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ABSTRACT 
 

The overall cost of companies dealing with the distribution tasks is considerably affected by 
the way that distributing vehicles are procured. In this paper, a more practical version of 
capacitated vehicle routing problem (CVRP) in which the decision of purchase or hire of 
vehicles is simultaneously considered is investigated. In CVRP model capacitated vehicles 
start from a single depot simultaneously and deliver the demanded items of several 
costumers with known demands where each costumer must be met once. Since the optimal 
vehicle procurement cost is a function of total distance it traverses during the planning 
horizon, the model is modified in a way that the decision of purchasing or hiring of each 
vehicle is made simultaneously. The problem is formulated as a mixed integer programming 
(MIP) model in which the sum of net present value (NPV) of procurement and traveling 
costs is minimized. To solve the problem, a hybrid electromagnetism and parallel simulated 
annealing (PSA-EM) algorithm and a Shuffled Frog Leaping Algorithm (SFLA) are 
presented. Finally, the presented methods are compared experimentally. Although in some 
cases the SFLA algorithm yields better solutions, experimental results show the 
competitiveness of PSA-EM algorithm from the computational time and performance points 
of view. 
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1. INTRODUCTION 
 

Vehicle Routing Problem (VRP) is one of the most widely used problems in all industries. 
This problem was first raised by Dantzing and Ramser [1]. The problem belongs to NP-hard 
problems. The complexity of the problem pertains to two problems namely traveling sale 
man problem (TSP) and bin packing problem ([2]). In this paper, the basic model of 
capacitated vehicle routing problem (CVRP) is modified in a way that vehicles hire or 
purchase decision is entered into the model such that total transportation costs including 
fleet procurement cost and traveling cost are simultaneously considered. In addition to 
modeling the problem, we determine to purchase vehicle for which routs and hire for which 
ones so that they totally burden lower costs. Since the cost of purchasing incurs at the 
present time (decision time) and the cost of hiring arise within various periods in planning 
horizon, therefore, it is necessary to enter the time value of money in the problem and 
consider the net present value (NPV) of costs as the objective function which is to be 
minimized.  

Many researchers have studied CVRP problem and presented different solution methods 
for that and also, they could manage to create new models by adding different assumptions 
to the issue. Augerat et al [3] applied an exact branch-and-cut method for CVRP and used 
tabu search (TS) algorithm in cutting plane program. Contardoa and Martinelli [4] presented 
an exact algorithm for the more general case of CVRP in which more than one depot is 
available and the tour length is limited named multi-depot vehicle routing problem 
(MDVRP). They formulated MDVRP using a vehicle-flow and a set-partitioning 
formulation. They validate their approach by conducting extensive computational 
experiments on several instances on CVRP as a particular case of the MDVRP. 

A wide range of researchers used heuristic or meta heuristic algorithms to achieve a near-
optimal solution for the CVRP. Using a multi-phase model of improved shuffled frog 
leaping algorithm (SFLA) Luo and Chen [5] presented a meta heuristic algorithm to solve 
the multi-depots vehicle routing problems (MDVRPs).They used a power law extremal 
optimization neighborhood search (PLEONS) to further improve the local search ability of 
SFLA and speed up convergence. Chen et al. [6] presented a hybrid heuristic method named 
iterated variable neighborhood search (IVND) with variable neighborhood descent based on 
multi-operator optimization for solving the CVRP. They have designed a perturbation 
strategy by cross-exchange operator as an approach for escaping local minima. Lin et al [7] 
presented a hybrid algorithm of simulated annealing and tabu search to solve CVRP. Via 
simulation results on classical instances, they have shown that their algorithm is competitive 
with other existing algorithms for solving CVRP. Wang and Lu [8] presented a hybrid 
genetic algorithm consisting of three stages for this problem. In first stage, they used the 
nearest addition method (NAM) into sweep algorithm (SA) to generate an initial 
chromosome population. Secondly, the applied response surface methodology (RSM) to 
optimize crossover probability and mutation probability. Finally, the authors incorporated an 
improved sweep algorithm into to enhance the exploration diversity of their GA. Ai and 
Kachitvichyanukul [9] applied particle swarm optimization algorithm (PSO) structure to 
solve the CVRP. They presented two solution representations for CVRP in PSO. They 
analyzed the effect of two solution representations and their decoding methods on the 
algorithm efficiency and via the computational results they concluded that one of these 
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representations is more competitive than other one and other methods for solving CVRP. 
Yurtkuran and Emell [10] presented a hybrid Electromagnetism-like algorithm (EM) and an 
iterated swap procedure (ISP) as a local search for solving this CVRP. According to the 
experiments, their hybrid algorithm act better in comparison with Electromagnetism 
algorithm but due to the mentioned local search procedure, the computational time of their 
algorithm became longer. This hybrid EM and ISP algorithm was compared with five 
methods named tabu search algorithm (TS), simulated annealing algorithm (SA), genetic 
algorithm (GA), particle warm optimization algorithm and ant colony optimization (ACO) 
and according to the experimental results it obtained better solutions or the obtained solution 
had no significant difference with the best solution. In 2010, Garaix et al [11] provided a 
new model of CVRP. They stated that in solving the VRP problems, only one attribute is 
usually considered e.g. minimizing the travel time or minimizing the route length, while 
several attributes can be defined for one arc connecting the origin to destination in the graph 
model of VRP. They proposed considering several alternative routes via considering several 
attributes for arcs by a multi-graph representation of the road network and they analyzed 
their impact on solution algorithms and solution values. They used an accurate dynamic 
programming method and a heuristic algorithm to solve this problem. Ngueveu et al [12] 
also presented a new model of CVRP named cumulative capacitated vehicle routing problem 
(CCVRP). This model seeks to minimize the total times of reaching to customers by 
considering capacitated vehicle. In the objective function, the total times of reaching to 
customers has been considered instead of route length or travel cost. This occurs in 
situations such as rescuing individuals after natural disasters or in supply chain of vital 
goods. For this problem (CCVRP) recently, Lysgaard and Wøhlk [13] have presented an 
optimal solution approach based on branch-and-cut-and-price approach. 

The remainder of the paper is as follows. In Section 2, the mathematical model of the 
problem is introduced. Section 3, contains the two presented algorithms; the parallel simulated 
annealing-electromagnetism algorithm and the shuffled frog leaping algorithm and their 
elements in detail. Computational experiments and the results of comparison of the presented 
algorithms are presented in Section 4. Concluding remarks are appeared in Section 5. 
 
 

2. PROBLEM FORMULATION 
 
2.1 Fundamentals of the developed model 

Various evaluation criteria have been considered for Vehicle Routing Problem variants so 
far. In most problems, it is assumed that the required vehicle must be purchased, while some 
companies are capable of outsourcing this issue or hire the required vehicles. Since the 
purchase cost of vehicles considerably differs with their hire cost, the important decision is 
that according to the planning horizon, how many vehicles are purchased and how many 
ones are hired so that the total present value of costs is minimized. In fact, in the present 
paper, the CVRP has been modified to a periodic CVRP whose objective function is the 
total net present value of costs. In this case, customers demand is assumed as constant 
during various periods. Two different approaches can be considered for hiring and 
purchasing mode, including: 

The CVRP is solved without considering hire and purchase decision and then, according 
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to the costs, the hiring and purchasing decision is made for each vehicle. 
The CVRP and hiring and purchasing decision are integrated and solved simultaneously. 
Since the routing problem and the procurement problem are not independent, the first 

approach has no warranty to obtain the optimal solution of the problem. 
 

2.2 The mathematical model 

The mathematical model of the problem includes the following assumptions: 
Maximum K vehicle can be purchased or hired. 
The source and destination (depot) of all vehicles are the same. 
The capacity of all vehicles is the same and equals to C. 
The demand of each customer is smaller than the capacity of vehicles. 
The demand of each customer is constant and equal in different periods. 
Distribution Operation is done in N year and M times per year. 
The associated costs of purchased vehicles include purchasing cost, fuel cost and 

maintenance cost and for the hired ones it is the per unit of time hiring cost. 
For the purchased vehicles, salvage value has also been considered at the end of planning 

horizon. 
The notations used in the model are given in Table 1. 
 

Table 1: Notation of the mathematical model 

Parameter Definition 
 The number of maximum available vehicles ܭ
 The capacity of each vehicle ܥ
 The nominal annual interest rate ݎ

 ୬୳୫ The number of annual compounding periodsݎ
ܸ Set of customers aggregated with depot 
ܰ The length of planning horizon in year 
 The number of required distribution task per year ܯ
 The vehicles purchasing cost ܲܥ
ܸܵ The vehicles salvage value 
 The rate of fuel cost ܥܨ
 The rate of hiring cost ܥܪ
 The rate of maintenance cost of vehicles ܥܰ
 ୧୨ The traveling time from costumer i to costumer jݐ

 
The decision variables of the presented model are defined in Table 2. 
 

Table 2: Definition of the decision variables 

Notation Definition 
 ௜௝௞ Equals 1 if vehicle k traverses edge i-j; otherwise it is 0ݔ
 ௜௞ Equals 1 if vehicle k meets customer i; otherwise it is 0ݕ
 ௜௞ The amount of load discharged by vehicle k after meeting customer iݑ
 ௞ Equals 1 if vehicle k is purchased; otherwise it is 0݌
݄௞ Equals 1 if vehicle k is hired; otherwise it is 0 
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The model of the problem is as follows. 
 

ܼ ݊݅ܯ ൌ ∑ ܲܥ ൈ ௞݌
௄
௞ୀଵ ൅ ቀܲ

ൗܣ ,
௥

௥೙ೠ೘
, ௡௨௠ܰቁݎ ቀ ெ

௥೙ೠ೘
ቁ ൣ∑ ∑ ∑௜௝൫ݐ ௜௝௞ ݄௞ݔܥܪ ൅௞௝௜

௞݌௜௝௞ݔܥܨ  ൅ ௞ሻ൧݌௜௝௞ݔ ܥܰ െ ቀܲ
ൗܨ ,

௥

௥೙ೠ೘
, ௡௨௠ܰቁݎ ∑ ܸܵ ൈ ௞௞݌  

(1)

 
Subject to 
 

෍ ௜௞ݕ

௄

௞ୀଵ

ൌ 1 ׊ ݅ א ܸ\ሼ0ሽ. (2)

෍ ௜௝௞ݔ

௝א௏

ൌ ෍ ௝௜௞ݔ

௝א௏

ൌ ,௜௞ݕ ׊ ݅ א ܸ , ݇ ൌ 1, … , (3) .ܭ

௜௞ݑ െ ௝௞ݑ ൅ ௜௝௞ݔܥ ൑ ܥ െ ௝݀, ׊ ݅, ݆ א ܸ\ሼ0ሽ, ݅ ് ݆, ݇ ൌ 1, … , (4) .ܭ

௝݀ ൑ ௝௞ݑ ൑ ,ܥ ׊ ݆ א ܸ\ሼ0ሽ, ݇ ൌ 1, … , .ܭ  (5)
௞݌ ൅ ݄௞ ൑ 1 , ݇ ൌ 1, … , (6) .ܭ

෍ ෍ ௜௝௞ݔ

௝ஷ௜א௏௜א௏

൑ |ܸ|ଶሺ݄௞ ൅ ,௞ሻ݌ , ݇ ൌ 1, … , .ܭ  (7)

௜௝௞ݔ א ሼ0,1ሽ. ׊ ݅, ݆ א ܸ , ݇ ൌ 1, … , (8) .ܭ
௜௞ݕ א ሼ0,1ሽ. ׊ ݅ א ܸ , ݇ ൌ 1, … , (9) .ܭ

௞݌ א ሼ0,1ሽ. ݇ ൌ 1, … , (10) .ܭ
݄௞ א ሼ0,1ሽ , ݇ ൌ 1, … , (11) .ܭ

௜௞ݑ ൒ 0, ׊ ݅ א ܸ , ݇ ൌ 1, … , (12) .ܭ
 
In equation (1), the present value of costs, as the objective function, is minimized. The 

first term of (1) is the total cost of purchased vehicles; the second term calculates the present 
value of the equal annual costs considering the number of compounding periods in a year 
and the third terms is the present salvage value of the purchased vehicles which is deduced 
of the total present cost. Equation (2) ensures each customer is met by a vehicle. Equation 
(3) provides the flow balance of the network (i.e. the number of entering vehicles must be 
equal to the number of departing ones for each node). Eliminating the sub tours and 
satisfying the capacity constraint of vehicles are provided by Equations (4) and (5) 
simultaneously. Equation (6) shows that each vehicle can be either hired or purchased. 
Equation (7) reveals that vehicle k meets customer i provided that it has been hired or 
purchased. Equations (8) to (11) are the 0-1 constraints for related decision variables. 
Equation (12) is the sign constraint of decision variables u. 
 
 

3. SOLUTION ALGORITHMS 
 

The above model is an MINLP1 model in which in addition to route detection, the decision 

                                                   
1 Mixed integer nonlinear programming 
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of hire/purchase vehicles is made. Therefore, the basic CVRP model is a special case of the 
above model in which the hire/purchase decision is not consider. Since CVRP belongs to the 
NP-hard class of problem, it is obvious that the above problem is also an NP-Hard problem 
and hence there is no an optimal algorithm with polynomial time complexity function for it 
(unless P=NP).  

Thus, it is reasonable to find a near optimal solution in large scale instances of the 
problem via meta heuristic algorithms. Here, we present two meta heuristic algorithms for 
this problem: first, a hybrid algorithm based on parallel simulated annealing and electro 
magnetism algorithms (PSA-EM) and second, shuffled frog leaping algorithm (SFLA).  

 
3.1 PSA-EM Algorithm 

Parallel simulated annealing algorithm is the extended version of simulated annealing 
algorithm is a probabilistic search method that imitates physical melt of solids to find the 
problem solution of combinatorial optimization problems. Since this algorithm is not 
population-based and starts to search from one point of the solution space, a few simulated 
annealing processes have been used to search the solution space in parallel.  

EM-type algorithms were first proposed by Birbil and Fang [14]. This algorithm has been 
used either as a stand-alone approach or as an accompanying procedure for other methods. 
Chang et. al [15] presented a meta-heuristic that applies the electro magnetism methodology 
to the single machine scheduling problem also Debels et al [16] used hybrid 
Electromagnetism algorithm to solve a resource constrained project scheduling problem.  

In fact, Electromagnetism algorithm is a population based meta heuristic method. This 
approach starts with random selection of the points from the feasible space. Each point 
(particle) is a solution and has some charge. The value of the charge depends on the quality 
of the objective function in a way that the better the amount of the objective function is, the 
more the charge will be. Equation (13) shows the relation between the charge amount and 
the fitness of particle i in which qi is the charge of particle i, ݂൫ݔ௜൯, ݂ሺݔ௕௘௦௧ሻ and ݂ሺݔ௞ሻ are the 
objective values of particle i, the best particle and particle k, respectively and m is the 
population size. n indicates the dimension of solution space 

 

௜ݍ ൌ ሺെ݊ ݌ݔ݁
݂൫ݔ௜൯ െ ݂ሺݔ௕௘௦௧ሻ

∑ ሺ݂ሺݔ௞ሻ െ ݂ሺݔ௕௘௦௧ሻሻ௠
௞ୀଵ

ሻ (13)

 
Based on the value of this charge, an attraction-repulsion mechanism is performed to 

move the points to the optimum solution in a way that a better particle attracts other particles 
to itself and a bad particle repulses others from itself. 

Electrostatic force between two points is directly related to the magnitude of the charge 
of two particles, while it is reversely related to the square of the distance between two 
points. 

The resultant force acting on particle i from other particles is obtained by (14). 
 

௜ܨ ൌ ෍หݔ௜ െ ௝หݔ
௝ݍ௜ݍ

ԡݔ௜ െ ௝ԡଶݔ
௝ஷ௜

 (14)
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3.1.1 The framework of PSA-EM algorithm 

 

 
Figure 1. The flowchart of PSA-EM 

 
Fig. 1 depicts the flowchart of the hybrid PSA-EM algorithm. In this algorithm, m 

parallel SA processes with the same initial temperature start to search the solution space 
from random points. Then, in each process, the search is performed based on the simulated 
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annealing algorithm until the equilibrium condition is met. This process which is shown in 
Fig. 2 performs as a sub algorithm in m parallel section to search the feasible region. Then, 
the m solutions are mapped to m separate particles which are the input of the EM algorithm. 
These particles are moved based on EM mechanism and after that a local search around each 
of them is performed. Then, the process of temperature reduction is carried out, if the final 
temperature of the SA processes is met the algorithm stops, otherwise the m SA processes 
are run with the new m solutions. This procedure is shown in Fig. 1. The dashed line in this 
figure shows the m parallel SA’s. The rest of this section has been devoted to define the 
basic features of the presented algorithm 

 

 
Figure 2. The flow chart of SAi process 
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3.1.2 Solution representation 
The code representing the problem solution in this algorithm is composed of three parts. The 
first part contains the visiting order of customers. The second part reveals the purchase/hire 
decision of vehicles and the third part determines the number of customers that each vehicle 
meets. Hence, Part I is an array with |ܸ| െ 1 cells where each cell contains a random integer 
between 1 to |ܸ| െ 1 . Part II is an array with K cells where cell k, k=1, 2, …,K, contains 1, 2 
or 0 if vehicle k is purchased, hired or not purchased nor hired, respectively. Part III is an 
array with K cells where cell k, k=1, 2, …,K, contains an integer representing the number of 
customers visited by vehicle k . 

 

 
Figure 3. An example of solution coding in PSA-EM 

 
Fig. 3 shows an example of coding in which there are 6 customers and 3 vehicles. It 

comes from this code that vehicle 1 is purchased and it meets customers 2, 1, 3 and 4, 
respectively; vehicle 2 is hired and it meets customers 6 and 5, respectively and vehicle 3 is 
not purchased nor hired. Since the coordinates of the particles and the basic equations in EM 
algorithm are defined as real number, we used the R-K2 for discretization of real numbers in 
arrays. 

 
3.1.3 Initial solutions 
All the initial solutions are randomly generated based on uniform distribution through the 
feasible integer intervals. The first, second and third part of the code for the initial 
population are randomly generated through sets ሼ1,2, … , |ܸ| െ 1 ሽ, ሼ0, 1, 2 ሽ and 
ሼ1,2, … , |ܸ| െ 1 ሽ, respectively. After generating each solution randomly, it may be not 
feasible. A procedure is applied to make sure that each solution is feasible. This procedure 
checks the logical constraints such that the number of customers visited by every vehicle 
that is not purchased nor hired must be zero or the sum of elements in Part III of the solution 
must be |ܸ| െ 1. The other feasibility condition that is check by this procedure is the 
functional constraints like capacity constraint, i.e. the total demand of customers met by 
each vehicle should not exceeds the vehicle capacity. 
 
3.1.4 Initial and final temperature of the SA processes 

Initial and final temperatures have an important effect on the quality of the SA processes. 
The more they match with the problem specification (i.e. the dimensions of the problem, the 
size of the feasible region and etc.) the more SA processes search the region efficiently. 
Hence we set them according to the mechanism adopted by Connolly [17]. According to this 
procedure, a solution is first generated randomly. Then, a number of its neighborhoods are 
generated and the objective function of them is calculated. (i.e ௜݂ ,  The initial and final .( ݅׊

                                                   
2 Random-Key 

2 1 3 4 6 5 

Part I 

1 2 0 

Part II 

4 2 0 

Part 

III
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temperatures are determined by Equations (15) to (18). 
 

଴ܶ ൌ ∆௠௜௡ ൅ 0.1ሺ∆௠௔௫ െ ∆௠௜௡ሻ (15)

௙ܶ ൌ 0.08 ଴ܶ (16)
∆௠௜௡ൌ ݉݅݊

௜,௝
ሼ| ௜݂ െ ௝݂|ሽ (17)

∆௠௔௫ൌ ݔܽ݉
௜,௝

ሼ| ௜݂ െ ௝݂|ሽ (18)

 
3.1.5 Cooling schedule program 

In order to guide the search process and converge it to a final solution it is necessary to 
reduce the temperature after equilibrium state in each temperature. Accepting a bad solution 
becomes harder while the temperature is reduced and the diversification of the search 
process is then reduced. There are several cooling schedule program for SA in the literature, 
but the best known of them is the one presented by Lundy and Mees [18] which has been 
adapted in our algorithm. The related equations of this cooling schedule program are 
Equations (19) to (21). 

 

௖ܶ ൌ ௖ܶିଵ

1 ൅ ߚ ௖ܶିଵ
 (19)

ߚ ൌ ଴ܶ െ ௙ܶ

ܯ כ ଴ܶ כ ௙ܶ
 (20)

ܯ ൌ
|ܸ|ሺ|ܸ| െ 1ሻ

2
 (21)

 
3.1.6 Equilibrium conditions 

A certain number of iteration in each temperature (EC) has been considered as the condition 
for equilibrium. Like cooling schedule program, there are several equilibrium tests for SA. 
We test some of best known ones, but considering the algorithm efficiency as decision 
criteria, this test outperformed the others in our algorithm.  
 
3.1.7 Neighborhood Generation 
To generate a neighbor of current solution we adopt the swap operator. But it is performed 
in three different dimensions named two, three and four dimensional swap. In other words, 
the neighborhood generation is performed in one of the following three ways with equal 
probability: 

A- Two elements of solution array are randomly selected and their values are swapped  
B- Three elements of solution array are randomly selected and their values are swapped 

randomly. 
C- Four elements of solution array are randomly selected and their values are swapped 

randomly. 
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3.1.8. Local search: iterated swap procedure (ISP) 

One of the local search methods used in this type of solution coding is ISP method that is 
relatively more rapid compared to other methods like 2 or 3-Opt (Ho et al [19]). This 
method was first used to improve solutions in a framework of GA in a scheduling problem 
by Ho and Ji [20]. The procedure of this method consists of five steps described as follows.  

Step 1: Two elements of the parent solution (the solution its neighborhoods is to be 
searched) are randomly selected. 

Step 2: The locus (location in the array) of these two elements are swapped with each 
other. 

Step 3: The locus of these two elements in the recent solution are swapped with their 
neighbors, hence four different new solutions are generated. 

Step 4: Calculate the objective function of the five generated solutions. 
Step 5: If the best solution among the generated solutions was better than the parent 

solution, that solution will be replaced for the parent solution and return to step 1; otherwise, 
stop. 

The steps of this procedure are illustrated by an example in Table 3. 
 

Table 3: An example of ISP method 

4.8 6.5 8.1 9.2 1.9 0.2 3.211.1 5.2 0.15 Parent 
          child 

4.8 6.5 8.1 9.2 11.10.2 3.2109 5.2 0.15 C1: 
4.8 6.5 8.1 9.2 0.2 11.1 3.21.9 5.2 0.15 C2: 
4.8 6.5 8.1 11.1 9.20.2 3.21.9 5.2 0.15 C3: 
4.8 6.5 8.1 9.2 11.1 0.2 3.25.2 1.9 0.15 C4: 
4.8 6.5 8.1 9.2 11.1 0.2 1.95.2 5.2 0.15 C5: 

 
3.2 Shuffled frog leaping algorithm 
Shuffled frog leaping algorithm (SFLA) was first introduced by Eusuff et al [21] as a 
memetic meta-heuristic which has been developed for solving combinatorial optimization 
problems. The SFLA is a population-based cooperative search metaphor inspired by natural 
memetics and has been applied to various fields of combinatorial optimization such as 
incapacitated single level lot-sizing by Liping et al [22] and vehicle routing problem by Lou 
[23]. This algorithm applies three algorithms of memetic algorithm (MA), particle swarm 
optimization (PSO) and shuffled complex evolution (SCE). Each frog contains memo and in 
any collection of frogs, say memplex, a local search is performed based on PSO algorithm. 
Frogs move to explore and search in various directions of the search region. After a few 
iterations, they are reorganized in new groups by a technique similar to what in SCE (Eusuff 
et al [21]). 

The presented algorithm initiates by selecting a random population of frogs which 
covered the whole swamp as possible, In other words, an initial population of solutions is 
elected. The population is divided into a number of subpopulation, say memplex, with equal 
numbers of members that independently search the feasible region in various directions. 
Based on the performance of each frog, a sub-memplex is selected from each memplex. In 
other words, the frog with better performance is more probable to be selected and vice versa. 
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The best and worst frog are determined in each sub-memplex and during the evolutionary 
process, the worst frog of sub-memplex tries to improve itself. After a certain number of 
iterations, sub-memplexes are combined with each other and new populations are built. This 
process continues until the stop criterion is met. The diagram of this algorithm has been 
given in Fig. 4. The remainder of this section is devoted to describe the detail of the 
presented algorithm. 
 

 
Figure 4. Flowchart of the proposed shuffled frog leaping algorithm 
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3.2.1 Solution representation 
The code of solution consists of three parts; the first part determines the sequence of 
customers in meeting, the second part indicates that each customer has been met by which 
vehicle and the third part shows that which vehicle is purchased and which one is hired. Part 
I is an array of ሺ|ܸ| െ 1 ሻ cells where the value of cell i shows the customer that has priority i 
in meeting sequence and ܸ is defined in Table 1. Part II of the solution code is an ሺ|ܸ| െ 1 ሻ-
dimensional array. Each element value of the array is a real number in the interval of [1, K] 
where K is the number of available vehicles. Therefore, the integer part of each element 

shows the vehicle by which the related customer is met. Part III of the code is an array of K 

elements where the value of element i is 0, 1 and 2 if vehicle i is not used, is purchased and 
is hired, respectively. 
 
3.2.2 Generating the initial population  

At the start of the SFLA an initial population of size F is necessary. This population is 
generated randomly in which each solution is an array that its values are randomly generated 
in related intervals and after that it become feasible. 
 
 
3.2.3 Sequence of customers in meetin 

In the presented algorithm, the order by which the customers, assigned to a vehicle, are met 
is based on nearest not met neighbor rule. In other words, each vehicle selects the nearest not 
met neighbor of current customer from its assigned customers as the next destination. 
 
3.2.4 Improvement the worst solution of each sub- memplex 
The worst solution of each sub-memplex is improved using the best solution of the same 
sub-memplex (Dsb). If at this stage, the improvement of the worst solution is not successful, 
it will be improved using the best overall solution (DsB). If also, at this stage, we fail to 
improve the solution, a random solution will be produced and is replaced with the worst 
solution of the sub-memplex. In order to improve the worst solution, an evolution coefficient 
is first calculated for each vehicle based on the framework proposed by Luo [23]. 

 

௞ߙ ൌ ฬ1 െ
݈௞

ܥ
ฬ , ݇ ൌ 1,2, … , (22) ܭ

 

Where ݈௞ is the load of vehicle ݇ and C is the capacity of vehicle ݇. Secondly, 

corresponding to the Part II of Dsw and Dsb, two ሺ|ܸ| െ 1 ሻ-dimensional vector of evolution 
coefficient are made as αworst and αbest for the worst and best solution of sub-memplex using 
Equation (23) and (24). 

 

௜ߙ
௕௘௦௧ሺ௪௢௥௦௧ሻ ൌ ,௞ߙ ݅ ൌ 1,2, … , |ܸ| െ 1 (23)

݇ ൌ ,ۂሻ௜ݓሺܾݏܦہ ݅ ൌ 1,2, … , |ܸ| െ 1 (24)
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Where ߙ௜
௕௘௦௧ሺ௪௢௥௦௧ሻ

 is the value of ith element of αbest or αworst and ܾݏܦہሺݓሻ௜ۂ is the 
integer part of ithelement of ܾݏܦ or Dsw. At third, the leaping step vector is obtained from 

the following equation: 
 

ܵ ൌ ܾݏܦ௕௘௦௧ߙ െ (25) ݓݏܦ௪௢௥௦௧ߙ
 

Finally, the worst solution of the memplex is changed as follows. 
 

ݓݏܦ ൌ ݓݏܦ ൅ ܵ (26)
 
If the new solution is feasible, the purchase or hire mode will be obtained for vehicles 

used in this solution by calculation of the related costs. If the objective function is better 
than the previous solution, the new solution will be replaced by the worst solution of the 
memplex. If the new solution is infeasible or feasible and its objective function is not better 
than the previous solution, in this case, the improvement process is done by the best solution 
among the whole population (DsB). If the new solution is again infeasible or its objective 
function is not better than the previous solution, a solution will randomly be produced and 
replaced for the worst frog in the memplex. 

 
3.2.5 Local search 
After improving the worst solution of each sub-memplex, two types of local search are 
applied on the obtained solution named LS1 and LS2 which are described as follows. 

 
3.2.5.1. Local search LS1 
In LS1, the sequence of customers in meeting is changed for each vehicle. We test three 
methods for this goal that already are in the literature named iterated swap procedure (ISP) 
(Ho et al [19]), insertion and 2-opt swap. Our experimental results showed that the ISP 
method increases the computational time while it does not improve the best solution found 
by the algorithm compared with two other local searched. Hence, we applied the swap and 
insert local search for changing the order of customers in meeting in fifty-fifty frequency. In 
swap method, two customers of the first part of the solution code are randomly selected and 
their location are changed, but in the insert method a customer is selected randomly and it is 
inserted between two other customers which are randomly selected. 

 
3.2.5.2 Local search LS2 

The second local search which is applied to improve the worst solution in each memplex, 
changes the second part of the solution code by changing the assignment of customers to the 
vehicles. In detail, a customer (an element of Part II of the code) is randomly selected and its 
value is changed to another value that already exist in Part II of the solution code. In fact by 
this modification, a node of a vehicle tour is omitted and it is added to the tour of another 
vehicle. Fig. 5 shows the Part II of a solution code before and after exertion of this operator. 
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2 32311221 1 Before 
   After

2 32311231 1  
Figure 5. Part II of a solution code before and after LS2 

 
 

4. COMPUTATIONAL EXPERIMENTS 
 
In order to demonstrate the efficiency of the presented algorithms some test problems are 
solved by both of them and the results are compared. The basic data of the test problems 
such as the distance matrix is based on Solomon data [24] which are designed for problems 
with homogeneous vehicles. To evaluate the effect of vehicle capacity on the performance of 
algorithms, three different levels of vehicle capacity named low, medium and high capacities 
are considered and in each level a number of test problems are solved. 
 
4.1 Parameters setting 
Parameters raised in the model are economic factors parameters varying through the vehicles 
type. The values of these parameters which are obtained by inquiry from related resources 
are listed in Table 4. The capacities of the vehicles for low, medium and high are 2, 5 and 8 
tons respectively. 
 

Table 4: Cost parameters of the three types of vehicles 

The type of vehicles 
Costs 

Low Medium High 

Purchase cost 21600 68000 90000 
Fuel cost per hour 5.2 1.6 3 
Maintenance and repair cost per hour 4 5.8 6.4 
Hire cost per hour 10 15 20 
Salvage value 11000 30000 40000 

 
The factor of annual interest rate has been considered as 22% which is monthly 

compounded. Also the planning horizon has been considered as 5 years that in each year the 
task of supply and distribution is performed 360 times. 

In order to do experiments for selecting a group of parameters for SFLA, instances with 
various dimensions in the number of customers and vehicles have been considered. In so 
doing, 12 classes of the sample problem with the number of customers of 5, 6, 7, 8, 9 and 10 
in small and large cases and 8 classes of the sample problems with the number of customers 
of 5 and 12 in medium case were evaluated. In other words, in general, 20 classes of sample 
problems were tested and the results obtained from the algorithm were compared with the 
optimal values obtained from GAMS software. Finally, parameters of SFLA were set as 

listed in Table 5. 
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Table 5: The values of SFLA parametrs in the experiments 

Parameter F M N M 
Value 50 10 50 20 

 
In order to set the parameters of PSA-EM the test problems used for setting SFLA have 

been applied. The results obtained from running the algorithm were compared with the 

optimal values Based on our observations in this experiment, the best level of parameters of 
PSA-EM is 10 for the number of initial population, 20 for the number of iteration in each 
temperature and [-10, 10] for the interval which the array elements get values. 

To evaluate and compare the presented algorithms, they have been programmed in C 
#.net software and they applied to solve the problem instances in various environments by a 
machine with CPU Intel Core i5-2450M, 2.5GHZ and 4GB RAM. Several environments, in 
which the problem instances are generated and solved, are designed based on the framework 
presented by Rodríguez and Ruiz [25]. In this experiment the varying factors and their 
different levels of them are listed in Table 6. 

 
Table 6: The varying parameters and their values in several environments 

Control parameters Various modes 
The number of customers Small (10 nodes), Large (100 nodes) 

The distribution pattern of customers Random, group 
The distance matrix Low, high

The location of depot Between customers, out of customers scope
The capacity of vehicles Small (200), medium (700), large (1000) 

 
The distribution pattern of customers is considered in grouped and random style. In 

grouped pattern the customers are clustered in several groups which are far from each other. 
The example of this pattern is the districts of a city in which the customers are located. 

 
4.2 Experimental results 

According to Table 6, there exists 48 different environments that in each one 5 problem 
instances are randomly generated and solved. The results of solving these 240 instances are 
gathered in Table 7 and 8. Comparison of two algorithms in tested categories has been 
reported as the difference percentage between the mean values of the objective functions 
calculated by Equation (27). 
 

ௌ݂ி௅஺ െ ௉݂ௌ஺ିாெ

௉݂ௌ஺ିாெ
כ 100 (27)

 
 
 
 
 



CAPACITATED VEHICLE ROUTING PROBLEM WITH VEHICLES HIRE OR ... 

 

17

Table 7: The effect of distribution pattern on the performance of the algorithms 

Problem size
Problem type 

Small Large 

Distribution 
pattern 

Depot 
location 

Vehicle 
capacity 

Difference 
percent (%) 

Difference 
percent (%) 

Grouped Center Small 0 36.7 
Random Center Small 1.8- 20.5 
Grouped Out Small 0 31.9 
Random Out Small -1.8 23.5 
Grouped Center Medium 0.8 11.1 
Random Center Medium 1.3- 4.1- 
Grouped Out Medium 3.4 22.5 
Random Out Medium 2.4- 7.7 
Grouped Center Large 0 26.5 
Random Center Large -0.5 7.7 
Grouped Out Large 0 19.6 
Random Out Large 11 18.2 

 
Table 8: The effect of distance matrix on the performance of the algorithms 

Problem size
Problem type 

Small Large 

Distance Matrix 
Depot 

location 
Vehicle 
capacity 

Difference 
percent (%) 

Difference 
percent (%) 

Low Center Small 2 21.5 
High Center Small 0 40.2 
Low Out Small 0.7 20.9 
High Out Small 0.3 28.5 
Low Center Medium 1 6.7 
High Center Medium 0 16.1 
Low Out Medium 2.9 15 
High Out Medium 0.5 16.8 
Low Center Large 4 10 
High Center Large 0 20.3 
Low Out Large 8.3 14 
High Out Large 0.3 21.4 

 
The following results about tested problem instances can be concluded from Table 7 and 

Table 8. 
 In the small size instances with random distribution pattern and center depot, SFLA 

algorithm leads to better results specially when the vehicles have medium capacity. 
 The PSA-EM outperforms the SFLA algorithm in all environments except the ones 

mentioned above. 
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Figure 6. The computational time of the PSA-EM and SFLA algorithms 

 
 When the size of the instances increases, the relative advantage of PSA-EM increases 

in all environments.  
 In the category of small problems that the extent of the area of the customers is high 

and depot is located in the center of customers, the results obtained from two algorithms are 

equal. 
 In the category of small problems that the extent of the area of the customers is small, 

the results of PSA-EM is better. 
As depicted in Fig. 3, the PSA-EM is considerably faster than SFLA. 
 
 

5. CONCLUSION 
 

The route length each vehicle traveled in an optimal solution of the capacitated vehicle 
routing problem (CVRP) is dependent to the way that the vehicle is procured. Hence, in this 
paper, the problem of CVRP integrated with the decision of purchase or hire of vehicles has 
been studied. Considering the time value of the money, the problem is formulated as an ILP 
model in which the total costs (including the procurement and traveling costs of vehicles) is 
minimized. Since the problem belongs to the class of NP-Hard problems, two meta heuristic 
algorithms are presented for solving it. The first one is a hybrid algorithm of simulated 
annealing and electromagnetism algorithms (PSA-EM) and the second one is based on 
Shuffled Frog Leaping Algorithm (SFLA). Experimental results show that the PSA-EM 
algorithm outperforms the SFLA in most environments from the efficiency point of view. 

 
 
 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20 40 60 80 100 120

Ti
m
e
 (
Se
c.
)

Number of customers 

PSA‐EM

SFL



CAPACITATED VEHICLE ROUTING PROBLEM WITH VEHICLES HIRE OR ... 

 

19

REFERENCES 
 

1. Dantzig GB, Ramser JH. The truck dispatching problem, Management science 1959; 6(1): 
80-91. 

2. Prins C. A simple and effective evolutionary algorithm for the vehicle routing problem, 
Computers & Operations Research 2004; 31(12): 1985-2002. 

3. Augerat P, et al. Separating capacity constraints in the CVRP using tabu search, European 
Journal of Operational Research 1998; 106(2): 546-57. 

4. Contardo C, Martinelli R. A new exact algorithm for the multi-depot vehicle routing 
problem under capacity and route length constraints, Discrete Optimization 2014; 12: 129-
46. 

5. Luo J, Chen MR. Improved Shuffled Frog Leaping Algorithm and its multi-phase model for 
multi-depot vehicle routing problem, Expert Systems with Applications 2014; 41(5): 2535-
45. 

6. Chen P, Huang Hk, Dong XY. Iterated variable neighborhood descent algorithm for the 
capacitated vehicle routing problem, Expert Systems with Applications 2010; 37(2): 1620-7. 

7. Lin SW, et al. Applying hybrid meta-heuristics for capacitated vehicle routing problem. 
Expert Systems with Applications 2009; 36(2): 1505-12. 

8. Wang CH, Lu JZ. A hybrid genetic algorithm that optimizes capacitated vehicle routing 
problems, Expert Systems with Applications 2009; 36(2): 2921-36. 

9. Ai TJ, Kachitvichyanukul V. Particle swarm optimization and two solution representations 
for solving the capacitated vehicle routing problem, Computers & Industrial Engineering 
2009; 56(1): 380-7. 

10. Yurtkuran A, Emel E. A new hybrid electromagnetism-like algorithm for capacitated vehicle 
routing problems, Expert Systems with Applications 2010; 37(4): 3427-33. 

11. Garaix T, et al. Vehicle routing problems with alternative paths: An application to on-
demand transportation, European Journal of Operational Research 2010; 204(1): 62-75. 

12. Ngueveu SU, Prins C, Wolfler Calvo R. An effective memetic algorithm for the cumulative 
capacitated vehicle routing problem, Computers & Operations Research 2010; 37(11): 
1877-85. 

13. Lysgaard J, Wøhlk S. A branch-and-cut-and-price algorithm for the cumulative capacitated 
vehicle routing problem, European Journal of Operational Research 2014; 236(3): 800-10. 

14. Birbil Şİ, Fang SC. An electromagnetism-like mechanism for global optimization, Journal 
of global optimization 2003; 25(3): 263-82. 

15. Chang PC, Chen SH, Fan CY. A hybrid electromagnetism-like algorithm for single machine 
scheduling problem, Expert Systems with Applications 2009; 36(2): 1259-67. 

16. Debels D, et al. A hybrid scatter search/electromagnetism meta-heuristic for project 
scheduling, European Journal of Operational Research 2006; 169(2): 638-53. 

17. Connolly DT. An improved annealing scheme for the QAP, European Journal of 
Operational Research 1990; 46(1): 93-100. 

18. Lundy M, Mees A. Convergence of an annealing algorithm, Mathematical programming 
1986; 34(1): 111-24. 

19. Ho W, et al. A hybrid genetic algorithm for the multi-depot vehicle routing problem, 
Engineering Applications of Artificial Intelligence 2008; 21(4): 548-57. 



Z. Hajishafee, S.H. Mirmohammadi and S.R. Hejazi 

 

20 

20. Ho W, P Ji. Component scheduling for chip shooter machines: a hybrid genetic algorithm 
approach, Computers & Operations Research 2003; 30(14): 2175-89. 

21. Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for 
discrete optimization, Engineering Optimization 2006; 38(2): 129-54. 

22. Liping Z, et al. Application of Shuffled Frog Leaping Algorithm to an Uncapacitated SLLS 
Problem, AASRI Procedia 2012; 1: 226-31. 

23. Luo KP. A Shuffled Frog Leaping Algorithm for Solving Vehicle Routing Problem, Applied 
Mechanics and Materials 2012; 197: 529-33. 

24. Solomon MM. Vehicle Routing and Scheduling with Time Window Constraints: Models and 
Algorithms, 1984. 

25. Rodríguez A, Ruiz R. A study on the effect of the asymmetry on real capacitated vehicle 
routing problems, Computers & Operations Research 2012; 39(9): 2142-51. 

 


