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ABSTRACT 
 

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) 
and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has 
both merits in its specific formulation and deficiencies due to its inherent limitations. 
Therefore, we propose a mixture of these algorithms to create a new hybrid optimization 
algorithm known as the group search-artificial fish swarm algorithm (GS-AFSA). This 
algorithm has been applied to three different discrete truss optimization problems. The 
optimization results are compared with those obtained using the standard GSO, the AFSA 
and the quick group search optimizer (QGSO). The proposed GS-AFSA eliminated the 
shortcomings of GSO regarding falling into the local optimum by taking advantage of 
AFSA’s stable convergence characteristics and achieving a better convergence rate and 
convergence accuracy than the GSO and the AFSA. Furthermore, the GS-AFSA has a 
superior convergence accuracy compared to the QGSO, all while solving a complicated 
structural optimization problem containing numerous design variables. 
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1. INTRODUCTION 
 

Engineering structural optimization is increasingly demonstrating its utility and broad 
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prospects for application in a variety of areas to identify the most satisfactory of several 
feasible solutions. Engineering structural optimization has not only a crucial theoretical 
significance but also a practical value in reality. The techniques for searching for optimal 
solutions are known as optimization design methods and are generally classified into three 
categories: optimality criteria, mathematical programming and modern optimization 
algorithms. Optimality criteria’s application is circumscribed. It requires different criteria for 
different types of constraints and the obtained solution is not necessarily the optimal solution 
[1, 2]. Mathematical programming performs a large amount of calculations and is 
characterized by its slow convergence rate [3]. As people deepen their understanding of the 
natural world, a new category of structural optimization techniques are being developed that 
borrow their working principles from natural phenomena. These include the genetic 
algorithm (GA) [4] and simulated annealing (SA) [5], etc. The field of nature-inspired 
algorithms is continuously growing. By the 1990s, swarm intelligence-based algorithms had 
been developed, including ant colony optimization (ACO) [6], particle swarm optimization 
(PSO) [7], the artificial fish swarm algorithm (AFSA) [8], the shuffled frog leaping 
algorithm (SFLA) [9], the group search optimizer (GSO) [10] and the meta-heuristic method 
[11, 12], all of which are inspired by social animal behaviors. The GSO is conceptually 
simple and easy to implement. It exhibits superior search performance in multi-modal 
function optimization problems [10]. The GSO has already been implemented for design 
optimization in truss structures and performs well when searching for the minimum weight 
[13, 14]. However, it has also been shown to fall into the local optimum when solving a 
complicated structural optimization problem space containing numerous design variables 
[14]. The AFSA has also been employed to solve truss optimization problems. Despite its 
slow convergence rate and ordinary convergence accuracy, it exhibits stable search 
performance and does not easily fall into the local optimum [15]. 

In the present work, to improve the search performance of GSOs when solving structural 
optimization problems, the AFSA is mixed with the GSO to create a new hybrid 
optimization algorithm known as the group search-artificial fish swarm algorithm (GS-
AFSA). This algorithm exhibits a better convergence rate and convergence accuracy 
compared to the standard GSO [14], the AFSA and the quick group search optimizer 
(QGSO) [16]. 
 
 

2. GROUP SEARCH OPTIMIZER (GSO) 
 
2.1 Multi-objective optimisation problems 

The group search optimizer is based on the model of producers and scroungers [17]. The 
population of the GSO is known as a group and each individual in the population is known 
as a member. In the GSO, a group consists of three types of members: producers, scroungers 
and rangers, with each playing a different part in the group. Each member starting an 
iteration in the most promising area, namely the area having the best fitness value, is chosen 
as the producer. The algorithm then stops and scans the environment to seek optima using a 
visual search. The other group members are selected as scroungers or rangers at random. 
The scroungers perform a random walk towards the producer, whereas the rangers perform a 
random walk in an arbitrary direction. Furthermore, these three different members do not 
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differ in their relevant phenotypic characteristics, and can therefore switch between the three 
roles. The GSO behaves as follows [18]: 

In an n-dimensional search space, the thi  member at the 
th

k  searching bout (iteration) has 

a current position k n

i
X R , a head angle 

1

1 ( 1)
( ,..., )

k k k n

i i i n
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
   and a head direction 
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k k k k n

i i i in
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coordinate transformation: 
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In the GSO algorithm, the group consists of three individuals: producer, scroungers and 

rangers. At the thk  iteration, the producer 
p

X  behaves as follows: 

(1) The producer scans at zero degrees and then scans laterally by randomly sampling 
three points in the scanning field: one point at zero degrees, one point in the left hand side 
hypercube and one point in the right hand side hypercube: 

 

1 max
( )k k k

z p p
X X rl D    (4)

1 max 2 max
( / 2)k k k

l p p
X X rl D r    (5)

1 max 2 max
( / 2)k k k
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where, 1

1
r R  is a normally distributed random number with a mean equal to 0 and 

standard deviation of 1 and 1

2

nr R   is a random sequence in the range (0, 1). The variable 
1

max

nR   is the maximum pursuit angle. The maximum pursuit distance 
max

l  is calculated 

from: 
 

2
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where 
i

U  and iL  are the upper and lower bounds for the thi  dimension, respectively. 

(2) The producer will then find the best point with the best resource (fitness value). If the 
best point has a better resource than its current position, then it will move to this point. If 
not, will stay in its current position and examine a new angle: 
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1

2 max

k k r      (8)

 
where 

max
  is the maximum turning angle. 

(3) If the producer cannot find a better area after a  iterations, it will return to zero 
degrees: 

 
k a k    (9)

 
where a  is a constant. 

At the 
thk  iteration, the area copying behavior of the thi  scrounger can be modeled as a 

random walk towards the producer: 
 

1

3
( )k k k k

i i p i
X X r X X     (10)

 

where, 
3

nr R  is a uniform random sequence in the range (0, 1). 

In addition to the producers and the scroungers, a small number of rangers are also 
introduced into our GSO algorithm. Random walks, which are thought to be the most 
efficient searching method for randomly distributed resources, are employed by the rangers. 

If the thi  group member is selected as a ranger at the 
th

k  iteration, the ranger generates a 

random head angle i : 

 
1

2 max

k k r      (11)

 
where 

max
  is the maximum turning angle. Next, it chooses a random distance: 

 

1 maxil a rl   (12)

 
and moves to the new point: 
 

1 1( )k k k k

i i i iX X l D     (13)

 
 

3. ARTIFICIAL FISH SWARM ALGORITHM (AFSA) 
 

The artificial fish swarm algorithm is a swarm intelligence optimization algorithm proposed 
by Li [19]. Inspired by the behavior of fish swimming in the ocean, Li presented a new fish 
swarm pattern with a bottom to top design philosophy. In nature, the areas containing large 
concentrations of fish are generally the most nutrient rich. This is because the fish can 
always find the more nutritious area by individual searching or by following after other fish. 
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Based on this peculiarity, the AFSA simulates fish behavior, such as preying, swarming, 
following and random motion to search for a globally optimal solution.  

For a certain optimization problem, the position of each artificial fish represents a 

potential solution. The current position of an artificial fish i can be expressed as 

1 2
( , , ..., )

i i i in
X x x x . The food concentration of fish i is indicated as ( )

i i
Y f X , where 

i
Y  

is the objective function. The variable parameters in the AFSA are listed in Table 1. 
 

Table 1: Variable parameters of AFSA 

Variable Variable meaning 
N Size of artificial fish swarm 

Visual Sensor distance of artificial fish 
δ Congestion degree factor 

Step Maximum moving step of artificial fish 
Try_number Maximum attempt number of the preying behavior 

 
To reach a maximum objective function value, an example of the behavior of the 

artificial fish can be described as follows: 

(1)  Preying behavior: Assume 
i

X  is the current position of the artificial fish. Randomly 

select another position 
j

X  within the visual scope and compare the objective function value 

( )
i

f X  with ( )
j

f X . If ( ) ( )
i j

f X f X , the artificial fish moves one step toward 
j

X , which is 

described by: 
 

()j i

next i

j i

X X
X X step rand

X X


   


 (4)

 
Otherwise, repeat the operation by selecting a position 

j
X  and estimating whether to 

move or not. If the artificial fish still stands in situ after _try number  times, it will begin to 
implement random behavior. 

(2)  Swarming behavior: The artificial fish moves to the center of the group, which is 
considered to be a type of habit to ensure the existence of the colony and avoid dangers. 

Assume first that the current position of the artificial fish is 
i

X . The distance between the 

artificial fish is defined as 
,i j i j

d X X  . In the range of 
,i j

d Visual , the number of 

partners is 
f

n , the central position is 
c

X  and  is the congestion degree factor. The 

expression  /
c f i

Y n Y  means the food concentration of the partner center is higher than 

at the current position and the congestion degree is not excessive. Therefore, the artificial 

fish moves one step toward 
c

X : 
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()c i
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c i
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Otherwise, the preying behavior is implemented. 
(3)  Following behavior: The artificial fish trails its neighboring partner within its visual 

scope, whose position has a higher food concentration. Suppose that 
i

X  is the current 

position of the artificial fish. The number of the artificial fish partners in the range from 

,i j
d Visual  is 

f
n , and 

j
X  is the one with the highest food concentration 

j
Y  among the 

partners. The expression  /
j f i

Y n Y  means that the food concentration of 
j

X  is higher 

than at the current position and the congestion degree is excessive, meaning that the artificial 
fish moves one step toward 

j
X : 

 

()j i
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X X
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
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
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Otherwise, implement the preying behavior. 
(4)  Random behavior: The artificial fish makes a random move within its visual scope. 

This is a default action for a preying behavior. The next position of 
i

X  is calculated from: 

 
()

next i
X X Visual rand    (17)

 
 

4. GROUP SEARCH HYBRID ARTIFICIAL FISH SWARM ALGORITHM 
(GS-AFSA) 

 
The GS-AFSA can be said to be an improved version of the GSO to a certain extent. In this 
study, it has been combined with the AFSA search mechanism to avoid becoming entrapped 
in the local optimum, resulting in a higher probability of reaching the global optimum. The 
realization of the GS-AFSA is described as follows. 

In an n-dimensional search space, the thi  member at the 
th

k  searching bout (iteration) has 

a current position k n

i
X R  and the position of each member is initialized by a random value 

prior to the start of the iterative search. 

At the 
th

k  searching iteration, we calculate the fitness of each member. The best member 

is taken to be the global best member as well as the producer with a fitness value of fvalue . 
At this point, the GSO described in Eqs. (1-13) is implemented. The new group is now 
evaluated with the best member taken to be the producer with a fitness value of fbestval . If 

fbestval fvalue , the producer is updated, and fbestval  replaces fvalue  and the search 
proceeds to next iteration. Otherwise, we implement the AFSA search mechanism. 
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In the AFSA search mechanism, the selection of artificial fish begins with the groups 
determined using the GSO. Each artificial fish implements the swarming and following 
behaviors, respectively. The fitness values from the new positions obtained from these two 
behaviors are determined to select the better one for the next fish position. It is worth noting 
that the preying behavior is contained in both the swarming and following behaviors as a 
supplement. Additionally, the random behavior is a default version of the preying behavior. 

The pseudo code for the structural optimization using the GS-AFSA is listed in Table 2. 
 

Table 2: Pseudo code for structural optimization by GS-AFSA 

Set k=0; 

Randomly initialize positions iX  and head angles i  of all members; 

FOR (each member i  in the group) 
WHILE (the constraints are violated) 

Randomly re-generate the current member iX  

END WHILE 
END FOR 

Calculate fitness: Calculate the fitness value of current member: ( )if X  

Choose producer: Find the producer pX of the group; 

WHILE (the termination condition is not met) 
Set k=k+1; 
FOR (each members i  in the group) 
The producer, scroungers and rangers update their positions by the equations of GSO. 
IF (the variable boundary conditions are violated) 
Make the variables which exceed the boundary fly back to their previous value 
END IF 
IF (the constraints are violated) 
Ask the member fly back to its previous position 
END IF 
Calculate the fitness value of each member; update the producer and the search angle. 
Check whether the algorithm move forward. If not, enter the AFSA. If it does, skip the 
AFSA. 
AFSA: Update the position of artificial fish by the equations of AFSA algorithm. Check 
whether it violates the variable boundary conditions. If it does, make the variables which 
exceed the boundary fly back to their previous value. Check whether it violates the 
constrains. If it does, ask it fly back to its previous position. 
Calculate the fitness value of each member; update the producer of GSO. 
END FOR 
END WHILE 
 
 

5. NUMERICAL EXAMPLES 
 

In this section, two planar truss structures and one spatial truss structure commonly seen in the 
literature are selected as benchmark structures to test the GS-AFSA. For the GSO, 20% of the 
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population are selected as rangers and the initial head angle 0  for each member is set to 

/ 4 . The constant a  is provided by  1round n  . The maximum pursuit angle 
max

  is 

2
/ a . The maximum turning angle max  is set to be 2

/ 2a . For the QGSO, when the target 

proceeds forward, the parameters are set as: information transfer factors of 
1 2

4W W  , a 

selected probability of 
3
=0.2W  and a component mutation probability of 

4
=0.65W . Other 

parameters are set as: information transfer factors of 
1

0.8W   and 
2

1.5W  , a selected 

probability of 
3
=0.35W  and a component mutation probability of 

4
=0.85W . For the AFSA, the 

artificial fish sensor distance, Visual , is set to 
max

/ 2.5X  where 
max

X  is the maximum size of 

the search space. The maximum moving step for the artificial fish, known as Step , is 

/ 10Visual . The congestion degree factor   is 0.618. The maximum attempt number of the 
preying behavior, _try number , is set to 50. For the GS-AFSA, the parameters are set to be 
the same as in the GSO and AFSA. For all the four algorithms, the population size is set to 50, 
and the termination condition is to permit the maximum number of iterations. 
 
5.1 Example 1: The 10-bar planar truss structure 

The 10-bar planar truss structure is shown in Fig. 1. The material density is 0.1 lb/in3 and the 
modulus of elasticity is 104 ksi. The stress limits of all the members are ±25 ksi. Nodes 1~4 
in all directions are subjected to the displacement limits of ±2.0 in. The load case is listed in 
Table 3. The cross-sectional area of each bar is treated as an independent design variable, 
meaning there are 10 design variables in this optimization problem. There are two cases 
involved in the solution of this problem and each case has different set of the optional 
discrete variables, as follows. For case 1, the optional discrete variables are: D={1.62, 1.82, 
1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 
4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 
16.00, 16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50}(in2). For case 2, the optional 
discrete variables are: D={0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 
7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 
16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 
24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 
31.5}(in2). The maximum number of iterations is set to 1000. 

Tables 4 and 5 show the optimization results for the 10-bar planar truss structure. 
Similarly to the results from the QGSO, the GS-AFSA yields an identical design weight of 
5490.74 lb for case 1, and 5067.33 lb for case 2, which are the best known solutions to the 
problem. The final designs attained using the GSO and AFSA are slightly larger: 5558.20 lb 
and 5763.95 lb, respectively for case 1, and 5074.79 lb and 5554.14 lb, respectively for case 
2. The variations in the best feasible design obtained thus far in the search processes with the 
four algorithms are plotted in Figs 2 and 3. The convergence rates of GS-AFSA and QGSO 
are faster than for the GSO and AFSA. The AFSA has the slowest convergence rate of all 
the algorithms. 
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Figure 1. The 10-bar planar truss structure 

 
Table 3: Load cases for the 10-bar planar truss structure 

Node 
Load cases 

PX (kips) PY (kips) 
1 0.0 0.0 
2 0.0 -100.0 
3 0.0 0.0 
4 0.0 -100.0 

 
Table 4: Optimization results for the 10-bar planar truss structure (case 1) 

Variables 
Optimal cross-sectional areas (in2) 

QGSO [16] GSO [14] AFSA GSAFSA 
A1 33.500 26.500 33.500 33.500 
A2 1.620 1.620 2.130 1.620 
A3 22.900 26.500 22.000 22.900 
A4 14.200 15.500 13.500 14.200 
A5 1.620 1.620 2.380 1.620 
A6 1.620 1.620 3.840 1.620 
A7 7.970 11.500 13.500 7.970 
A8 22.900 22.000 22.000 22.900 
A9 22.000 22.000 18.800 22.000 
A10 1.620 1.800 4.220 1.620 

Weight (lb) 5490.74 5558.20 5763.95 5490.74 

 
Table 5: Optimization results for the 10-bar planar truss structure (case 2) 

Variables 
Optimal cross-sectional areas (in2) 

QGSO [16] GSO [14] AFSA GSAFSA 
A1 29.500 28.500 28.000 29.500 
A2 0.100 0.100 2.500 0.100 
A3 23.500 23.000 26.000 24.000 
A4 15.500 16.500 16.500 15.000 
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A5 0.100 0.100 1.000 0.100 
A6 0.500 0.500 2.500 0.500 
A7 7.500 7.500 11.500 7.500 
A8 21.500 22.000 20.000 21.000 
A9 21.500 21.500 20.500 22.000 
A10 0.100 0.100 3.000 0.100 

Weight (lb) 5067.33 5074.79 5554.14 5067.33 
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Figure 2. Convergence rate of the four algorithms for the 10-bar planar truss structure (case 1) 
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Figure 3. Convergence rate of the four algorithms for the 10-bar planar truss structure (case 2) 
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5.2 Example 2: The 15-bar planar truss structure 

The 15-bar planar truss structure is shown in Fig. 4. The material density is 7800 kg/m3 and 
the modulus of elasticity is 200 GPa. The stress limits of all the members are ±120 MPa. All 
nodes in all directions are subjected to the displacement limits of ±10 mm. The load cases 
are listed in Table 6. The cross-sectional area of each bar is treated as an independent design 
variable, meaning there are 15 design variables in this optimization problem. The optional 
discrete variables are: D={113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 308.6, 
334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7}(mm2). The maximum number of iterations 
is set to 500. 
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Figure 4. The 15-bar planar truss structure 

 
Table 6: Load cases for the 15-bar planar truss structure 

Node 
Load case 1 Load case 2 Load case 3 

PX(kN) PY(kN) PX(kN) PY(kN) PX(kN) PY(kN) 

4 0.0 -35.0 0.0 -35.0 0.0 -35.0 
6 0.0 -35.0 0.0 0.0 0.0 -35.0 
8 0.0 -35.0 0.0 -35.0 0.0 0.0 

 
Table 7 shows that the GS-AFSA, the QGSO and the GSO algorithms all achieve the 

same result of 105.735 kg after 500 iterations, whereas the AFSA algorithm reaches a 
relatively heavier weight of 123.874 kg. Moreover, Fig. 5 shows that again the convergence 
rate of the AFSA is much slower than in the other three algorithms. 

 
Table 7: Optimization results for the 15-bar planar truss structure 

Variables 
Optimal cross-sectional areas (mm2) 

QGSO [16] GSO [14] AFSA GSAFSA 
A1 113.200 113.200 145.900 113.200 
A2 113.200 113.200 265.900 113.200 
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A3 113.200 113.200 145.900 113.200 
A4 113.200 113.200 113.200 113.200 
A5 736.700 736.700 736.700 736.700 
A6 113.200 113.200 143.200 113.200 
A7 113.200 113.200 145.900 113.200 
A8 736.700 736.700 736.700 736.700 
A9 113.200 113.200 113.200 113.200 
A10 113.200 113.200 143.200 113.200 
A11 113.200 113.200 265.900 113.200 
A12 113.200 113.200 143.200 113.200 
A13 113.200 113.200 185.900 113.200 
A14 334.300 334.300 338.200 334.300 
A15 334.300 334.300 334.300 334.300 

Weight (kg) 105.735 105.735 123.874 105.735 
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Figure 5. Convergence rate of the four algorithms for the 15-bar planar truss structure 

 
5.3 Example 3: The 72-bar spatial truss structure 

The 72-bar spatial truss structure is shown in Fig. 6. The material density is 0.1 lb/in3 and 
the modulus of elasticity is 107 psi. The stress limits of all the members are ±25 ksi. All 
nodes in all directions are subjected to the displacement limits of ±0.25 in. The load cases 
are listed in Table 8. There are 72 bars, which are divided into 16 groups: (1) A1~A4, (2) 
A5~A12, (3) A13~A16, (4) A17~A18, (5) A19~A22, (6) A23~A30, (7) A31~A34, (8) A35~A36, (9) 
A37~A40, (10) A41~A48, (11) A49~A52, (12) A53~A54, (13) A55~A58, (14) A59~A66, (15) 
A67~A70 and (16) A71~A72. The optional discrete variables are: D={0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 
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2.7, 2.8, 2.9, 3.0, 3.1, 3.2}(in2). The maximum number of iterations is set to 1000. 
 

Table 8: Load cases for the 72-bar spatial truss structure 

Node 
Load case 1 Load case 2 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 
18 0.0 0.0 0.0 0.0 0.0 -5.0 
19 0.0 0.0 0.0 0.0 0.0 -5.0 
20 0.0 0.0 0.0 0.0 0.0 -5.0 

 
Table 9 shows that the GS-AFSA achieves a design weight of 371.42 lb, which is better 

than any results previously reported using the various algorithms in the literature. 
Additionally, Fig. 7 shows that the GS-AFSA and the QGSO have the fastest convergence 
rates. The AFSA exhibits a fast convergence to its optimum, but the final result is 
unsatisfactory. The GSO becomes trapped in a local minimum. 
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Figure 6. The 72-bar spatial truss structure 

 
Table 9: Optimization results for the 72-bar spatial truss structure 

Variables 
Optimal cross-sectional areas (in2) 

QGSO [16] GSO [14] AFSA GSAFSA 

A1~A4 2.0 3.0 1.6 1.8 
A5~A12 0.5 1.5 0.4 0.5 
A13~A16 0.1 0.1 0.4 0.1 
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A17~A18 0.1 0.1 0.6 0.1 
A19~A22 1.3 2.6 1.4 1.3 
A23~A30 0.5 1.5 0.5 0.5 
A31~A34 0.1 0.1 0.4 0.1 
A35~A36 0.1 0.1 0.7 0.1 
A37~A40 0.5 1.6 0.6 0.6 
A41~A48 0.5 1.4 0.7 0.5 
A49~A52 0.1 0.1 0.4 0.1 
A53~A54 0.1 0.4 0.6 0.1 
A55~A58 0.2 0.4 0.4 0.1 
A59~A66 0.6 1.6 0.6 0.5 
A67~A70 0.4 1.3 0.4 0.5 
A71~A72 0.6 1.3 1.2 0.5 

Weight (lb) 385.54 967.68 514.15 371.42 
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Figure 7. Convergence rate of the four algorithms for the 72-bar spatial truss structure 

 
 

6. CONCLUSIONS 
 

In this paper, a new hybrid optimization algorithm known as the group search-artificial fish 
swarm algorithm (GS-AFSA) is presented. It not only overcomes the deficiencies observed 
in both the GSO and AFSA but also retains the merits of both. Furthermore, compared to the 
quick group search optimizer (QGSO), the GS-AFSA has nearly the same convergence rate 
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and exhibits better convergence accuracy while handling a relatively complicated structural 
optimization problem space with numerous design variables. The numerical results of these 
three examples demonstrate the efficiency of the GS-AFSA for structural optimization 
problems, and we expect the algorithm to be utilized to optimize complex real-world 
structures. 
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