1% ( 2.32)

f d d d

TG d X P
fsubject to x x

d

G d X d d x x

T TP corresponding to
f

 
 



 

             
   

 

 (15)

 
In the following, the results and the convergence history of the objective function is 

shown as in Table 4 and Fig. 6. 
 

Table 4. Results of benchmark RBDO function; Example 3 
Run Time 

(sec.)
Constraint 
Violation d2* d1* 

Pf*
(β*)

f*  

212 0.0 1.3029 1.3406 0.0097 
(2.3378) 

3.488 Current Study 

 -- -- 1.35 1.35 0.01 3.67 
Aoues and 

Chateauneuf [16] 
Improvement of objective function = 5.218%
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Figure 6. Convergence history of reliability index of Example 3 

 

 
Figure 7. Convergence history of reliability index of Example 3 

 
With respect to the Fig. 7 we can also see the difference between the best solution at the 

end of each iteration and the global best solution (Gi) of all particles up to current iteration.  
It is obvious that the cited difference is due to random behavior of particles in design 

space. Gradually, by increasing the number of iterations and decreasing the amount of 
corresponding penalties, the particles tend to the best global design point and two diagrams 
are match on the same. 

 
 

8. CONCLUSIONS 
 

In this paper a fast self-adaptive particle swarm optimization method was proposed to solve 
reliability-based design optimization of complex functions using exterior-interior penalty 
method in dealing with the design constraints. In this regard, when a design is allocated in 
the in feasible region, the exterior penalty method is embedded to encourage speeding up the 
particle movement to the feasible domain. The interior penalty formulation however, 

Best particle in each 

Best particle in all previous 
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emphasizes governing the design within the feasible rejoin, towards the optimum solution. 
In order to prove the adequacy and accuracy of self-adaptive PSO algorithm, we first 

review a function to calculate the reliability index .In the second example, which is an 

oscillating function, this method was successful in the accurate calculation of reliability 
index. 

In examples 2 and 3, trying to solve two highly nonlinear functions that are well known 
in the field of RBDO. Finally, the excellent improvement from solving these problems with 
the new method presented in this paper was reached. 
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