
 

 
 
 
 

THE EFFECTS OF INITIAL SAMPLING AND PENALTY 
FUNCTIONS IN OPTIMAL DESIGN OF TRUSSES USING 

METAHEURISTIC ALGORITHMS 
 
 

S. Shojaee1,*, † and S. Hasheminasab2
 

1Department of Civil Engineering, Shahid Bahonar University of Kerman, Kerman, Iran 
2Civil Engineering Department, Islamic Azad University, Kerman Branch, Kerman, Iran 

 

 

ABSTRACT 
 

Although Genetic algorithm (GA), Ant colony (AC) and Particle swarm optimization 
algorithm (PSO) have already been extended to various types of engineering problems, the 
effects of initial sampling beside constraints in the efficiency of algorithms, is still an 
interesting field. In this paper we show that, initial sampling with a special series of constraints 
play an important role in the convergence and robustness of a metaheuristic algorithm. 
Random initial sampling, Latin Hypercube Design, Sobol sequence, Hammersley and Halton 
sequences are employed for approximating initial design. Comparative studies demonstrate 
that well distributed initial sampling speeds up the convergence to near optimal design and 
reduce the required computational cost of purely random sampling methodologies. In addition 
different penalty functions that define the Augmented Lagrangian methods considered in this 
paper to improve the algorithms. Some examples presented to show these applications. 

 
Received: 5 March 2011; Accepted: 10 October 2011 

 
 

KEY WORDS: Metaheuristic algorithms; optimal design;  initial sampling; constraint; trusses  
 
 

1. INTRODUCTION 
 

Over the last three decades, a wide range of powerful mathematical programming methods 
have been developed for solving optimization Problems. Amongst all there are some that 
mimicking natural phenomena such as: Genetic algorithms, Ant colony and Particle swarm 
optimization algorithm. 

                                                   
*Corresponding author: S. Shojaee, Department of Civil Engineering, Shahid Bahonar University of 
Kerman, Kerman, Iran 
†E-mail address: saeed.shojaee@mail.uk.ac.ir  

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING 
Int. J. Optim. Civil Eng., 2011; 2:279-304 

mailto:saeed.shojaee@mail.uk.ac.ir


S. SHOJAEE and S. HASHEMINASAB 

 

280 

GAs are efficient and broadly applicable global search procedures based on stochastic 
approach which relies on “survival of the fittest” strategy [1]. In recent years, GAs have been 
used in structural optimization by many researchers (Goldberg and samtani [2]; Ahn and 
Ramakrishna [3]; Park et al. [4]; Kaveh and Khanlari [5]; Sahab et al. [6]; Castilho et al. [7]). 
All these studies have demonstrated that GAs can be powerful design tools for optimization 
problems. Another metaheuristic algorithm is Ant Colony Optimization [8, 9].  

It has been inspired by the behavior of colonies of ants when they try to get food. In fact 
ants during the food searching, deposit on the ground a chemical substance called pheromone; 
subsequent ants can smell the deposited pheromone, and tend with a higher probability to 
follow the paths where the pheromone concentration (and consequently smell concentration) is 
stronger. Note that individual ants have no explicitly knowledge of the collective task; each ant 
works by itself and the pheromone deposit stimulates and guides probabilistically the others 
ants towards the better path, producing an apparently highly organized behavior. In other 
words the ants do not direct their work, but are guided by it. Such type of indirect 
communication is called stigmergy and was for the first time introduced in 1959 by the French 
zoologist Pierre-Paul Grasse'.  

The natural behavior of ants can be simulated and translated in computer code, called 
ACO, to solve complex combinatorial optimization problems. Today several versions of ACO 
exist because a particular implementation is problem-dependent, so ACO really means a class 
of algorithms. These include: Ant System (AS) [10], Elitist AS (Dorigo et al. [11]), Ant-Q 
(Gambardella and Dorigo [12]), Ant Colony System (Dorigo and Gambardella [13, 14]),  
MAX–MIN AS (Stutzle and Hoos [15]), Rank-based AS (Bullnheimer et al. [16]), ANTS 
(Maniezzo [17]), Hyper-cube AS (Blum et al. [18]). In this paper the Ranked-Based Ant 
system have been used. 

The last algorithm is the Particle Swarm Intelligence. The particle swarm optimization or 
PSO, which is based on the social behavior reflected in flock of birds, bees, and fish that adjust 
their physical movements to avoid predators, and to seek the best food sources (Eberhart and 
Kennedy [19]). The PSO algorithm was first proposed by Kennedy and Eberhart [20]. It is 
based on the premise that social sharing of information among members of a species offers an 
evolutionary advantage. 

Recently, the PSO has been proved useful on diverse engineering design applications such 
as logic circuit design (Coello and Luna [21]), control design (Zheng et al. [22]), and power 
systems design (Abido [23]) among others. Applications in structures had been done in the 
area of structural shape optimization   (Fourie and Groenwold [24]), and in topology 
optimization (Venter and Sobieszczanski [25]) with promising results in such structural 
design applications. 

In all these algorithms the initial population in first is selected randomly; however we can 
use some initial sampling technique to improve the speed of their convergence. Initial 
sampling techniques like Latin Hypercube Design, Sobol sequence, Hammersley and Halton 
sequences have widely been used in Metamodelig techniques such as response surface 
methodology, artificial neural network, kriging, and radial basis function approximations. 
However they have been used scarcely with metaheuristic algorithms. 

Latin Hypercube Sampling (LHS) first, was developed to generate a distribution of 
plausible collections of parameter values from a multidimensional distribution. The sampling 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

281 

method is often applied in uncertainty analysis, and was first described by McKay et al. [26]. 
It was further elaborated by Imam et al. [27]. 

Sobol sequences are an example of quasi-random low-discrepancy sequences. 
(Discrepancy is a quantitative measure for the deviation of the sequence from the uniform 
distribution). They were first introduced by I.M.Sobol in [28]. After that it has been used and 
discussed by researchers; Bratley and Fox [29], Niederreiter [30], Antonov and Saleev [31], 
Jackel [32], Press et al. [33]. 

Hamersley and Halton are another two useful low discrepancy sequences. They have been 
used in numerical (Paskov and Traub [34]; Traub [35]; Case [36]) and graphic [37-40] 
applications, with a significant improvement in terms of error. They were developed by 
Diwekar and co-workers [41-43] and Halton [44] respectively. 

So we are going to apply these techniques into our initial population and proving that a 
well-distributed population speeds up the convergence this result is particularly important 
whenever the optimization task involves time-consuming function.Besides these initial 
sampling methods, for applying constraint we have used some penalty functions that already 
have been used in Augmented Lagrangian algorithms by Birgin et al. [56].  

 
 

2. PROPOSED OPTIMIZATION ALGORITHMS 
 

In order to make the paper self-explanatory, the characteristics of GA, ACO and PSO are 
briefly explained in the following three sections: 

 
2.1. Genetic algorithms 

GAs are an optimization strategy in which points in the design space are analogous to 
organisms involved in a process of natural selection. The term ‘genetic’ is used because, along 
with the expected design representation, GAs employ a coded representation of design 
attributes that is analogous to a chromosome [1]. This code is commonly a character string, 
with each character position being analogous to a gene, and each character assigned to a 
position being analogous to an allele. Organisms are generated and tested in generations, with 
offspring designs arising from parent designs. The creation of new designs for a new 
generation occurs with a process that is analogous to biological reproduction. Genetic 
crossover allows offspring designs to retain traits from parent designs, and infrequent 
mutations possibly yield radically improved designs, but almost always yield unsuitable 
configurations. The testing of new designs is done with a merit function, usually tailored to 
take the coded representation as input. In a given generation, designs with a higher merit are 
given a higher probability of creating offspring, and perhaps surviving themselves into the 
next generation. 

Optimization occurs, therefore, through a process of natural selection. Designs in a given 
generation group in pairs (i.e., mate), with the better designs having a higher probability of 
pairing. These `parent' designs produce offspring by genetic crossover. In `single point' 
crossover, a point along the coded representations (the chromosomes) is chosen at random, 
and the segments of the code after the point are swapped. Infrequent, random mutations are 
then performed on individual alleles within the chromosomes by changing the values. These 



S. SHOJAEE and S. HASHEMINASAB 

 

282 

operations yield two new codes which represent two new designs that possess traits from both 
parents. In this way a new generation is created. The process then iterates. After many 
generations, both the best design and the average quality should increase, because the merit 
function is more likely to allow better designs to produce offspring. 

 
2.1.1. GA parameters 

Unless otherwise specified, the GA routines utilized random initial populations, binary-coded 
chromosomes, single-point crossover, mutation, and an elitist stochastic universal sampling 
selection strategy (Baker, [61]). The probabilities of crossover (0.95) and mutation (0.01), and 
the population size (60) in each example were chosen according to values suggested by 
Grefenstette [62] and Schaffer et al. [63].  Figure 1 shows the flow chart for the GA 
algorithm. 

 
 

 

 

 

 

 

 

 

 

Initial population Start 

Fitness evaluation 

Crossover 

Ordering population 

Selection of parents 

Checking convergence 

Fitness evaluation 
 

Ordering Offspring 

Selection of Elitist 

Mutation 

Offspring 

Finish 
Yes No 

 
                                          Figure 1. The flow chart for GA 

 
2.2. Ant Colony Optimization algorithms 
2.2.1. Ranked-Based Ant system 

In rankAS each ant deposits an amount of pheromone that decreases with its rank. Additionally, 
the best-so-far ant always deposits the largest amount of pheromone in each iteration.  

 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

283 

2.2.1.1. Update of Pheromone Trails 

Before updating the pheromone trails, the ants are sorted by increasing tour length and the 
quantity of pheromone that, an ant deposits is weighted according to the rank r of the ant. Ties 
can be solved randomly (in our implementation they are solved by lexicographic ordering on 
the ant name k). In each iteration only the (w-1) best-ranked ants and the ant (here w was 
taken 15% ants) that produced the best-so-far tour (this ant does not necessarily belong to the 
set of ants of the current algorithm iteration) are allowed to deposit pheromone. The best-so-
far tour gives the strongest feedback, with weight w (i.e., its contribution 1/Cbs  is multiplied by 
w); the r-th best ant of the current iteration contributes to pheromone updating with the value 1/Cr 
multiplied by a weight given by max {0, w _ r}. Thus, the AS(rank) pheromone update rule is : 

 
 w -1

r bs
ij ij ij ij

r =1
τ τ + (w - r)Δτ + wΔτ→ ∑  (1)  

 
where  r r r bs

ij ijΔτ = 1 C or Δτ = 1 C , Cr  is the length of tour r and  Cbs is the best-so-far tour 
length. The ACO procedure is illustrated in Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialize 

Place each ant in a randomly chosen city 

Chosen next city (For each ant) 

Return to the initial cities 

Update pheromone level using the tour cost for each ant 

For each ant 

More cities to visit 

Checking convergence 

Print best tour 

Yes 

 
         Figure 2.  The flow chart for ACO 

2.3. Particle swarm algorithm 

In this section, we present our implementation of the PSO, which has some similarities to the 
implementation presented by Fourie and Groenwold [45, 46]. We mimic the social behavior of 



S. SHOJAEE and S. HASHEMINASAB 

 

284 

birds. Individual birds exchange information about their position, velocity and fitness, and the 
behavior of the flock is then influenced to increase the probability of migration to regions of 
high fitness. 

In flight, each bird in the flock continuously processes information about its current position, 
velocity and fitness. In addition, information regarding its position, velocity and fitness with respect 
to the complete flock is processed. In our optimization problem, the position of each bird is 
represented by the design variables X, while the velocity of each bird V, influences the incremental 
change in the position of each bird, and hence the design variables. 

Let us consider a flock of p particles or birds. For particle i, Kennedy and Eberhart [20] 
originally proposed that the position ix  be updated as: 

 

 
i i i
k+1 k k+1x =x +v  (2) 

 
While the velocity vi

 is updated as: 
 

 i i i i g i
k+1 k 1 1 k k 2 2 k kv =v +c r (p -x )+c r (p -x )  (3) 

 
Here, the subscript k shows a (unit) pseudo-time increment. i

kp  represents the best ever 
position of particle i at time k, while g

kp  represents the global best position in the swarm at 
time k. r1 and r2 represent uniform random numbers between 0 and 1. 

Kennedy and Eberhart initially proposed that the cognitive and social scaling factors c1 and 
c2 be selected such that c1= c2= 2, in order to allow a mean of 1 (when multiplied by the 
random numbers r1 and r2). The result of using these proposed values is that birds overfly the 
target half the time.Shi and Eberhart [49] later introduced an inertia term w, modifying the 
velocity equation to become: 

 

 
i i i i g i
k+1 k 1 1 k k 2 2 k kv =wv +c r (p -x )+c r (p -x ) . (4) 

  
They proposed that w be selected such that 0.8<w<1.4. In addition, they report improved 

convergence rates when w is decreased linearly during the optimization. Figure 3 shows the 
optimization procedure of the PSO algorithm. 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

285 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialize P particles with random positions and velocities; Evaluate the population 
 

Initialize i
kP  with a copy of position for each particle ( i

kP = i
kX ); 

Set best of  i
kP  as g

kP  

The termination conditions satisfied Output  g
kP  

 

Update the velocities and positions using Eq. 1 and Eq. 4 

Population evaluation 

Update  i
kP  and  g

kP  

K=k+1 
 

                                           Figure 3. The flow chart for PSO 
 
 

3. SAMPLING TECHNIQUES 
 

3.1. Latin Hypercube sampling 

Latin hypercube design (McKay et al. [26]) can be viewed as an N-dimensional extension of 
traditional Latin square design (Montgomery, [60]). On each level of every design variable 
only one point is placed. There are the same number of levels as runs and the levels are 
assigned randomly to runs. This method ensures that every variable is presented, no matter if 
the response is dominated by only a few ones. Another advantage is that the number of points 
to be analyzed can be directly defined. Detailed computer codes and manuals were published 
by Imam ant et al. [27]. 

 
3.2. Sobol Sequence Sampling 

The algorithm for generating Sobol sequences is clearly explained in Bratley and Fox [29], 
Algorithm 659. To generate the j-th component of the points in a Sobol' sequence, we need to 
choose a primitive polynomial of some degree sj over the field GF(2) (GF(2) simply means 
that the coefficients a in the polynomial below can either be 0 or 1). 

 

 
j j j

j

s s -1 s -2
j 1, j 2, j s -1, jP = x + a x + a x +... + a x +1

 
(5) 

 
Where the coefficients a1,j, a2,j, ..., asj−1,j are either 0 or 1. A sequence of positive integers 



S. SHOJAEE and S. HASHEMINASAB 

 

286 

{m1,j, m2,j, ...} are defined by the recurrence relation: 
  j  j

j  j j j

s -1 s2
k, j 1, j k-1, j 2, j k-2, j s -1, j k-s +1, j k-s , j k-s , jm = 2 a m 2 a m 2 a m 2 m m⊕ ⊕ ⊕ ⊕  (6) 

 
Where ⊕  is the bit-by-bit exclusive-or operator. The initial values m1,j, m2,j, ..., msj,j can be 
chosen freely provided that each mk,j, 1 ≤ k ≤ sj, is odd and less than 2k. The so-called 
direction numbers {v1,j, v2,j, . . .} (In some papers numbers mk,j also can be referred as 
direction numbers) are defined by : 

 
k , j

k , j k

m
v = .

2  
(7) 

 
Then xi,j , the j-th component of the i-th point in a Sobol' sequence, is given by : 

 

  i , j= 1 1 , j 2 2 , jx i v i v ...,⊕ ⊕  (8) 
 

Where ik is the k-th binary digit of i = (. . . i3 i2 i1)2. Here the notation (·) 2 denotes the binary 
representation of numbers. 

 
3.3. Hammersley and Halton Sampling Algorithm  

The algorithm that generates a set of N Hammersley points makes use of the radix-R notation 
of an integer. That is, a specific integer, p, in radix-R notation can be represented as: 
 

 m m-1 2 1 0p = p p ...p p p  (9) 
 

 
2 m

0 1 2 mp = p + p R+ p R + ... + p R  (10) 
 

Where m = [log
R
p] = [(ln p) / (ln R)], and the square brackets, [ ], denote the integer portion 

of the number inside the brackets. For example, in the familiar base-10 (i.e., radix-10) number 
system, the integer 756 has p

0 
= 6, p

1 
= 5, and p

2 
= 7, with R=10 and m=2. The inverse radix 

number function constructs a unique number on the interval [0, 1] by reversing the order of 
the digits of p around the decimal point. The inverse radix number function is:  

 

 R 0 1 2 m(p) = 0.p p p ...pΦ  (11) 
 
 -1 -2 - m-1

R 0 1 m(p) = p R + p R + ... + p RΦ  (12) 
 

Finally, the Hammersley sequence of n-dimensional points is generated as: 
 

 ( )n R R R1 2 n-1

p
x (p) = , (p) + (p) + ... + (p)

N
Φ Φ Φ  (13) 

 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

287 

where p = 0,1,2,…,N-1; and the values for R1, R2,…, Rn-1 are the first n-1 prime numbers 
(2,3,5,7,11,13,17,…). This approach generates a set of N points in the n-dimensional design 
space.The Halton sequence is exactly the same as Hammersley except that instead of equation:  

 ( )n R R R1 2 n-1

p
x (p) = , (p) + (p) + ...+ (p)

N
Φ Φ Φ  (14) 

 
We have, 
 ( )n R R R1 2 n-1

x (p) = (p) + (p) + ... + (p)Φ Φ Φ  (15) 
 
 

4. AUGMENTED LAGRANGIAN ALGORITHMS 
 

4.1. Main algorithm 

Augmented Lagrangian algorithms are very popular tools for solving nonlinear programming 
problems, i.e. Minimize f(x) subject to g(x) ≤ 0, x ∈ Ω The set Ω is compact and convex 
whereas f: Rn → R  and g: Rn → R m  are continuously differentiable on an open set that 
contain Ω. In general, Ω = {x∈Rn  | l ≤ x ≤ u}. The function f and g are, in general, 
noncovex. Let define R++  = {t ∈ R  | t > 0}, N = {0, 1, 2 …} and the Augmented Lagrangian 
L by, 

 L(x, ρ, µ) = f(x) + 
1

( ( ),[ρ] ,[μ] )
m

i i i
i

P g x
=
∑

 
(16) 

 
For all x ∈ Ω, ρ ∈Rm

++ , and µ ∈Rm
++ . Denote Þ, the Euclidian projection operator onto 

Ω; ∇L(x, ρ, µ), the gradient vector of L with respect to x. P is the Penalty-Lagrangian 

function.  Let →×× ++++ RRR:P R be such that, P'(x, ρ, μ ) ≡ μ( , , )y
y

∂
ρ

∂
exists and is 

continuous for all y ∈ R, ρ ∈ R++ , and  μ ∈  R++ . The main model algorithm is the 
following,  

Assume that .,,1,0),1,0(, 01minmax0
mm RRx ++++ ∈∈ρ>γ>>∈τΩ∈ µµµ  Let Nkk ∈ε }{  

be a sequence of positive numbers that converges to zero. 
 
Step 1.  Initialization 
           Set k ← 1. 
Step 2.  Solving the sub-problem 
 Compute  ],,[][ maxmin µµµ ∈ik i=1,…, m.  Using 1−kx  as initial approximation, 
 

 Minimize (approximately)    L(x, ρk , μk ) subject to x ∈ Ω.   (17) 
 
The approximate minimizer must be such that: 



S. SHOJAEE and S. HASHEMINASAB 

 

288 

 
                                       ║ Þ [ kx -∇L(x, ρk , μk ) ] - kx  ║ ≤ εk                                         (18) 

Step 3.  Estimate multipliers, Compute:  
 

 μ[ ]k i  = P'( ( )i kg x , ρ[ ]k i , μ[ ]k i ), i=1,…, m.  (19) 
 
Step 4.  Update penalty parameters 
 
For all i= 1,…, m, if 
                      

 1max {0, ( )} *max{0, ( )}i ik kg x g xτ −≤  (20) 
and 

 1 1[μ ] ( ) ( )[μ ]i i i ik k k kg x g xτ − −≤  (21) 
Set 

1[ρ ] [ρ ]i ik k=+  
Else, set 

1[ρ ] [ρ ]i ik kγ=+  
     Step 5.  Begin new iteration 
            Set k ← k+1 and go to step 2 
 
Remark. In practice, the parameter [μ ]k i  will be chosen as the projection of multiplier 

estimate [μk-1]i onto the safeguarding interval [μmin, μmax] ⊂  R++.  
The most famous Augmented Lagrangian algorithm for minimization with inequality 

constraints is known as Powell-Hestenes-Rockefellar (PHR) method (Hestenes [57]; Powell 
[58]; Rockefellar [59]) and is given by (16) associated with the penalty function: 

 

 P(y, ρ, µ) = 1
2ρ

(max {0, µ+ρy} ² - µ²).  (22) 

The main drawback of PHR is that the objective function of the sub-problems is not twice 
continuously differentiable. This is the main motivation for the introduction of many 
alternative Augmented Lagrangian methods. The exponential-multiplier form of the 
Augmented Lagrangian mentioned above have been considered until now, perhaps, the best 
known alternative for overcoming this deficiency. 

The different penalty functions P that define the Augmented Lagrangian methods 
considered in this paper depend on two functions pi and θj. We list those function below, 
specifying at the same time the way in which they are combined. 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

289 

Penalty functions: 
2 2 3

2

2

1

 

1
2
1
2

1
2

μ ρ ρ 0

( ,ρ,μ) μ ρ 0

μ

μ
ρ

μ
ρ ρ

(23)

y y y if y

P y y y if y

if y

+ + ≥

= + − ≤ ≤

− ≤−







 

2 2 3

2
 

1
6

1

μ  μ  ρ ρ 0
( ,ρ,μ)

0μ 
ρ

(24)
y y y if y

P y
if yy

y−

+ + ≥
=

− ≤





 

2

3  
1

μ μρ 0
( ,ρ,μ)

0μ 
ρ y

(25)
y y if y

P y
if yy

−

+ ≥
=

≤



  

4
τ

1 1
ρ ρ

1
ρ

μ (ρ ) μ (ρ ) 0
( ,ρ,μ)

min μτ (ρτ) otherwise
(26)

{R

y y if y
P y

θ θ

θ∈

′+ + ≥
=

+



  

5
μ
ρ

( ,ρ,μ) (ρ ) (27)P y yθ=
 

6
1
ρ

( ,ρ,μ) (ρμ ) (28)P y yθ=
 

2

7
μ
ρ

ρ
μ( ,ρ,μ) ( ) (29)yP y θ=

 
8 ( ) ( )1

ρ
( ,ρ,μ) ρ )( ( ) μ )( (30)P y y y y with y such that yθθ θ− ′= + =% % % %

 
9 ( ) ( )( ,ρ,μ) ρ ( ( ) μ/ρ) (31)P y y y y with y such that yθθ θ− ′= + =% % % %  

θ Functions: 
2

1
1
2

(32)( )t tθ =
 

4/3

2
3
4

(33)( )t tθ =  

3 cosh( ) (34)( ) 1t tθ = −  

4 (35)( ) 1tt eθ = −  

5 2 1

1
2
1
2

log
(36)

log 2

(1 )

( ) 1
( ) t

t t
t

t

if

ife
θ −

− ≤

− ≥

−=  +
 

6 2

1
2

1 1
2 2

log
(37)

2 log 2

(1 )

( )
( )

t t
t

t t

if

if
θ

− ≤

− ≥

−=  +  

7 4 2

1
1 2

1
2

(38)( ) t

t
t

e t

t
t if

if
θ

−
−

≤

≥

= 
  



S. SHOJAEE and S. HASHEMINASAB 

 

290 

8 2

1
1 2

1
2

(39)
8 4 1

( )
t

t
t t t

t
t if

if
θ −

+

≤

≥

= 
−  

9 2

31 1
4 8 2
1 1
2 2

log 2
(40)

( )
( )

t t
t

t t t

if

if
θ

+

− ≤

≥

− − −=  −  
2 2 2

10
1 1

16 4
1 (1 ) 8 log (1 (1 ) 8 (41)( ) ( ) ( )) 1t t t t tθ + + + + + += + + + −

 3

11 2

1 1 1 1
6 2 24 2
1 1
2 2

max
(42)

{0, }
( )

t t
t

t t

if

if
θ

+ ≤

≥

 −= 
  

12 1/2 2

1
2

51 1 1
2 2 8 2

(43)( )
(

t t
t

t t t

if

if

e

e
θ

≤

≥

=  + +
 

13 2

1
2

1 1
2 2

log 1
(44)

2 4 log 2

( )

( )
( )

t t
t

t t t

if

if
θ

− −

−

− ≤

≥

−=  + + +  

14 2

1
2
1
2

(45)
8 12 6

1
( )

t
t

t t t
t if

if
θ

− −

+ −

≤

≥

= 
+

 15

2

4
1

1
4

3 1
2 4

2 1

log 1 (46)

8 8 2 log 2

( )

( )

( )
t

t

t t t

t t t

if

if

if

θ
−

− −

− −

−

≤

− − ≤ ≤

≥


= 
 + + +  

2
16

1
2

4 (47)( ) ( )t t tθ += +
 

17 log 1 (48)( )( ) tt eθ +=  

18

1
2

1
2

0
(49)

0
( )

t

t

t
t

t t

if

if

e

e
θ −+

≤

≥

= 
  

for example : 
 

( )

2

27 9

ρ ρ
μ μμ

ρ ρρ
μ μ

P :

31 1
4 8 2
1 1
2 2

log 2
θ

( )y y

y yt

if
and

if+

− ≤

≥

− − −
 −

 

 
Table 1 summaries, the coefficients that relate the penalty functions Pi to θj functions 

(Birgin et al. [56]). The symbol “-“ means that the penalty functions Pi was not associated 
with the θj functions. They, for each method have used 
μ0∈{10-6,1}, ρ1∈{10-3,1,10}, τ∈{10-2,0.1,0.5}. We have tested these types of penalty functions in 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

291 

our metaheuristic algorithms, presented in Table 2 the parameters and combination that gave 
us the best result. 

 
Table 1. The best (p,θ) combination with their parameters 

( Pi , θj )
  ( μ0 , ρ1 )

  

( 7 , 10 ) -5 , 1  

( 7 , 11 ) -4 , 1  

( 7 , 12 ) -3 , 1  

( 7 , 13 ) -5 , 1  

( 8 , 11 ) -5 , 10  
 

Table 2.  Associations of  ( iP , jθ  ) with their Cij  coefficient 

 4P  5P  6P  7P  8P  9P  

1θ  1 - - - - - 

2θ  1 - - - - - 

3θ  1 - - - - - 

4θ  - 1 1 1 - - 

5θ  - 1 1 1 1 - 

6θ  - 1 1 1 1 - 

7θ  - 1 1 1 1 - 

8θ  - 1 1 1 1 - 

9θ  - 1 1 1 1 - 

10θ  - 1 1 1 1 - 

11θ  - 8 8 8 1 - 

12θ  - 1 1 1 1 - 

13θ  - 1/4 1/4 1/4 1 - 

14θ  - 1/12 1/12 1/12 1 - 

15θ  - 1/8 1/8 1/8 1 - 

16θ  - 2 2 2 - 1 

17θ  - 2 2 2 - 1 

18θ  - 2 2 2 - 1 

 



S. SHOJAEE and S. HASHEMINASAB 

 

292 

5. HOW TO APPLY 
 

For applying these sampling techniques we have limited the number of our population in each 
algorithm to 60. Then in each heuristic algorithm we have used our initial sampling techniques 
and comparing the ratio of their convergence. 

For all heuristic algorithms the stopping criteria was set to a maximum number of iteration. 
In continue for the next part of the work we have presented the charts that show the ratio of 
convergence of the heuristic algorithms that have used the Penalty-Lagrangian functions, plus 
the common method of applying penalty function. The term common method means the 
relation below: 

2

1
max 1,0Penalty function = i

p

a

c

i

n g
R

g=
−

  
    

∑

 
 

1 2 1[1 ( 1) ] 4p genR r r n r= + − ≤
 

 
gi and ga  are the maximum and allowable constraints respectively. Rp is the factor of penalty 
function, ngen is the generation number, r1 and r2 are the constant factors. 

 
 

6. NUMERICAL EXAMPLES 
 

In this section, common truss optimization examples as benchmark problems are optimized 
with the proposed methods. The efficiency of proposed methods would be compared with 
other common methods. The algorithms specific parameters have been discussed in each 
algorithm themselves. The optimum weights that have been achieved for different initial 
sampling methods and penalty functions are presented in Tables 3 and 4. The values in these 
tables are the average of ten analyses run. The algorithms are coded in Matlab and trusses are 
analyzed using the direct stiffness method. 

 
6.1. Twenty five-bar spatial truss 

Figure 4 shows the topology of a 25-bar spatial truss structure. In this example, designs are 
performed for one loading case. The material density is 0.1 lb/in3 (2767.990 kg/m3) and the 
modulus of elasticity is 10,000 ksi (68,950 MPa). The structural members of truss are 
arranged into eight groups, where all members in a group share the same material and cross-
sectional properties. Table 5 defines each element group by member number (each member is 
defined by its start and end). This spatial truss was subjected to one loading conditions shown 
in Table 6. Maximum displacement limitations of ±0.35 in. (0.889 cm) were imposed on 
every node in every direction and the axial stress constraints vary for each group is shown in 
Table 7. The range of cross-sectional areas varies from 0.01 to 4.14 2in  (from 0.06452 2cm  
to 26.71 2cm ). This truss was optimized by Camp and Bichon [48], Lee and Geem [49] and 
Li et al. [50] which respectively got the optimized weight of 545.33lb, 544.38lb, and 
627.08lb. 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

293 

Table 3. The optimum value (lb) 

Ant colony GA PSO Initial 
sampling 
method 244-bar 120-bar 25-bar 244-bar 120-bar 25-bar 244-bar 120-bar 25-bar 

Uniform 
random 4474 16819.9 481.1 5955 17084.4 470.3 6712 17614.9 455.4 

Halton 4590 16803.9 472.6 6333 17085.5 465.1 5900 17058 459.4 
Hammersley 5227.3 16800 468.9 5913 17134 471.7 6675 17571.8 455.8 

LHS 4999 16828 466.86 6043 17061 475.5 6577 16981 461.3 
Sobol 5115 16880 481.45 5557 17140 463.3 6822 17319 454.3 
 

6.2. A 120-bar dome truss 

A 120-bar dome truss, shown in Figure 4, was first analyzed by Soh and Yang [51] to obtain 
the optimal sizing and configuration variables, i.e., the structural configuration optimization. In 
the example considered in this study similar to Lee and Geem [50] and Kelesoglu and Ülker 
[52], only sizing variables to minimize the structural weight is considered. In addition, the 
allowable tensile and compressive stresses are used according to the AISC ASD (1989) code 
[53], as follows: 

 

σ 0.6F for σ 0

σ for σ 0

≥



+ +
i y i

- +
i i

=         

                      <                 

2 3
i i i

y c2 3
c c c

2

c2
i

λ 3λ λ5
1- F + - for λ C

2C 3 8C 8C

12π E
 for λ C

23λ

σ
≥

     
     
     = 



i

i

-
i

         <

                    
 

 
Table 4. The optimum value (lb) 

Ant colony GA PSO Penalty 
Functions 244-bar 120-bar 25-bar 244-bar 120-bar 25-bar 244-bar 120-bar 25-bar 

Common 
method 4753 16819 470 6102 16764 479 4875 16500 476 

P1 4091 16679 501 5863 16740 485 4612 16433 478 

P7_θ6 4210 16816 482 5717 16770 489 4702 16404 467 

P7_θ9 4044 16798 526 5139 19027 502 4307 16428 477 

P7_θ10 3900 17843 562 4851 16724 479 4841 16731 491 

P7_θ11 4044 16809 515 5566 16788 484 4433 16500 483 

P7_θ12 4129 16824 510 5742 16744 491 4340 16415 480 

P7_θ13 4215 16640 482 5840 16765 486 4937 16507 466 



S. SHOJAEE and S. HASHEMINASAB 

 

294 

P8_θ11 4189 16774 475 5485 16747 487 4716 16721 470 

 
Figure 4.  A 25-bar spatial truss 

 
Table 5. Element information for the 25-bar spatial truss 

Element group number 

1 2 3 4 5 6 7 8 

1:(1,2) 2:(1,4) 6:(2,4) 10:(6,3) 12:(3,4) 14:(3,10) 18:(4,7) 22:(10,6) 

 3:(2,3) 7:(2,5) 11:(5,4) 13:(6,5) 15:(6,7) 19:(3,8) 23:(3,7) 

 4:(1,5) 8:(1,3)   16:(4,9) 20:(5,10) 24:(4,8) 

 5:(2,6) 9:(1,6)   17:(5,8) 21:(6,9) 25:(5,9) 
 

Table 6. Loading condition for the 25-bar spatial truss 

Node Px  
kips(kN) 

Py 
kips(kN) 

Pz 
kips(kN) 

1 1 10 -5 

2 0 10 -5 

3 0.5 0 0 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

295 

6 0.5 0 0 
 

Table 7. Member stress limitation for the 25-bar spatial truss 

 Element group Compressive stress limitations  
ksi (Mpa) 

Tensile stress limitations  
ksi (Mpa) 

1 A(1) 35.092 (241.96) 40 (275.80) 
2 A(2)~A(5) 11.59 (79.913) 40 (275.80) 
3 A(6)~A(9) 17.305 (119.31) 40 (275.80) 
4 A(10)~A(11) 35.092 (241.96) 40 (275.80) 
5 A(12)~A(13) 35.092 (241.96) 40 (275.80) 
6 A(14)~A(17) 6.759 (46.603) 40 (275.80) 
7 A(18)~A(21) 6.959 (47.982) 40 (275.80) 
8 A(22)~A(25) 11.082 (76.41) 40 (275.80) 

 
where σ -

i  is calculated according to the slenderness ratio, E is the modulus of elasticity, Fy is the 
yield stress of steel, Cc is the slenderness ratio (λi) dividing the elastic and inelastic buckling regions (Cc 
=√(2π2E/Fy), (λi) is the slenderness ratio (λi=k Li/ri), k is the effective length factor, Li is the member 
length and ri is the radius of gyration. The modulus of elasticity is 30,450 ksi (210,000 MPa) and the 
material density is 0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel is taken as 58.0 ksi (400 
MPa). On the other hand, the radius of gyration (ri) can be expressed in terms of cross-
sectional areas, i.e., ri=aAi

b [54]. Here, a and b are the constants depending on the types of 
sections adapted for the members such as pipes, angles, and tees.  

In this example, pipe sections (a=0.4993 and b = 0.6777) were adapted for bars. All 
members of the dome are linked into seven groups, as shown in Figure 5. The dome is 
considered to be subjected to vertical loading at all the unsupported joints. These were taken 
as -13.49 kips (60 KN) at node 1, -6.744 kips    (30 KN) at nodes 2 through 14, and -2.248 
kips (10 KN) at the rest of the nodes. The minimum cross-sectional area of all members is 
0.775 in2 (5cm2) and the maximum cross-sectional area is 4.18 in2 (26.96 cm2). For 
constraints we have stress constraints and displacement limitations of ±0.1969 in. (5 mm) 
imposed on all nodes in x and y-directions. 

 
6.3. A 244-bar transformation tower 

Another space truss, a 244-bar transmission tower is shown in Figure 6, is examined as the 
final design problem. Members of the transmission tower are initially collected into 26 groups 
as given by Saka [54] but in this study all members of the transmission tower are linked into 
32 groups. The value of the modulus of elasticity is taken as 30450 ksi (210000 MPa) and the 
material density is 0.1 lb/in3 (2767.990 kg/m3).The allowable value of 20.30 ksi (140 MPa) is 
employed for tensile stresses and the formulation of buckling obeying AISC ASD (1989) code 
[53] is considered for compressive stresses (similar to the dome example). The displacement 
limitations of ±1.77 in (4.5cm) are imposed on nodes 1 and 2, and limitations of ±1.18 in. (3.0 
cm) on nodes 17, 24 and 25 in x-direction. These nodes are subjected to the displacement 
limits of ±0.59 in. (1.5 cm) in z-direction. The load cases considered is taken from the study 
by ULKER [55] and are shown in Table 8. The minimum cross-sectional area of all members 



S. SHOJAEE and S. HASHEMINASAB 

 

296 

is 0.775 in2 (5.0 cm2) and the maximum cross-sectional area is 18.2 in2 (129.03 cm2). To 
understand the coordination of shape, for node 25 we have x=500cm y=100 z=1400cm. 

 
Figure 5. A 120-bar dome truss 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

297 

 
Figure 6. A 244-bar transformation tower 

Table 8. The loading and displacement bounds of transmission tower 

Loading (KN) Displacement Limitation (mm) 
Joint Number 

X Z X Z 

1 -10 -30 45 15 

2 10 -30 45 15 

17 35 -90 30 15 

4 175 -45 30 15 

25 175 -45 30 15 
 
 

7. DISCUSSION ON THE EFFICIENCY OF THE SAMPLING TECHNIQUES  
 

Figures 7 to 9 show the ratio of convergence (the best weight against iteration) for each 
heuristic algorithm, we have applied our initial sampling methods for their first population. 
The results are the average of ten analyses run for each method, and for each algorithm the 
number of sample in each iteration was 60. The rest of the charts have been presented  
in the Appendix. 



S. SHOJAEE and S. HASHEMINASAB 

 

298 

 In Table 9 we have ranked the initial sampling methods for each heuristic algorithm, 
according to their weight gotten in the last iteration. It should be mentioned that the penalty 
function has been used here was the common method of section 5. The results are the average 
among three examples. As you see the Halton sequence has gotten the first place among three 
algorithms. If we consider the three heuristic algorithms altogether we can see that in the 
second place we have LHS and Hammersley and Sobol sequence. Besides these in the third 
place we have Uniform random method.   
 

Table 9. Ordering of the initial sampling methods according to their ratio of convergence 

Convergence 
rank Ant colony GA PSO Average of 3 

algorithms 

1 Halton Halton Halton Halton 

2 Sobol LHS Sobol 
(LHS – 

Hammersley- 
Sobol) 

3 LHS – Hammersley Hammersley  Hammersley Uniform random 

4 Uniform random Uniform random LHS -- 

5 -- Sobol Uniform random -- 

 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

299 

  
Figure  7. Convergence rate comparison between the five initial sampling methods for the 244-bar 

spatial truss in GA algorithm 

 
Figure 8. Convergence rate comparison between the five initial sampling methods for the 244-bar 

spatial truss in ACO algorithm 

 

Figure 9. Convergence rate comparison between the five initial sampling methods for the 244-bar 
spatial truss in PSO algorithm 



S. SHOJAEE and S. HASHEMINASAB 

 

300 

8. DISCUSSION ON THE EFFICIENCY OF THE PENALTY-LAGRANGIAN 
FUNCTIONS 

 
In the Figures 10 to 12, we have shown the history of each penalty method, for each heuristic 
algorithm. The results are the average of ten analysis run for each penalty method. For 
generating the initial samples here we have used the RANDINT function of matlab 
programming, that generate a random scalar that is 0 or 1 with equal probability and also do 
elements uniformly distributed in the range specified. The rest of the charts have been 
presented in the Appendix. The stopping criterion for our algorithms was a maximum number 
of iteration. As you see it’s different for each algorithm and each example. For example in the 
244-bar transmission tower, for Ant colony and PSO the maximum number of iteration was 
set to 200, but in GA it was set to 1000. That is due to the fact that, the Ant colony and PSO 
algorithms would reach to optimum value up to 200 iteration but the GA algorithm would not 
reach to it up to 1000 iteration. 

Here again in Table 10 we have ranked our penalty functions for three heuristic algorithms, 
according to the speed of their convergence. The results are average from three examples. As 
you see in Table 10 the common method is the last row in the column of average of three 
algorithms, i.e. Penalty-Lagrangian functions can speed up the convergence rate faster than 
the common method. To see the effect of number of variable on convergence speed, we have 
ranked the penalty functions for our three examples in Table 11 (with different number of 
variables), you see, as the problem gets more complicated, the application of the common 
method for penalty functions causes the algorithms converge slower to the optimum value. We 
have used each penalty function in each heuristic algorithm and got the best weight in the last 
iteration. The results here have been ranked according to taking average of three gotten 
weights. 

 

 
Figure 10. Convergence rate comparison between the Penalty-Lagrangian functions and common 

method for the 244-bar spatial truss in GA algorithm 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

301 

 
Figure 11.  Convergence rate comparison between the Penalty-Lagrangian functions and common 

method for the 244-bar spatial truss in ACO algorithm 

 
Figure 12. Convergence rate comparison between the Penalty-Lagrangian functions and common 

method for the 244-bar spatial truss in PSO algorithm 
 

Table 10. Ordering of the Penalty-Lagrangian functions according to their ratio of convergence 

Convergence 
rank Ant colony GA PSO Average of 3 

algorithms 
1 P7_θ13   P7_θ10 P7_θ12 P7_θ11 ,  P8_θ11 

2 P8_θ11 P7_θ11 P7_θ11  ,  P7_θ13 
  P7_θ12 

3 P7_θ11 P8_θ11 P8_θ11 P7_θ10  ,  P7_θ13   

4 Common method  , 
 P7_θ12 Common method  Common method Common method 

5 P7_θ10 P7_θ12 P7_θ10 -- 



S. SHOJAEE and S. HASHEMINASAB 

 

302 

6 -- P7_θ13   -- -- 
Table 11. Ordering of the Penalty-Lagrangian function according to their ratio of convergence 

Convergence 
rank 244-bar truss 120-bar truss 25-bar truss Average of 3 

examples 
1 P7_θ10  ,  P7_θ11 P7_θ12 Common method P7_θ11 ,  P8_θ11 
2 P7_θ12 P7_θ13   P7_θ13   P7_θ12 
3 P8_θ11   P7_θ11 ,  P8_θ11 P8_θ11 P7_θ10  ,  P7_θ13   
4 P7_θ13   Common method P7_θ11   Common method 
5 Common method  P7_θ10  P7_θ10 -- 
6 -- -- P7_θ12  -- 

 
 

9. CONCLUDING REMARKS 
 

In this paper we have used some sampling techniques such as the Latin Hypercube sampling, 
the Sobol, Halton, and Hammersley sequences for the selection of first  initial population in 
the metaheuristic algorithms; GA, Ant Colony and PSO. These sampling methods have been 
used widely in metamodeling techniques, but rarely for our application. 

What we have obtained here is that altogether the Halton  sequence has gotten the first 
place in convergence rate among other sampling methods. After that the LHS, the 
Hammersley and the sobol sequence has taken the next places respectively. For the last place 
we had the Uniform random method. Finally in the application of Penalty-Lagrangian 
functions we have seen that the use of methods; p7_ θ11, p8_ θ11, p7_ θ12, p7_ θ10, p7_13, 
common method, has taken the ranking places for convergence rate respectively. 

 
 

REFERENCES 
 

1. Holland J.H. Adaptation in Natural and Artificial Systems, Ann Arbor: The University of 
Michigan Press 1975. 

2. Goldberg D.E., and samtani M.P. Engineering Optimization via Genetic Algorithms, 
Proc. Of 9th Conf. on Electronic Computation, ASCE, New York, N. Y. 1986; 471-82. 

3. Ahn CW, Ramakrishna RS. A genetic algorithm for shortest path routing problem and the 
sizing of populations, IEEE Trans  Evolut Comput 2002; 6(6). 

4. Park C.H., Lee W.I., Han W.S., & Vautrin A. Weight minimization of composite 
laminated plates with multiple constraints, Composites Science and Technology 2003; 
63: 1015–26. 

5. Kaveh A., Khanlari K. Collapse load factor of planar frames using modified genetic 
algorithm, Common Number Math Eng 2004; 20: 911–25. 

6. Sahab MG, Ashour AF, Toropov VV. Cost optimization of reinforced concrete flat slab 
buildings, Engineering Structures 2005; 27: 313–22. 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

303 

7. Castilho VC, El Debs MKE, Nicoletti MC. Using a modified genetic algorithm to 
minimize the production costs for slabs of precast prestressed concrete joists, 
Engineering Applications of Artificial Intelligence 2007; 20: 519–30. 

8. Dorigo M. Optimization learning and natural algorithms (in Italian). Ph.D. thesis, 
Dipartimento di,Elettronica, Politecnico di Milano, Milan 1992. 

9. Bonabeau E, Dorigo M. Theraulaz G. Swarm intelligence: from natural to artificial 
systems, New York:  Oxford University Press 1999. 

10. Dorigo M, Maniezzo V, Colorni A. The Ant System: An autocatalytic optimizing 
process, Technical report 91-016 revised, Dipartimento di Elettronica, Politecnico di 
Milano, Milan 1991. 

11. Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a colony of cooperating 
agents, IEEE Transactions on Systems, Man, and Cybernetics—Part B 1996; 26(1): 29–
41. 

12. Gambardella LM, Dorigo M. Ant-Q: A reinforcement learning approach to the traveling 
salesman problem. In A. Prieditis & S. Russell (Eds.), Proceedings of the Twelfth 
International Conference on Machine Learning (1995); Palo Alto, CA, Morgan 
Kaufmann. (ML-95) (pp. 252–260). 

13. Dorigo M, Gambardella LM. Ant colonies for the traveling salesman problem, 
BioSystems 1997; 43(2): 73–81. 

14. Dorigo M, Gambardella LM. Ant Colony System: A cooperative learning approach to the 
traveling salesman problem, IEEE Trans Evol Comput 1997; 1(1): 53–66. 

15. Stutzle T, Hoos HH. Improving the Ant System: A detailed report on the MAX-MIN Ant 
System, Technical report AIDA-96-12, FG Intellektik, FB Informatik, TU Darmstadt, 
Germany 1996. 

16. Bullnheimer B, Hartl RF, Strauss C. A new rank-based version of the Ant System: A 
computational study. Cent Eur J Oper Res 1999; 7(1): 25–38. 

17. Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the 
quadratic assignment problem, INFORMS Journal on Computing 1999; 11(4): 358–69. 

18. Blum C, Roli A, Dorigo M. HC–ACO: The hyper-cube framework for Ant Colony 
Optimization. In Proceedings of MIC’2001—Metaheuristics International Conference 
2001; 2, 399–403. 

19. Eberhart R, Kennedy J. New optimizer using particle swarm theory, In: Sixth international 
symposium on micro machine and human science, Nagoya, Japan 1995; 39–43. 

20. Kennedy J, Eberhart R. Particle swarm optimization, In: IEEE International Conference 
on Neural Networks, Piscataway, NJ 1995; 4: 1942–8. 

21. Coello C, Luna E. Use of particle swarm optimization to design combinational logic 
circuits, In: Tyrell A, Haddow P, Torresen J, editors. 5th International conference on 
evolvable systems: from biology to hardware, ICES 2003. Lecture notes in computer 
science, Trondheim, Norway: Springer 2003; 2606: 398–409. 

22. Zheng Y, Ma L, Zhang L, Qian J. Robust pid controller design using particle swarm 
optimizer, In: IEEE International Symposium on Intelligence Control 2003; 974–9. 

23. Abido M. Optimal design of power system stabilizers using particle swarm optimization, 
IEEE Trans Energy Convers 2002; 17(3):406–13. 

24. Fourie P, Groenwold A. The particle swarm optimization algorithm in size and shape 



S. SHOJAEE and S. HASHEMINASAB 

 

304 

optimization, Struct Multidiscip Optim 2002; 23(4):259–67. 
25. Venter G, Sobieszczanski-Sobieski J. Multidisciplinary optimization of a transport 

aircraft wing using particle swarm optimization, Struct Multidiscip Optim 2004; 26(1–
2):121–31. 

26. McKay MD, Beckman RJ, Conover WJ. A Comparison of Three Methods for Selecting 
Values of Input Variables in The Analysis of Output from a Computer Code, 
Technometrics (American Statistical Association) May 1979; 21 (2): 239–45. 

27. Imam RL, Helton JC, Campbell JE. An approach to sensitivity analysis of computer 
models, Part 1. Introduction, input variable selection and preliminary variable assessment, 
Journal of Quality Technology 1981; 13 (3):174-83. 

28. Sobol IM. Distribution of points in a cube and approximate evaluation of integrals, 
U.S.S.R Comput Maths MathPhys 1967; 7: 86-112. 

29. Bratley P, Fox BL.  Algorithm 659: Implementing Sobol’s quasirandom sequence 
generator, ACM Trans Math Softw 1988; 14: 88–100. 

30. Niederreiter H. Low-discrepancy and low-dispersion sequences, Journal of Number 
Theory 1988; 30:51-70. 

31. Antonov IA, Saleev VM. An economic method of computing LPτ-sequences, Zh. Vych. 
Mat. Mat. Fiz. 1979; 19: 243–245 (in Russian); U.S.S.R Comput. Maths. Math. Phys 
1979; 19: 252–256 (in English). 

32. Jäckel P. Monte Carlo Methods in Finance, New York: Wiley 2002. 
33. Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical Recipes in 

Fortran 77: The Art of Scientific Computing, 2nd ed, Cambridge University Press, 
Cambridge, U.K 1992. 

34. Paskov SH, Traub JF. Faster valuing of financial derivatives, J Portfolio Manag 1995; 
22:113–20. 

35. Traub J. In math we trust. What’s Happening in the Mathematical Sciences 1996; 3:101–
111. 

36. Case J. Wall street’s dalliance with number theory. SIAM News December 1995; 8 – 9. 
37. Heinrich S, Keller A. Quasi-monte carlo methods in computer graphics, part i: The qmc 

buffer. Technical report, University of Kaiserslautern 1994; 242/94. 
38. Heinrich S, Keller A. Quasi-monte carlo methods in computer graphics, part ii: The 

radiance equation. Technical report, University of Kaiserslautern 1994; 243/94. 
39. Keller A. A quasi-monte carlo algorithm for the global illumination problem in the 

radiosity setting. In Proceedings of Monte Carlo and Quasi-Monte Carlo Methods in 
Scientific Computing, Springer-Verlag June 1995; 239–51. 

40. Ohbuchi R, Aono M. Quasi-monte carlo rendering with adaptive sampling. Technical 
report, Tokyo Research Laboratory, IBM Japan Ltd 1996. 

41. Kalagnanam JR, Diwekar UM. An efficient sampling technique for off-line quality 
Control, Technometrics 1997; 39(3): 308-19. 

42. Diwekar UM,  Kalagnanam JR. Efficient sampling technique for optimization under. 
uncertainty, AIChE J 1997; 43(2), 440-57. 

43. Subramanyan K. and Diwekar U.M. User Manual for Fortran-Based Stochastic Sampling 
Code, 2006. 

44. Halton J. On the efficiency of certain quasirandom sequences of points in evaluating 



THE EFFECTS OF INITIAL SAMPLING AND PENALTY FUNCTIONS IN... 
 

 

305 

multidimensional integrals, Numerische Mathematik 1960; 2: 84–90. 
45. Fourie P, Groenwold A. Particle swarms in size and shape optimization. In: Snyman, J.; 

Craig, K. (eds.) Proc. Workshop on Multidisciplinary Design Optimization (held in 
Pretoria) 2000; 97–106. 

46. Fourie P, Groenwold A. The particle swarm optimization in topology optimization, In: 
Fourth world congress of structural and multidisciplinary optimization, Paper no. 154, 
Dalian, China 2001. 

47. Shi Y, Eberhart R. A modified particle swarm optimizer, In: IEEE international 
conference on evolutionary computation. IEEE Press,Piscataway, NJ 1998; 69–73. 

48. Camp C, Bichon J. Design of space trusses using ant colony optimization, J Struct Eng 
ASCE 2004; 130(5):741–51. 

49. Li LJ, Huang ZB, Liu F, Wu QH. A heuristic particle swarm optimizer for optimization 
of pin connected structures, Comput Struct 2007; 85:340–9. 

50. Lee KS, Geem ZW. A new structural optimization method based on the harmony search 
algorithm, Comput Struct 2004; 82:781–98. 

51. Soh CK, Yang J. Fuzzy controlled genetic algorithm search for shape optimization. J 
Comput Civil Eng ASCE 1996; 10(2):143–50. 

52. Kelesoglu O, Ülker M. Fuzzy optimization geometrical nonlinear space truss design. 
Turkish J Eng Environ Sci 2005; 29:321–9. 

53. American Institute of Steel Construction (AISC). Manual of steel construction allowable 
stress design. 9th ed. Chicago, IL; 1989. 

54. Saka MP. Optimum design of pin-jointed steel structures with practical applications, J 
Struct Eng ASCE 1990; 116(10):2599–620. 

55. Ulker M, Hayalioglu MS. Optimum design of space trusses with buckling constraints by 
means of spreadsheets, Turk J Engin Environ Sci, 2001; 25: 355-367. 

56. Birgin R, Castillo A, Martinez JM.  Numerical comparison of Augmented Lagrangian 
algorithms for nonconvex problems, 2004. 

57. Hestenes M.R. Multiplier and gradiant methods, J Optim Theory and Applics  1969; 4: 
303-20. 

58. Powell MJD. A method for nonlinear constraints in minimization problems, in 
Optimization, R. Fletcher (ed.), Academic Press, New York, NY 1969; 283-98. 

59. Rockefellar RT.  The multiplier method of Hestenes and Powell applied to convex 
programming, Journal of Optimization Theory and Applications, 1973; 12: 555-562. 

60. Montgomery DC. Design and Analysis of Experiments, Fourth Edition, John Wiley & 
Sons, New York 1997. 

61. Baker J. Reducing bias and inefficiency in the selection algorithm, in: Genetic 
Algorithms and their Applications: Proceedings of the Second International Conference 
on Genetic Algorithms, Massachusetts Institute of Technology, July 1987; 14-21. 

62. Grefenstette J. Optimization of control parameters for genetic algorithms, IEEE Trans 
Systems, Man, and Cybernetics  SMC 1986; 16 (1): 122-8. 

63. Schaffer J, Caruana R, Eshelman L, Das R.  A study of control parameters affecting 
online performance of genetic algorithms for function optimization,  in: Proceedings of 
the Third International Conference on Genetic Algorithms, George Mason University 
June 1989; pp. 51-60. 


