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ABSTRACT 
 

For most practical purposes, true topology optimization of a braced frame should be 
synchronized with its sizing. An integrated layout optimization is formulated here to 
simultaneously account for both member sizing and bracings’ topology in such a problem. 
Code-specific seismic design spectrum is applied to unify the earthquake excitation. The 
problem is solved for minimal structural weight under codified stress, deformation and also 
user-defined weak-storey and architectural constraints. Particle swarm optimization is 
hybridized with an extra memory consideration strategy to solve this problem. As another 
issue, Baldwin effect of memetic algorithm is utilized in the proposed method to enhance its 
search capability regarding the geometrical and topological constraints. Treating a number 
of planar braced frames revealed superior performance of the proposed hybrid method 
partiqularly in avoiding premature convergence over the common particle swarm 
optimiztion for such a discrete problem.  
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1. INTRODUCTION 
 

Bracing members are common tools to control lateral sways of the building frames under 
seismic or wind loadings. Their application is necessary in tall buildings where the moment 
frame itself cannot confine the lateral displacements and drifts in their appropriate limits [1]. 
Spatial topology of bracings can help in such cases as a more effective lateral force resistant 
system. However, many practical and architectural requirements tend to minimize the 
number or positioning of bracings among the structural frames. Therefore, a trade-off 
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problem arises to find the best design of a braced frame with minimal weight but sufficient 
structural strength [2].  

In this field, continuum approaches seek the best material distribution in a medium and 
derive conceptual designs to be further interpreted to practical ones [3, 4]. However, discrete 
approaches search for the optimal placement of distinct members in a skeletal framework [5, 
6]. Traditional deterministic methods generate an initial space of potential members called 
structural universe or ground structure and gradually removing inefficient members out of 
this feasible space to achieve the optimal design [5, 7-8]. More recent approaches use 
stochastic methods including meta-heuristics in order to better search for global optima in 
such discrete design spaces [6, 9-13]. 

The present work proposes a hybrid particle swarm and memetic algorithm to solve this 
problem accounting for architectural constraints as well as structural drift and stress limits. It 
takes benefit of both directional search in swarm intelligence and exploitation feature of 
evolutionary computation [11-14]. An efficient encoding of the design variables is thus 
utilized to simultaneously deal with both bracings’ topology and frame sizing variables in 
order to seek true optimum. Performance of the proposed method is compared with standard 
particle swarm intelligence in a number of building frame examples to reveal its superior 
capability in escaping local optima toward higher quality results with acceptable stability of 
convergence. 
 
 

2. DYNAMIC EQUIATION OF MOTION AND SPECTRAL DESIGN 
 
A braced frame can be modelled with structural Multi-Degree of Freedom, MDF system. 
The corresponding mass, stiffness and damping properties are introduced by m , k  and c  
matrices, respectively. Concerning horizontal ground acceleration time-history ( )ga t  as the 

seismic excitation source, governing equations of motion are given by: 
 

1gmu c u k u a m      (1)
 
With the assumption of classical damping, the above system of equations can be decoupled 
by modal decomposition as: 
 

1 ,T
gM z C z K z a m u z         (2)

 
Where modal mass, stiffness and damping are introduced by the following diagonal 
matrices, respectively: 
 

TM m   , TK k   , TC c    (3)
 
No surprise that solution of such a MDF system depends on the input excitation. An 

alternative way is to apply spectral design to reduce such a dependency on the input record 
in estimating maximal design responses. The excitation source is thus a unified design 
spectrum given by the desired code of practice for given soil condition, peak ground 
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acceleration and seimicity of the construction site [15].  
Since concentrated mass model is employed in the present work, corresponding rotational 

degrees of freedom are condensed to the translational ones. For any complete model of 
bracings’ topology and sized structural members, the required stress and deformation 
responses and constraints are derived using modal analysis under combined gravitaional and 
spectral seimic loadings.  
 
 

3. PROBLEM FORMULATION 
 
The optimization problem is to minimize the structural weight for the assigned frame 
sections providing that all the addressing stress/displacement limitations of the design code 
are satisfied. 
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According to the employed direct index coding [16], each design variable, ix may be 

assigned an integer index from 0 or 1 to maximal number of available sections for the 
corresponding member group. The zero indices are implied only for bracings that are being 
omitted during layout optimization. Such an encoding leads to minimal chromosome length 
and is much superior to traditional binary/topological strings [17]. The stress and 
deformation constraints in Eq.4 are due to regulations of Iranian code of seismic design, 
ICPSRDB 2800-05, and AISC-ASD89 steel design code [18]. An extra constraint,

wcg , is 

applied to avoid occurrence of weak stories during the search. It is based on the fact that 
braced panel has much more stiffness than a pure moment frame panel against lateral sway. 
According to the architectural constraint,

cg , no more than   percent of frame openings are 

allowed to be braced. 
In this study the allowable stress design requirements due to AISC-ASD89 and 

ICPSRDB 2800-05 are employed. The following penalty function is used to evaluate 
equivalent fitness function. 

 

1( ,..., )*(1 )m p l
l

Fitness f x x r C    (5)

in which f stands for the objective function (weight), Cl denotes the lth constraint violation 
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and rp is the employed penalty coefficient. The section indices assigned to the m member 
groups are denoted by 1,..., mX x x   as the structural design vector. 
 
 

4. BALDWIN EFFECT IN MEMETIC ALGORITHMS 
 

Memetic Algorithm, MA, as a generalized kind of Evolutionary Computing, EC, is 
systematically introduced by Moscato’s [19]. MA’s include an embedded problem-specific 
learning operator which frequently is applied to population in evolutionary search. An 
individual is called a meme when experiencing such learning during its life-time prior to 
fitness evaluation. Thus, MA’s combine both generality of EC frameworks and problem-
specifity of local search operators.  

There are two distinct approaches in learning strategy of memetic algorithms; namely 
Lamarckian evolution and Baldwin effect [20-22]. In the first approach, chromosome itself 
is being changed during learning mechanism and its fitness is evaluated afterwards. In 
contrary, Baldwinian approach does not return the experienced changes during a meme 
learning process to its corresponding chromosome in the population but only associates it 
the new fitness after meme evolution. In another word, the method of fitness evaluation is 
altered by undergoing some type of problem-specific exploitation or local search rather than 
implementing new fitness function. 

In order to indirectly apply the geometric constraint, section indices in the design vector 
are sorted in descending order before fitness evaluation; that is to insure no column section 
in any lower storey is lighter than the upper storey column. Additionally, the architectural 
constraint,

cg , is strictly satisfied before fitness evaluation by gradual omission of less 

stressed bracing members in similar groups up to acheive the sparse enough bracing layout. 
 
 

5. HYBRID MEMETIC AND PARTICLE SWARM OPTIMIZER 
 
Swarm intelligence inspired by social behaviour of natural swarms like bird’s flocking or ant 
colonies is a base of many current meta-heuristic algorithms [11, 23-24]. In this category, 
particle swarm optimization, PSO, is considered here to be further hybridized with memetic 
features in stochastic search. According to the standard PSO, a particle as the search agent, 
gradually improves its location as a candidate design vector X, iteratively due to the 
following relations:  

 
1 ,. ( ) . ( )k k Pbest k k k k

i i Gbest ii ii c sV c V r c X X r c X X      (6)
1 1k k k

i i iX X V   (7)
 

Where 
1k

iV 
 counts for the designed change in the current design vector k

iX  to be applied at 

the next iteration k+1, to the ith particle. Meanwhile ic , cc , sc  stand for inertial, cognitive and 
social factors and r  is output of a random generator function which uniformly lies between 

-1 and 1. 
,Pbest k

iX  denotes the best pervious position experienced by the ith particle while 
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k
GbestX  accounts for the fittest of such vectors in the current iteration. The former mimics the 

cognitive and the latter models social behaviour of swarm particles in searching for the 
global optimum. 

The proposed hybrid algorithm, however, substitutes the Eq.6 with the following relation: 
 

1 ,. ( ) . ( ) . ( )k k Pbest k k k k k k
i i Gbest i Cr ii ii c s crV c V r c X X r c X X r c X X        (8)

 
In which the additional term directs toward k

CrX  where the maximal step size is controlled 

by the fixed parameter crc . The newcomer vector k
CrX is derived exploiting the population of 

particles by the following subroutine: 
1. Initiate an empty auxiliary population with at most the same size of the swarm.  
2. Randomly select two particles out of the current swarm as the parents  
3. Perform a two-point crossover over the selected parents to obtain two children 
4. Let every child (as a meme) experience the individual learning / growth 
5. Evaluate the fitness values for the grown children 
6. Select the fitter of them and add it to the auxiliary population.  
7. Repeat the above steps from step (2) until the auxiliary population is filled 

8.  Identify k
CrX as the fittest individual in the recently generated auxiliary population 

 

 
Figure 1. The employed spectral response amplification factor due to ICPSRDB 2800-05 

 
 

6. NUMERICAL EXAMPLES 
 

Performance of the proposed hybrid method, EPSO, is compared with a non-exploited PSO 
treating some examples of planar steel frames. Typical storey height and bay length are 3.30 
and 5.00 meters, respectively. Note that all connects are rigid in this study.  

Dead load, qD, of 9810 /N m
 
is exerted on each beam in the floors meanwhile applying 
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live load, qL, of 4905 /N m  on them. The design spectrum of ICPSRDB 2800-05, by PGA 
of 0.3g, soil type II and R factor of 7 for a residential building is taken as the seismic 
spectral loading; qE. The behavioral constraints are then evaluated under the following 
combinations of aforementioned loading states: 
 

qD (9)
qD qL (10)

0.75( )qD qE (11)
0.75( )qD qL qE  (12)

 
Spectral responses are scaled so that the resulting base shear is normalized with that 

offered by the seismic design code. Tuning parameters is a main challenge for application of 
meta-heuristics [25]. In the present study, each example is run for a number of trials to 
finalize algorithms’ parameters and then repeated to obtain statistical results. Table 1 gives 
typical control parameters used for PSO and EPSO in the present study. The inertial 
coefficient is linearly decreased from 0.8 to 0.4 in order to insure better exploration as the 
search progress. 

 
Table 1: The employed control parameters for optimization 

Method PopSize  NumIters  ic  cc  sc  crc  

PSO 10 300 0.8~0.4 1 1 - 
EPSO 10 300 0.8~0.4 1 1 0.5 

 
6.1 The 8-storey 7-bay frame  

In this example, columns in every 2 stories are symmetrically grouped as shown in Fig. 2 
and the same is done for beams grouping. Grouping of knee bracings is however performed 
only to deserve symmetry and being changed between story levels (Fig. 3). All structural 
members are made of St-37 steel with elasticity modulus of 10 22 10 /Kgf m and yield stress 

of 7 22.4 10 /Kgf m . There are 221 standard AISC sections available for beams/columns; 
from 10 49W  to 40 294W  .The bracings’ section list include 4 13W  to 14 257W   in 
addition to a null-section for simultaneous topology optimization. That means a search space 
of the order of 18510 which is considerably great. The architectural constraint in this example 
implies that no more than 29% of the frame openings be braced.  
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Figure 2. Dimensions and member grouping for beams/columns in the 1st example 

 

 
Figure 3. Member grouping for bracings in the 1st example 

 

 
Figure 4. Comparison of EPSO convergence vs. PSO in spectral design of the 1st example 
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According to the statistics of this 8 storey example in Table 2, the proposed EPSO has 
achieved higher quality results in the best, mean and also the worst case; that is, 12% to 37% 
optimal weight improvement in different cases. Such a superior effectiveness can also be 
observed in the convergence history of the best run in Fig. 4. In This result may be 
addressed by enhanced refinement because of added extra local search capability to the 
algorithm in the proposed EPSO. However, the figure also shows some delay in obtaining 
the final higher quality result by the present work. In another word, the efficiency of PSO in 
this example is greater in the charge of being trapped in the local optimum in comparison 
with EPSO.  

The final bracing layouts in Fig. 5 reveal that both methods have strictly satisfied the 
panel covering constraint, however, the proposed EPSO has performed it with fewer number 
of bracing diagonals. 

 
Table 2: Statistical results of braced frame layout optimization in the first example 

Method 
Best  

weight (kg) 
Mean 

weight (kg) 
Worst  

weight (kg) 
Standard 
Deviation 

PSO 40619 55499 79163 11618 
EPSO 35926 43291 49543 5120 

  

 
(a)                                                                     (b) 

Figure 5. The best achieved braced frame layouts by (a) PSO and (b) EPSO in the 1st example 
 

6.2 The 15-storey 4-bay frame  

Here, member grouping is applied by the same rule as the previous example resulting in 40 
beam/column and 100 bracing groups, respectively. There are 240 standard AISC 10 49W 
to 44 355W  sections made of steel material grade St-37 for beams/columns and 94 sections 
from 4 13W  to 14 257W   with an additional null-section for bracings’ optimization. The 
covering constraint of braced panels is taken 50%   in this example. 
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Table 3: Statistical results of braced frame layout optimization in the second example 

Method 
Best  

weight (kg) 
Mean 

weight (kg) 
Worst  

weight (kg) 
Standard 
Deviation 

PSO 54252 77243 99832 14600 
EPSO 46883 62045 78187 10423 

 
Considering sample result of Fig. 6, it can be realized that EPSO can escape from local 

optima toward higher quality solution while PSO has led to premature convergence. The 
trend of such auxiliary sudden fitness jumps gets smoother as the search progresses. Such a 
higher effectiveness of EPSO with respect to PSO is confirmed by Table 3, showing 14, 20 
and 22% optimal weight improvement for the best, mean and the worst cases, respectively. 
In addition, less standard deviation of final results during several independent runs again 
confirms superior stability of the proposed algorithm over PSO. Comparing final achieved 
layouts of the two algorithms, it seems that EPSO can lead to more uniform layouts in such 
moment frame examples.  
 

 
Figure 6. Comparison of EPSO convergence vs. PSO in spectral design of the 2nd example 
 

 
(a) 

Figure 7. The best achieved braced frame layouts by (a) PSO and (b) EPSO in the 2nd example 
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6.3 The 15-storey 7-bay frame  

Applying the same rule as previous examples, 32 beam, 32 column and 169 bracing groups 
are generated for this 15-storey 7-bay frame. Here, 240 standard AISC sections made of St-
37 steel; i.e, 10 49W  to 44 355W   for beams/columns and 114 sections from 4 13W  to

16 77W   are used for bracings. The covering constraint of braced panels is taken 29%  . 
More number of iterations is employed to search such a great design space in this example.  

Fig. 8 compares convergence of the best runs. The previous observations in superior 
effectiveness of EPSO has stood stable in this example, however, requiring more sever 
fitness jumps to escape from premature convergence, in spite of PSO. Statistical report of 
Table 4 confirms the matter as the minimal weight improvement in different cases varies 
between 11% to 20%. In this example with greater search space, the standard deviation of 
EPSO is about half the PSO, showing its superiority in stability of the final optimal designs. 

 

 
Figure 8. Comparison of EPSO convergence vs. PSO in spectral design of the 3rd example 
 

    
      (a)                                                           (b) 

Figure 9. The best achieved braced frame layouts by (a) PSO and (b) EPSO in the 3rd example 
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Table 4: Statistical results of braced frame layout optimization in the third example 

Method Best weight (103 kg) Mean weight (103 kg) Worst weight (103 kg) Standard Deviation 
PSO 151 174 203 18.2 

EPSO 135 148 163 8.9 

 
Furthermore, concerning Fig. 8 it is declared that EPSO has not only achieved a more 

uniform solution but also has satisfied the architectural constraint with less number of 
braced panels in the frame. 

 
 

7. CONCLUSION 
 

In this paper a new hybrid method is proposed for simultaneous topology and size 
optimization of braced frames under spectral seismic and static gravitational loading. Since 
the design variables are discrete indices, the swarm memory is exploited as a first learning 
strategy. The second one, however, is a problem-specific meme evolution. In this regard 
Baldwin approach is utilized in order not to exert uncontrolled changes in the current 
individuals’ memory during the search, but only evaluate the fitness of each meme in a new 
manner. That is sorting the column indices in each vertical grid together with eliminating 
extra braces up to desired covering ratio among the frame panels. The first satisfies 
geometric constraint of no upper storey column section be heavier than its lower one, while 
the second satisfies architectural constraint. A strategy to avoid weak/unbraced stories is 
also applied during such meme evolution. 

The proposed hybrid memetic and swarm optimization is then applied to some examples 
of low- and medium-rise braced frames with different aspect ratios. The results show strict 
satisfaction of the aforementioned constraints in addition to the penalized behavioral limits 
on combined stress and drift ratios due to the design code requirements. Applying spectral 
seismic design by dynamic modal analyses provided more accurate distribution of responses 
than most previous studies in literature. These utilized features show desirability of the 
proposed method from practical point of view. 

Further comparison of EPSO performance with the PSO declared superior effectiveness 
of the proposed method in capturing higher quality results in all the treated examples. That is 
achieving improvement of optimal structural weights from 11% to 37% in a variety of 
statistical tests. Study of resultant elite fitness histories declared that PSO has more rapid 
convergence than EPSO in charge of leading to premature convergence. In contrary, the 
proposed EPSO could over pass such local optima toward higher fitness by less deviation of 
final designs during several independent runs. It led to more uniform topology of final 
braced panels among the treated frames than PSO. The results also declared superior local 
search capability of EPSO with respect to PSO particularly in satisfying practical covering 
constraint using less number of bracing diagonals.  

In the light of the achieved results, EPSO can provide proper balance between 
exploration and local search refinement taking benefit of global search in PSO as well as 
problem-specific learning of memetic approaches. Hence, the present study offers it as an 
effective method of braced frame layout optimization considering both practical and 
technical points of view.  
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