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ABSTRACT 
 

A multi-objective heuristic particle swarm optimiser (MOHPSO) based on Pareto multi-

objective theory is proposed to solve multi-objective optimality problems. The optimality 

objectives are the roof displacement and structure weight. Two types of structure are 

analysed in this paper, a truss structure and a framework structure. Performance-based 

seismic analysis, such as classical and modal pushover analysis, is carried out for the 

structures. Four optimality algorithms, namely, NSGA-II, MOPSO, MGSO, and MOHPSO, 

were used for structural optimisation to compare the effectiveness of the algorithms. The 

calculation results indicate that MOHPSO outperformed the other algorithms in terms of 

solution stability, universality, and consistency of the distribution of the Pareto front and the 

ability to consider constraints. The population can converge to the true Pareto front in the 

latter generations, which indicates that MOHPSO is effective for engineering multi-

objective optimality problems. 
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1. INTRODUCTION 
 

In recent years, swarm intelligence optimality algorithms, which have advantages over 

traditional algorithms with respect to the consideration of practical engineering problems, 

have been widely adopted and applied to structural optimisation problems [1]. Previous 

studies have largely focused on the optimisation of a single goal [2, 3]. However, practical 
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engineering problems are complex, and in many cases, more than one objective must be 

considered to satisfy the design requirements. Although swarm intelligence algorithms have 

several limitations, they are capable of solving complex problems, including multi-objective 

optimality design tasks. For example, Gholizadeh [4] reported the seismic optimality design 

of framework by a group search optimiser (GSO) and pushover analysis. Kaveh et al. [5] 

combined the nondominated sorting genetic algorithm II (NSGA-II) with an RBF network to 

solve multi-objective problems considering initial costs and life-cycle cost. Li et al. [6] 

analysed the life-cycle cost of structures based on a modified modal pushover using a 

simulated annealing algorithm. Oskouei et al. [7] used a genetic algorithm to determine the 

minimum weight of semi-rigid-connection steel frames. CMOPGA was proposed to solve 

multi-objective problems considering minimum weight and dynamic strain energy for steel 

frames [8]. Liu et al. [9] presented an improved multi-objective GSO for multi-objective 

optimality problems. Swarm intelligence-based bionic simulated evolutionary algorithms 

have attracted increasing attention from researchers in the field of optimisation and have 

been widely used in multi-objective optimisation problems, particularly for structural 

seismic optimal design. 

Linear analysis is the technique suggested for use in the Chinese Code [10] for the 

seismic design of building structures. However, the results obtained via linear analysis do 

not accurately estimate the inelastic response of structures. At present, ATC-40 [11], 

FEMA-273 [12], FEMA-356 [13], and FEMA-440 [14] are the most practical guidelines for 

nonlinear static analysis methods in the United States. The use of these guidelines is simpler 

and more efficient than nonlinear response history analysis. Chopra et al. [15] proposed a 

modal pushover analysis (MPA) procedure that, in addition to considering the first modal 

form, accounts for the contributions of higher modal forms in nonlinear static analysis. 

Chopra et al. [16] proposed a modified MPA to improve the accuracy of the MPA results in 

certain situations. 

The particle swarm optimiser (PSO), proposed by Kennedy and Eberhart [17], was first 

used to solve single-objective problems. However, many researchers have developed multi-

objective particle swarm optimisers (MOPSOs) based on PSO. One of the traditional 

MOPSOs was proposed by Coello et al. [18]. MOPSO, based on the Pareto strategy, chooses 

the globally optimal particle by an adaptive grid technique. Another successful combination 

of the Pareto strategy and an intelligence algorithm is NSGA-II [19], which is based on the 

evolutionary strategy of genetic algorithms. The validity and practicability of nondominated 

sorting have been illustrated with numerous multidisciplinary examples. The multi-objective 

group search optimiser (MGSO) [20] chooses an individual with infinite crowding distance 

in the Pareto front as a producer. The producer-scrounger model was used to update the 

group information. A multi-objective heuristic particle optimiser (MOHPSO) based on the 

heuristic particle swarm optimiser (HPSO) [3] is presented in this paper and is combined 

with multi-objective techniques to solve multi-constraint and multi-objective problems. The 

performance-based seismic design of a steel frame is presented as a case study. 
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2. MULTI-OBJECTIVE OPTIMISATION CONCEPTS 

 

2.1 Multi-objective optimisation problems 

A multi-objective optimisation problem for minimum objective design is shown below. 
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Where  1 2, ,..., nx x x x  is an n-dimensional decision variable. Each dimensional decision 

variable 
ix  varies from min

ix  to 
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ix .   1,2,...,jf x j m  is the jth objective function 

satisfying constraints of p inequalities and q equalities.  

Definition 1: Pareto dominance. For two-decision vector variables  1 2, ,..., nu u u u  and 
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Definition 2: Pareto constraint dominance. For multi-objective optimal problems with 

constraints, the solution i constraint-dominates solution j, if: (1) i is feasible and j is 

infeasible; or (2) both i and j are infeasible but the amount of constraint violation is lower 

for i than for j; or (3) both i and j are feasible but the fitness value of i is better than j. 

Definition 3: Pareto optimality. Regarding a set fA X , a decision vector fx X  is 

nondominated if :a A a x  . Moreover, x  is considered Pareto optimal if x  is non-

dominated regarding 
fX . 

Definition 4: Nondominated set and Pareto-optimal front. Let fA X . The function 

)( Ap  provides the set of nondominated decision vectors in A : }|{)( aAaAp  ; then, the 

set )( Ap  is the nondominated set regarding A , and the corresponding set of objective 

vectors   f p A  is the nondominated front set regarding A . The set  p fX p X  is called 

the Pareto-optimal set, and the set  p pY f X  is denoted as the Pareto-optimal front. 

Definition 5: The measure of performance for multi-objective optimisation results. A multi-

objective optimisation problem has more than one objective, in contrast to a single-objective 

optimisation problem. The measure of performance for multi-objective optimisation results 

includes three aspects. First, the distance between the nondominated front and the Pareto-

optimal front is minimised. Second, the distribution of the Pareto front obtained is uniform. 

Third, the distribution front of the nondominated solutions is maximised. 

 



J. C. Liang, L. J. Li and J. N. He 

 

82 

2.2 Non-dominated sorting genetic algorithm II (NSGA-II) 

NSGA-II [19] is one of the most widely used multi-objective optimisers that can converge to 

the true Pareto-optimal front by using a fast nondominated sorting approach based on Pareto 

dominance. NSGA-II is prior to NSGA and exhibits superior performance. 

NSGA-II provides a new generation by combining parent and offspring populations 

together. In this situation, double individuals are obtained from the combined population, 

and the calculation quantity decreases from )( 3MNO  to )( 2MNO , where M is the number 

of objectives and N is the population size. Elite offspring populations are created by the 

parent population through selection, crossover, and mutation operations, and the sharing 

parameter 
share  is replaced by crowded-comparison operators. 

The NSGA-II procedure is shown in Fig. 1. First, an initial parent population 
0P  with a 

size N is randomly generated in the searching space. The parent population is then sorted to 

several ranks in a nondominated manner. Then, the individuals in each rank are sorted again 

based on crowding distance. Excellent individuals are placed in the front of the population 

by the bi-level sorting scheme. The first offspring population 
0Q  with a size N is created by 

the elites in the parent population using crossover and mutation operators. Finally, a new 

population 
0R  with a size 2N, which is the combination of the current parent population and 

the offspring population, is created. The best N individuals in the new population are chosen 

as the parent population for the next generation. 
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Figure 1. NSGA-II procedure 

 

2.3 Multi-objective particle swarm optimiser (MOPSO) 

Coello et al. [18] proposed a MOPSO due to the success of applying Pareto dominance to 

the evolutionary multi-objective optimiser. An external repository REP  was used to store 

nondominated solutions in MOPSO. The update of REP  is based on an adaptive grid 

method, and the global best position, which leads the evolutionary direction of the 

population, is also selected based on the adaptive grid method. The adaptive grid employs 

the following techniques: 
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(a) Maintenance and update rules. The new solution is accepted if REP  is empty; the 

new solution is automatically rejected if it is dominated by the individual in REP ; the new 

solution is accepted and the individuals are rejected if the new solution dominates 

individuals in REP ; the new solution is accepted if it does not dominate any individual in 

REP  and vice versa. In the case of accepting a new solution, if REP  has reached its 

allowable capacity, then one hypercube is randomly selected from those hypercubes 

containing the maximum number of particles, and one particle in the selected hypercube is 

rejected randomly. If the accepted new solution lies outside the current bounds of the grid, 

then the grid must be recalculated, and each individual within it must be relocated. These 

maintenance and update rules are shown in Figs. 2 and 3. 
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Figure 2. The insertion of a new element in the adaptive grid with the individual within the 

boundaries of the grid (Ns = [4.6, 1.2]) 

 

(b) Selection of the global best position, GBEST . A hypercube containing particles is 

chosen by the roulette-wheel selection method. However, a hypercube with more particles 

assumes a smaller portion of the wheel. One particle in a hypercube will be chosen randomly 

as GBEST  when it is selected. The MOPSO procedure is as follows: 

Step 1. Randomly generate the initial population with a size N in the search space. 

Step 2. Initialise the velocity of each particle. 

Step 3. Evaluate the fitness of all particles and record the best personal position PBEST  

based on Pareto dominance. 

Step 4. Store nondominated solutions to the REP  based on the adaptive grid. 

Step 5. Choose a particle in REP  as GBEST  based on the adaptive grid, and then, 

compute the speed V  of each particle and update the position X  using Equations (4) and 

(5), respectively. 
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Where k

iP  and k

gP  are PBEST  and GBEST  in the kth iteration, respectively. 1c  and 2c  are 

the learning and accelerating coefficients, respectively. 1r  and 2r  are uniform random 

sequences in the range (0, 1).   is the inertia weight, and n  is the size of the population. 

Step 6. Stop the procedure if the stopping criteria are fulfilled. Otherwise, continue to 

step 3. 
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Figure 3. The insertion of a new element in the adaptive grid with the individual without the 

boundaries of the grid (Ns = [7.3, 0.2]) 

 

2.4 Multi-objective group search optimiser (MGSO) 

The multi-objective group search optimiser (MGSO) was proposed by Li and Liu [20]. 

MGSO updates the population based on the PS model. A nondominated set NDset  is 

constructed to store the nondominated solutions. The elites in the NDset  constitute an 

external elite set named EES . An individual with the largest crowding distance in EES  is 

chosen as a producer, which has a function similar to GBEST  in the PSO. The procedure of 

the MGSO is as follows: 

Step 1. Randomly initialise the position and head angles of all members in the search 

space. 

Step 2. Calculate the fitness values for all members. Select the elites in the NDset  as 

EES  and maintain and update the NDset  based on Pareto dominance. 

Step 3. A member in EES  with the largest crowding distance is chosen as producer, and 

then, 80% of the members are randomly selected to perform as scroungers, and the 

remaining members act as rangers. The positions of all new members are checked to 

determine whether they were within the search space; otherwise, the members are pulled 

back to the border of the search space. 

Step 4. The procedure is stopped if the stopping criteria are reached; otherwise, the 

procedure is repeated from step 2. 

The iterative procedure is shown in Fig. 4, where t is the tth iteration, P, S, and R are the 
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producer, scrounger, and ranger, respectively, and Pop is the population. 
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Figure 4. The MGSO procedure 

 

2.5 Heuristic particle swarm optimiser (HPSO) 

The heuristic particle swarm optimiser (HPSO) [3] is an improved PSO [17] that combines 

the harmony search algorithm (HS) with passive congregation [21]. The HS technique is 

used to handle variables that violate the variable boundaries. The particles that violated 

boundaries are replaced by the particle PBEST , which is similar to the harmony memory 

mechanism. A flyback mechanism used to handle constraints is used to determine whether 

any of the particles in the new population are infeasible. The particle is forced to fly back to 

the previous position if the constraints are not satisfied. The position X  of the ith particle is 

updated according to Equations (6) and (7): 
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where 
iR  is a particle selected randomly from the swarm, 

3c  is the passive congregation 

coefficient, and 3r  is a uniform random sequence in the range (0, 1). The other parameter 

symbols are the same as in PSO. The diagram of Equation (6) is shown in Fig. 5. The HPSO 

procedure is as follows: 

Step 1. Initialise the positions and velocities of the swarm randomly; then, calculate the 

fitness of all variables. 

Step 2. Determine whether each particle is infeasible or not. If the particle is infeasible, 

then it is regenerated randomly until it is feasible. Update PBEST  and GBEST . 

Step 3. Update the velocities and positions of the swarms using Equations (6) and (7). 
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Step 4. Determine whether each particle violates its corresponding boundary. If the 

particle violates the boundary, then it is replaced by the corresponding component of the 

vector from PBEST  selected randomly. 

Step 5. Calculate the fitness values of the new position 
1k

iX ; then, determine whether the 

current particle violates the specified constraints. Reset the particle to the previous position 
k

iX  (flyback mechanism) if it violates the constraints. 

Step 6. Update PBEST  and GBEST . 

Step 7. Stop the procedure if the stopping criteria are reached; otherwise repeat the 

procedure from step 3. 
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Figure 5. Individual position updating in PSOPC 

 

2.6 Multi-objective heuristic particle optimiser (MOHPSO) 

This paper presents a MOHPSO based on classical multi-objective algorithms. Its 

evolutionary process is based on HPSO. However, PBEST  is determined by crowding 

distance theory in NSGA-II. The REP , also known as EES , and GBEST  are maintained 

and updated by the adaptive grid technique. Due to the difference of mechanism in violating 

constraints between MOHPSO and HPSO, the flyback mechanism is still useful. However, 

the boundary values are accepted directly for the condition of violating variable boundaries. 

The MOHPSO procedure is summarised as follows: 

Step 1. Initialise the positions and velocities of the swarms randomly, and then, calculate 

the fitness of all particles. 

Step 2. Determine whether each particle is feasible. If the particle is infeasible, then it is 

regenerated randomly until it is feasible. Update PBEST . 

Step 3. Store nondominated solutions in the NDset ; then, update REP  and determine 

GBEST  using the adaptive grid. 

Step 4. Update the velocities and positions of the swarms using Equations (6) & (7).  

Step 5. Determine whether each component of the current vector satisfies its 

corresponding boundary. The corresponding component is replaced by the boundary value 

(pullback technique) if it violates the boundary. 
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Step 6. Calculate the fitness value of the new position 
1k

iX . Then, determine whether the 

current particle violates the problem-specified constraints. If so, reset 
1k

iX  to the previous 

position k

iX  (flyback mechanism). 

Step 7. Update PBEST and store the nondominated solutions in the NDset ; then, update 

REP  and output GBEST  using the adaptive grid. 

Step 8. Stop the procedure if the stopping criteria are fulfilled; otherwise, return to step 4 

and repeat the process. 

 

 

3. PERFORMANCE-BASED SEISMIC DESIGN 
 

3.1 Loads and constraints for optimum seismic design 

This paper adopts a penalty factor measure [5] to specify the level of constraint violation. 

The constraint parameters were obtained by dividing the earthquake responses by the 

corresponding allowable values and then subtracting 1 to obtain a dimensionless value. 

 

3.1.1 Gravity load 

According to the Chinese Code GB50009-2012 [22], the live load for dwellings is 
2/0.2 mkN , and the dead load varies with the cross sections of the components. According 

to FEMA-273 [12], the vertical load combination is as follows: 

 

)(1.1 LDG QQQ   (8) 

 

3.1.2 Constraints on the cross sections of columns between neighbouring floors  

Columns located on lower levels of the building should have cross sections that are equal to 

or greater in size than those of the columns located on upper levels of the building; thus, 
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The penalty factor 
1C  is expressed as 
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Where 
2

11 ii C  if 11 iC , ii C11   if 10 1  iC , and 01 i  if 01 iC . 

 

3.1.3 Constraints on the interstory drift 

The interstory drift ratio is one of the most important criteria in structural performance. 

According to FEMA-356 [13], there are four performance levels: Operational (OP), 

Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Table 1 

provides the specific parameters for the different performance levels. 
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Table 1: Performance levels and interstory drift ratio 

Performance level Interstory drift ratio (IDR) Probability of exceedance in 50 years 

OP 0.65% 50% 

IO 1.0% 20% 

LS 2.0% 10% 

CP 6.1% 2% 
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and h is the story height. The penalty factor 2C  is as follows: 
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Where 2

22 ii C  if 12 iC , 
ii C22   if 10 2  iC , and 02 i  if 02 iC . 

 

3.1.4 Constraints on strong columns and weak beams 

If a severe earthquake occurs, it is easier to repair damage in a beam than in a column. 

Furthermore, yielding in columns may trigger the overall collapse of the structure. Thus, the 

strong column-weak beam design theory is typically adopted: 
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C  i=1,2,...n, where n is the number of connections and I is the relative 

moment of inertia of the section. 

The penalty factor 3C  is calculated as 
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where 
2

33 ii C  if 13 iC , 
ii C33   if 10 3  iC , and 03 i  if 03 iC . 

 

3.1.5 Constraints on strength 

According to the Chinese Code GB50017-2003 [23], the stability of columns within the 

bending matrix of a plane is based on maximum strength theory. The load-carrying capacity 

of members under pressure and bending is related to the slenderness ratio  , eccentricity 

ratio , cross section, initial bending matrix, residual stress, and stress-strain relation. 

The stability equation of a column within the bending plane is as follows: 
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In addition to Equation (12), the stability equation of solid columns under axially loaded 

compression also considers the following equation: 

 

f
A

N



 (13) 

 

The global stability is considered when the strength is calculated for beams, that is, when 

the global stability equation in the principal plane of the bending components is considered, 

is expressed as follows: 
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In addition to Equation (14), the shear strength of the web component in the principal 

plane under bending loads is considered for solid beams and is expressed as follows: 
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Further details of the above equations are provided in Chinese Code GB50017-2003 [23]. 

Equations (12) to (15) are simplified uniformly as the following expressions: 
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 i=1,2,...n, where n is the number of the expected constraint 

checks for all elements, 
i  is the ith design stress value, and 

allowi  is the ith allowable stress 

value. 

The penalty factor 4C  is expressed as follows: 
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Where 
2

44 ii C  if 14 iC , 
ii C44   if 10 4  iC , and 04 i  if 04 iC . 

 

Performance-based multi-objective optimisation of large and complex structures requires 

that all constraints be categorised into two groups [5]. C1 and C3 constitute the first group, 

and the fulfilment of these constraints should be determined before the pushover analysis is 

conducted. If the first group of constraints is not fulfilled, i.e., C1+C3>0, then its fitness 

value is inf, and no further analyses are required. This mechanism is used to ensure that any 

feasible solution rigidly satisfies the constraints of the first group. C2 and C4 constitute the 

second group, and the fulfilment of these constraints should be determined after the 

pushover analysis is conducted. C2+C4 is used as the specific level of constraint violation 

regardless of whether it is equal to zero. 
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3.2 Nonlinear static procedure 

The nonlinear static procedure, also referred to as pushover analysis, is the standard practice 

for evaluating the seismic demands for the retrofitting of an existing building or the design 

of a new building. In this method, the structure is loaded with a specific distribution of the 

lateral loads until the target displacement is reached. The results of the analysis are obtained, 

including the forces, stresses, hinge states, and displacements. 

ATC-40 [12] and FEMA-356 [13] are the two traditional guidelines for pushover 

analysis. The capacity spectrum method (CSM) in ATC-40 superimposes the capacity 

spectrum over the response spectrum in ADRS format to obtain the intersection point of the 

two curves. A fast method of obtaining the performance point is the coefficient method in 

FEMA-356 [13]. Additionally, the performance point can also be obtained by nonlinear 

response history analysis (RHA) with a single-degree-of-freedom (SDF) system. This paper 

uses CSM to perform nonlinear static analysis according to the following procedure: 

Step 1. Develop the 5% damped (elastic) response spectrum in ADRS format. 

Step 2. Transform the capacity curve into a capacity spectrum using the following 

equations: 
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S
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Step 3. Select a trial performance point ( apiS , dpiS ), as shown in Fig. 6, or any other point 

chosen based on engineering judgment. 

Step 4. Develop a bilinear representation of the capacity spectrum according to the 

following general process: Set an ayS , which is lower than aiS ; then, determine 

6.0/6.0 ayddy SS  , where aydS 6.0  is the actual dS  corresponding to ayS6.0 . If the area 

BilCurA  under the bilinear curve, which should be equal to the area CapCurA  under the capacity 

curve in the range of (0, diS ), is within the acceptable tolerance, the bilinear curve is 

complete; otherwise, set BilCurCapCurayay AASS / , and repeat the process. 

Step 5. Calculate the spectral reduction factors as given in Equations (18). The demand 

spectrum and capacity spectrum are shown together in Fig. 6. Fig. 7 is the response 

spectrum in Chinese code and in ATC-40 
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Step 6. If the intersection ( dInterS , aInterS ) of the demand spectrum and capacity spectrum 

is within the acceptable tolerance, the intersection point is considered the performance point. 

Otherwise, set aInterai SS  , and return to step 4. 

The meaning of the performance point is the responses of the structure obtained under a 

single earthquake action. The 5% response spectrum used in the CSM or in the uniform 
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building code (UBC) can be transformed by a Chinese seismic design response spectrum as 

follows: 

 

AC5.2max2   Avsg CCTT 5.2/  (19) 
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Figure 6. Iteration for determining the performance point 
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Figure 7. Response spectrum in Chinese code and in ATC-40 

 

3.3 Modal pushover analysis 

Modal pushover analysis (MPA) [16] was developed to improve the pushover analysis 

procedure based on structural dynamic theory. Classical pushover analysis considers only 

the contribution of the fundamental modal, and thus, its results are not sufficiently accurate 

in mid- to high-rise buildings. The MPA procedure presented in this paper, which includes 

the contributions of all significant modes of vibration, is as follows: 
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Step 1. Calculate the natural vibration periods 
nT  and modes 

n  for linear elastic 

vibration of the building.  

Step 2. Develop pushover curves based on the uniform lateral force distribution 

nn Ms *
 for the nth mode, where M is the mass matrix of the structure. 

Step 3. Obtain the performance point using CSM. 

Step 4. Obtain the response 
nr  of each mode, e.g., forces, stresses, hinge states, and 

displacements, from the performance point and pushover curves. 

Step 5. Repeat steps 2 to 4 for the first n modes (typically the first three modes). 

Step 6. Determine the total response using the SRSS rule,  2

nrr . 

 
 

4. NUMERICAL EXAMPLES 
 

The multi-objective optimality problems presented in this paper aims to determine the 

minimum weight of the structure and minimum roof displacements or the minimal 

maximum node displacement. The basic parameters of all algorithms are set with the same 

values, e.g., population size, external archive, and number of iterations. 

 

4.1 Linear static analysis examples 

4.1.1 The 10-bar planar truss structure 

The 10-bar planar truss structure is shown in Fig. 8. Further details on the geometry, 

material, and load cases are provided by Li and Liu [20]. The design variables are the frame 

section areas, which are discrete variables. The maximum capacity of EES  is 30, and the 

size of the population is 300. The results obtained with MOHPSO were compared with the 

results from NSGA-II, MGSO, and MOPSO. Figs. 8 and 10 correspond to the results for 150 

and 300 generations, respectively. 

 

 
 

Figure 8. The 10-bar planar truss structure 
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As shown in Fig. 9, NSGA-II, MOPSO, and MOHPSO clearly outperform MGSO after 

150 iterations. Due to the limited capacity of EES , the solutions in EES  are representative, 

meaning that the Pareto front of the solutions is distributed widely and uniformly. 

Nondominated solutions in NSGA-II and MGSO are chosen based on the crowded-

comparison operator. If most of the individuals are located in part of the Pareto-optimal 

front, they will not likely be chosen for EES even though these individuals have small 

crowding distances. Thus, the crowded-comparison operator cannot ensure that the Pareto 

front is always well distributed. Based on Coello [18], the most suitable number of divisions 

for each dimension in the adaptive grid is 30. The result in Fig. 9 illustrates that the 

distributions of the Pareto front of MOPSO and MOHPSO are more uniform than that of 

MGSO. After 300 iterations, although the distributions of the Pareto front of MGSO are the 

widest and the results of MGSO are closest to the true Pareto optimal front, its result is still 

dominated by those of the other three algorithms. The results also indicate that MOHPSO is 

as capable of performing global searches as NSGA-II and MOPSO are, even after many 

iterations. 

 

4.1.2 The 25-bar spatial truss structure 

The 25-bar spatial truss structure is shown in Fig. 11. Further details about the geometry, 

material, and load cases are provided by Li and Liu [20]. The maximum capacity of EES  is 

30, and the size of the population is 300. The results of MOHPSO were compared with the 

results of NSGA-II, MOPSO, and MOPSO. Figs. 12 and 13 present the results for 150 and 

300 generations, respectively. 
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Figure 9. The Pareto-optimal front of the elite set after 150 iterations 
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Figure 10. The Pareto-optimal front of the elite set after 300 iterations 

 

 
Figure 11. The 25-bar spatial truss structure 

 

This example includes a total of 13 design variables, including 8 discrete section area 

variables and 5 continuous coordinate variables. Fig. 12 presents the Pareto fronts obtained 

after 150 iterations, in which the EES  of NSGA-II dominates those of MGSO, MOPSO, 

and MOHPSO under the conditions that 20 kg  weight  200 kg and 0.002 m  max-

distance  0.025 m, although this superiority is not statistically significant. All of the 

algorithms display similar performances when 200 kgweight 500 kg and 0.000 mmax-

distance  0.002 m. Figs. 12 and 13 illustrate that MOPSO and MOHPSO are the most 

uniform, followed by MGSO and then NSGA-II. After 300 generations, the results of 
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MGSO are closer to the true Pareto-optimal front. However, the superiority of MGSO 

compared to MOPSO and MOHPSO is not statistically significant. 

 

0 50 100 150 200 250 300 350 400 450 500

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 

f 1
: 

T
h

e
 m

a
x
im

u
m

 d
is

p
la

c
e

m
e

n
t 

o
f 

n
o

d
e

s
 (

m
)

 NSGA-Ⅱ
 MGSO

 MOPSO

 MOHPSO

f
2
: The total weight of the structure (kg)  

Figure 12. The Pareto-optimal front of the elite set after 150 iterations 

 

EES  can be easily maintained and updated using the crowded-comparison operator, 

from which it is easier to obtain a widely distributed Pareto-optimal front. However, the 

Pareto-optimal front may not be uniform. The adaptive grid method has the ability to control 

the evolutionary direction and can obtain a wider and more uniform distribution of the 

Pareto-optimal front than the crowded-comparison operator method. 
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Figure 13. The Pareto-optimal front of the elite set after 300 iterations 
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4.2 Nonlinear static analysis examples 

The geometry of a 5-bay, 9-story steel frame is shown in Fig. 14. The design cases are as 

follows: the earthquake fortification intensity is 7 degrees, the site classification is Class II, 

and the design earthquake group is the first group and is a rarely met earthquake condition. 

The requirement for earthquake performance is LS (life safety) level. Based on Chinese code 

for the seismic design of buildings [10], the characteristic period Tg is 0.35 s and the 

maximum value of the horizontal seismic influence coefficient max  is 0.9. The basic 

parameters for the algorithms are set as follows: the size of the population is 50, the capacity 

of the EES is 50, and the procedure is executed for 100 iterations. The 54 cross sections of 

the steel members are W-shaped and provided by the manuals of the American Institute of 

Steel Construction (AISC). The steel grade is Q345 [23]. The first 27 design variables are 

sections of columns, and the remainder are sections of beams, which are in the ascending 

order of area, as shown in Table 2. 
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Figure 14. Geometry and member grouping of the 5-bay, 9-story steel frame 

 
Table 2: Discrete sections corresponding to integer numbers 

Section No. Section No. 

W14×68 1 W16×26 28 
W14×74 2 W16×31 29 

W14×82 3 W18×35 30 

W14×90 4 W18×40 31 
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W14×99 5 W21×44 32 

W14×109 6 W21×50 33 

W14×120 7 W24×55 34 

W14×132 8 W24×62 35 

W14×145 9 W24×68 36 

W14×159 10 W24×76 37 

W14×176 11 W24×84 38 

W14×193 12 W27×84 39 

W14×211 13 W30×90 40 

W14×233 14 W30×99 41 

W14×257 15 W30×108 42 

W14×283 16 W30×116 43 

W14×311 17 W33×118 44 

W14×342 18 W33×130 45 

W14×370 19 W36×135 46 

W14×398 20 W36×150 47 

W14×426 21 W36×160 48 

W14×455 22 W36×170 49 

W14×500 23 W36×182 50 

W14×550 24 W36×194 51 

W14×605 25 W36×210 52 

W14×665 26 W36×230 53 
W14×730 27 W36×232 54 

 
The optimisation procedure is as follows: 

Step 1. Initialise the population in the search space randomly. 

Step 2. Check the constraint group C1+C3 for each individual and perform modal analysis 

and pushover analysis if C1+C3 is equal to zero. Then, calculate the fitness values and the 

constraint group C2+C4. Otherwise, the fitness values will be given inf directly, and the 

calculation for this individual is complete. 

Step 3. For MOHPSO, regenerate individuals randomly for those where the constraint 

values C1+C3 and C2+C4 are not equal to zero.  

Step 4. Maintain and update NDset  and EES  based on the current population. 

Step 5. Update the population by the strategy of the corresponding algorithm. 

Step 6. Calculate the fitness of each population. 

Step 7. Repeat step 4, and maintain and update NDset  and EES  based on the current 

population. 

Step 8. Stop the procedure if the stopping criteria are fulfilled; otherwise, return to step 5. 

 

4.2.1 Classical pushover analysis result 

For the structure in Fig. 14, a pushover analysis is performed using the inertial force 

distribution of the fundamental mode. The results for MOHPSO, NSGA-II, MOPSO, and 
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MOPSO after 100 generations are shown in Fig. 15. 

As shown in Fig. 15, the Pareto-optimal front of MOHPSO after 100 iterations dominates 

the solutions of the other algorithms. MOHPSO obtains 37 nondominated solutions even 

though the capacity of EES  is limited to the size of 50 individuals. Several of the NSGA-II 

solutions are not dominated by MOHPSO. However, their front is dispersed and far from the 

true Pareto-optimal front, illustrating that NSGA-II is not suitable for multi-constraint and 

multi-objective engineering problems. The front curve of MGSO is smoother than the front 

curve of NSGA-II but is rather narrow. Furthermore, most of the individuals are dominated 

by NSGA-II. Coello [18] reported that MOPSO converges rapidly. However, rapid 

convergence makes it easy to converge to the local optimum, as shown in Fig. 15. The 

solutions of MOHPSO are demonstrated to dominate those of MOPSO and MGSO. 

MOHPSO converges to the true Pareto-optimal front more quickly than the other 

algorithms because its first generation is feasible. The adopted flyback mechanism 

contributes more efficient offspring. The adaptive grid increases the uniformity of the 

external archive, and GBEST is more reasonably selected. The total computing time of 

MOHPSO required for the optimisation is approximately 10 h on an Intel Core i7, 2.4 GHz, 

but the solution process, which requires 5,000 fitness function evaluations, would have 

required approximately 100 h if the constraints were not divided into groups. 
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Figure 15. The Pareto-optimal front of the elite set after 100 iterations 

 

4.2.2 Modal pushover analysis result 

For the structure given in Fig. 14, analyses were performed using the inertial force 

distributions of the first three modes, and the final earthquake response results were obtained 

using SSRS. The solutions for MOHPSO, NSGA-II, MOPSO, and MOPSO after 100 

generations are shown in Fig. 16. 
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Figure 16. The Pareto-optimal front of the elite set after 100 iterations 

 

Fig. 16 illustrates that the Pareto front curves of NSGA-II and MGSO are similar to the 

results of classical pushover analysis. The Pareto front curve of MOPSO is even and smooth, 

in contrast to the Pareto front curve in Fig. 15, it still converges to the local optimum. 

Although parts of the solutions of MOPSO dominate those of MOHPSO after 100 iterations, 

the Pareto front curve of MOHPSO is wider and more stable than that of MOPSO. The 

results illustrate the superiority of the adaptive grid technique, which is more practical than 

the crowded-comparison operator. In addition, the total computing time MOHPSO requires 

for optimisation is approximately 20 h on an Intel Core i7, 2.4 GHz, whereas the solution 

process would be approximately 200 h if the constraints were not divided into groups.  
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Figure 17. The Pareto-optimal front of the MOHPSO after 100 and 200 iterations 

 

In Fig. 16, MOHPSO obtained 37 nondominated solutions, which did not reach the 

allowable capacity of EES . Fig. 17 presents the solutions of MOHPSO after 200 

generations. Most of the solutions after 200 iterations dominate those after 100 iterations, 
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indicating that MOHPSO is able to obtain a global optimum even in the latter generations. 

For the complex and time-consuming engineering analysis procedure, it is necessary to 

develop an optimisation technique that is more efficient, has a faster convergent rate, and 

requires fewer iterations to obtain the optimal solutions. MOHPSO was designed to fulfil 

these requirements. 

 

 

5. CONCLUSION 
 

In this study, a MOHPSO was presented based on HPSO to solve performance-based 

seismic multi-constraint and multi-objective optimisation problems. Four intelligence 

algorithms, namely NSGA-II, MOPSO, MGSO, and MOHPSO, were used in this paper for 

the performance-based optimal design of a plain truss structure, a special structure, and a 

multilevel frame structure based on weight and displacement optimisation. The results of 

linear and nonlinear analyses demonstrate that multi-objective optimisation based on swarm 

intelligence algorithms and the Pareto strategy can provide designers with reasonable 

choices. The multi-objective optimisation results using the NSGA-II, MOPSO, MGSO, and 

MOHPSO algorithms demonstrate the superiority and practicability of MOHPSO compared 

to the other three traditional intelligence algorithms. Although MOHPSO is not the optimal 

algorithm for all optimisation problems and has some limitations, it is suitable for the multi-

objective optimisation of engineering problems. 
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