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ABSTRACT 
 

The main aim of the present paper is to propose advanced multi-objective optimization 
algorithms (MOOAs) to tackle truss structure optimization problems. The proposed meta-
heuristic algorithms are based on the firefly algorithm (FA) and bat algorithm (BA), which 
have been recently developed for single-objective optimization. In order to produce a well 
distributed Pareto front, some improvements are implemented on the basic algorithms. The 
proposed MOOAs are examined for three truss optimization problems, and the results are 
compared to those of some other well-known methods. The numerical results demonstrate 
that the proposed MOOAs possess better computational performance compared to the other 
algorithms. 
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1. INTRODUCTION 
 

The main aim of structural optimization problems is to minimize a function of structural 
design variables, such as the weight or cost of the structure, subject to some constraints on 
stresses, displacements, frequencies and so on. In fact, optimization is the process of 
searching for a solution such that no other superior solution can be found. In the most real-
world problems, multiple conflicting objectives must be satisfied simultaneously in order to 
obtain optimal solutions. For example, for optimization of a truss structure the following 
objectives can be considered: minimizing the total weight, minimizing maximum deflection, 
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maximizing the allowable stress of members and so on. Formulation of multi-objective 
optimization lets such multiple objectives to be handled in the framework of an optimization 
problem. By solving a multi-objective optimization problem (MOOP) a set of solutions, 
which provide valuable information about the design problem at hand, are obtained. 
Investigating the obtained solutions in various viewpoints enables the designers to select 
their desired solution among all the solutions. 

During the last years, a number of multi-objective optimization algorithms (MOOA) 
have been proposed by researchers, such as non-dominated sorting GA (NSGA-II) [1], 
Pareto archive evolution strategy (PAES) [2] and multi-objective particle swarm 
optimization (MOPSO) [3]. Up to now, many successful applications of various MOOAs 
have been reported in the literature to tackle the structural optimization problems. Coello 
and Christiansen [4] utilized genetic algorithm (GA) for solving MOOP of truss structures. 
In their study the weight of the truss, the displacement of each free node and the stress that 
each member has to support were minimized. Luh and Chueh [5] proposed an algorithm for 
finding constrained Pareto-optimal solutions based on the features of a biological immune 
system. The objective of their study is to minimize the weight of trusses and the maximum 
displacement at a certain node. Kaveh et al. [6] used GA for performing optimal design of 
reinforced concrete retaining walls considering minimization of the economic cost and 
reinforcing bar congestion as the objective functions. In [7] Kaveh and Laknejadi designed 
truss structures by a MOOA based on a modified multi-objective particle swarm 
optimization, tournament decision making process, and a local search algorithm. As well as 
the other reviewed works, their objective functions are the weight of structures and the 
maximum displacement of a certain node in a specific direction. Richardson et al. [8] 
integrated GA and kinematic stability repair (KSR) strategy for single and multi-objective 
topology optimization of truss-like structures. In a most recent work, Kaveh and Laknejadi 
[9] proposed a MOOA based on charged system search (CSS) meta-heuristic. They 
employed the CSS as an optimizer in combination with clustering and particle regeneration 
procedures.  

In the present study, two new MOOA are proposed in which firefly algorithm (FA) [10] 
and bat algorithm (BA) [11] acts as the main optimization engines. Three illustrative 
examples of truss optimization are presented to demonstrate the efficiency of the proposed 
MOOAs. 
 
 

2. FORMULATION OF MOOPS 
 
In fact solving a MOOP is the process of finding a vector of design variables to minimize a 
vector function satisfying some constraints. This means that MOOPs are more complicated 
compared with single objective optimization and instead of finding a single solution an 
optimality front must be determined. In order to formulate MOOPs some basic concepts 
[12] can be described as follows: 

General Multi-Objective Optimization Problem: General form of a MOOP can be 
stated as follows: 
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Find:  (1) 
To minimize:  (2) 

Subject to:  (3) 
 
where X is the vector of design variables of size n;  is the domain of the design 

variables; F is the vector function of m objective functions;  is the ith constraint and k is 
the number of constraints. 

Pareto Dominance: Vector  dominates vector 
 if and only if  is partially less than . This statement can be 

mathematically represented as follows: 
 

 (4) 
 
Pareto Optimal: A candidate solution  is Pareto optimal if and only if there is no 

other solution  for which  dominates 
. The phrase Pareto optimal is taken to mean with respect to the 

entire design variable space unless otherwise specified. 
Pareto Optimal Set: Pareto optimal or non-dominated solution is defined as a solution 

that it is not dominated by another solution. The Pareto optimal set P for a MOOP can be 
defined with respect to the vector function  as follows: 

 

 (5) 
 
Pareto Front: The Pareto front (PF) for a MOOP can be defined with respect to the 

vector function  and Pareto optimal set P as follows: 
 

 (6) 
 
In general, for complex MOOPs, finding exact PF is not possible and in such cases, the 

aim is to find a Pareto optimal set that approximates the exact PF as close as possible by 
generating a diverse range of solutions. 
 
 

3. METAHEURISTIC ALGORITHMS 
 

Metaheuristics have received more and more popularity in the last years. Their use in many 
applications shows their efficiency and effectiveness to solve large and complex problems 
[13]. During the recent years, many Metaheuristics have been developed by researchers and 
the most popular ones are GA, PSO, CSS, harmony search (HS), ant colony optimization 
(ACO), and etc. In the field of structural optimization, many successful applications of these 
algorithms have been reported in literature. Firefly algorithm (FA) and bat algorithm (BA) are 
the recent additions to the metaheuristics and their superiority to GA and PSO for handling 
engineering and structural optimization problems have been demonstrated in [14-15]. 
A glance at the literature on the multi-objective optimization reveals that the well-known 
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GA, PSO and CSS metaheuristics were used by researchers as the main optimizer in the 
framework of MOOAs. A simple version of multi-objective firefly algorithm (MOFA) has 
been proposed in [16] for solving continuous optimization problems. Also, in [17] BA has 
been used to design a simple MOOA based on combination of all objectives into a single 
function. It is clear that optimization of a weighted sum of all objectives as a single 
objective is inadequate for multi-modal problems with large number of variables. In the 
present paper two new and more efficient MOOAs based on FA and BA are proposed to 
tackle structural optimization problems. The next sections describe the basic concepts of FA 
and BA and their multi-objective versions. 
 
3.1 Standard firefly algorithm 

The FA is a metaheuristic inspired by the flashing behaviour of fireflies. The FA is a 
population-based algorithm, which may share many similarities with PSO. Fireflies 
communicate, search for pray and find mates using bioluminescence with varied flashing 
patterns. In order to develop the firefly algorithm, natural flashing characteristics of fireflies 
have been idealized using the following three rules [10]: 

All of the fireflies are unisex; thus, one firefly will be attracted to other ones regardless 
of their sex. 

Attractiveness of each firefly is proportional to its brightness, thus for any two flashing 
fireflies, the less bright firefly will move towards the brighter one. The attractiveness is 
proportional to the brightness and they both decrease as their distance increases. If there is 
no brighter one than a particular firefly, it will move randomly. 

The brightness of a firefly is determined according to the nature of the objective function. 
The attractiveness of a firefly is determined by its brightness or light intensity which is 

obtained from the objective function of the optimization problem. However, the 
attractiveness β, which is related to the judgment of the beholder, varies with the distance 
between two fireflies. The attractiveness β can be defined as follows [10]: 

 
2-

0e
d.γββ =  (7) 

 
where d, β0 and γ are the distance of two fireflies, the attractiveness at d = 0, and γ the 

light absorption coefficient, respectively. 
The distance between two fireflies i and j at Xi and Xj respectively, is determined as 

follows: 
 

∑ −=−= 2
,, )( kjkijiij xxXXd

 
(8) 

 
where xi,k is the k-th parameter of the spatial coordinate xi of the i-th firefly.  
In the FA, the movement of a firefly i towards a more attractive firefly X* is determined 

as follows [10]: 
 

 (9) 
 



OPTIMAL DESIGN OF TRUSS STRUCTURES BY IMPROVED MULTI-OBJECTIVE... 

 

419

where the second term is related to the attraction, while the third term is randomization 
with  being the randomization parameter between 0 and 1; r is a random number generator 
uniformly distributed in [0, 1]. 

 
3.2 Standard bat algorithm 

BA is a meta-heuristic optimization method developed by Yang [11] based on the 
echolocation behavior of bats. Bats use echolocation as a hearing based navigation system to 
detect objects in their surroundings by emitting a sound to the environment. An idealized 
model of the echolocation can be briefly described as follows: The ith bat flies at position Xi 
with a velocity Vi, a varying frequency or wavelength and loudness Ai. It finds pray by 
tuning its frequency, loudness and pulse emission rate. Furthermore, bats intensify their 
searches by a local random walk. The fundamental idea behind the BA is that a population 
including  bats use echolocation to fly randomly through a d-dimensional search space 
updating their positions and velocities.  

Each solution  is evaluated by its fitness function value  and the 
bats’ flight aims at finding the best solutions. The positions and velocities of bats have to be 
updated in search space. The new solutions  and velocities  at iteration k are as follows: 

 

 (10) 

 (11) 

 (12) 
 
where  and  are the lower and upper bounds imposed for the frequency range of 

bats;  is a vector containing uniformly distribution random numbers;  is the 
current global best solution. 

A local search is implemented on a randomly selected bat from the current population as 
follows: 

 

 (13) 
 
where  is a random number;  is the average loudness of all the bats at the 

current iteration. 
As the loudness usually decrease once a bat has found its prey, the rate of pulse emission 

increases in order to raise the attack accuracy. In this case, the loudness  and the rate  of 
pulse emission should be updated during the optimization process as follows:  

 

 (14) 

 (15) 
 
where  (the loudness decay factor) and  (the pulse increase factor) are constants.  
It is clear that α and γ are two important parameters on the computational performance of 

BA and their best values can be determined by sensitivity analysis.  
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3.3 Chaotic levy flight bat algorithm 

An efficient metaheuristic optimization algorithm should possess balanced exploration and 
exploitation characteristics. For a metaheuristic with dominant exploration characteristic the 
convergence rate would be slow while the dominant exploitation characteristic results in 
trapping in local optima. In the both cases, the metaheuristic is not able to find the global or 
even near global optimum. The diversification via randomization provides a good way to 
balance between exploration and exploitation and avoids the solutions being trapped at local 
optima. Employing a uniform distribution is not the only way to achieve randomization. In 
fact, random walks such as Levy flights [18] on a global scale are more efficient. Levy flight 
process is a random walk that is characterized by a series of instantaneous jumps chosen 
from a probability density function which has a power law tail. This process represents the 
optimum random search pattern and is frequently found in nature [19]. The Levy flight-
based random walk in the kth step of optimization process is usually represented as follows: 

 

 (16) 
 
where  is Levy flight and its random steps are drawn from a Levy distribution for 

large steps as follows: 
 

 (17) 
 
Infinite variance of Levy distribution allows long jumps in design space to regions far 

from the vicinity of the previous point and this can prevent the optimizer from trapping into 
local optima. On the other hand, small jumps are required to exploit the optimum solutions 
in some regions. 

With the development of theories and applications of nonlinear dynamics, chaos concept 
has attracted great attention in various fields [20]. The chaos has the property of the non-
repetition, ergodicity, pseudo-randomness and irregularity [21] and the track of chaotic 
variable can travel ergodically over the whole design space. In the last years, many 
successful combination of the chaos theory with various metheuristic algorithms have been 
reported in literature [22]. The chaos theory and Levy flight were utilized in [20] to improve 
the performance of BA. The well-known logistic map which exhibits the sensitive 
dependence on initial conditions was employed to generate the chaotic sequence  for the 
parameter in Levy flight: 

 

 (18) 
 
In the chaotic Levy flight bat algorithm (CLFBA), the following equation was used as a 

neighbor generation method: 
 

 (19) 
 
Because the chaotic sequence can generate several neighborhoods of suboptimal 

solutions to maintain the variability in the solutions, it can prevent the search process from 
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becoming premature. Due to its ergodicity, chaotic sequence can generate several 
neighborhoods of near-optimal solutions. The algorithm probably converges to a space in 
the search space where good solutions are denser [20]. In the CLFBA employed in the 
present work the following frequency updating equation is utilized: 

 

 (20) 
 
The position and velocity of each bat are updated using Eqs (8) and (9), respectively. 
 

 
4. ADVANCED MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS 

 
In order to solve a MOOP a non-dominated front should be such determined that is close to 
the true Pareto front while maintaining a good diversity along the resulting Pareto front. In 
the case of MOOP with many design variables, a suitable MOOA should possess two main 
features of high convergence rate and maintaining diversity. In the present work, two multi-
objective metaheuristics based on FA and BA are presented for multi-objective optimum 
design of truss structures. The basic concepts of these multi-objective metaheuristics, 
termed as multi-objective firefly algorithm (MO-FA) and multi-objective chaotic levy-flight 
bat algorithm (MO-CLFBA), are explained in the following sunsections. 
 
4.1 Multi-objective-firefly algorithm 

In this study, the FA is extended to produce PF for MOOPs. In the so called MO-FA the 
search process can be summarized as follows.  

1) A number of fireflies are randomly selected from the design space and objective 
(brightness) values of all the fireflies are evaluated. 

2) All non-dominated fireflies are added to the repository. If the repository has no 
member, all of the non-dominated solutions in the current iteration are included to the 
repository. Otherwise, all of the non-dominated solutions of current iteration are added to 
the repository and all dominated members of the repository are removed.  

3) The most attractive firefly ( ) is updated. In iteration k, the best solution  
minimizes the combined objective function  defined as follows: 

 

 (21) 

  ,   (22) 

 
where pj are the uniformly distributed random numbers between 0 and 1.  
At each iteration the weights aj should be chosen randomly, so that the non-dominated 

solution can sample diversely along the Pareto front [16]. 
If a firefly is not dominated by others it moves according to Eq. (23). Furthermore, the 

randomness is reduced as the iterations proceed according to Eq. (24). 
 

 (23) 
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 (24) 
 
4) A new swarm of fireflies is regenerated for the next iteration in the neighborhood of 

the non-dominated fireflies of the repository. In [9] a simple equation has been proposed for 
population regeneration which is utilized in the present work. In this case one new particle l 
is generated as follows: 

 

 (25) 

 
where  is a random number from a standard normal distribution which changes for 

each firefly, Xmin and Xmax are the minimum and maximum of all design variables in the 
repository respectively,  is one randomly selected member of the repository, and w is a 
parameter which increase the domain of new generated particles and in this study is set to 4.  

5) When a termination criterion is meet, the solutions exist in the repository are 
introduced as the PF of the MOOP at hand. 
 
4.2 Multi-objective-chaotic levy flight bat algorithm 

In this work, a new and efficient multi-objective-chaotic Levy flight bat algorithm (MO-
CLFBA) is proposed to tackle MOOP. In the algorithm, CLFBA acts as optimizer until the 
loop reaches its maximum limit. For each loop the non-dominated solutions are stored in a 
repository and all dominated solutions are removed.  

In the framework of the proposed MOOA, the described CLFBA in section 3.2 is 
employed as the optimizer and the search process is accomplished as follows.  

1) Individuals of a population of bats are randomly selected from the search space and 
they are evaluated.  

2) All non-dominated bats are added to the repository.  
3) The global best position of bats () is updated. The global best position is the best 

solution obtained by neighbors of a bat so far. When solving a single-objective problem, it is 
completely determined once a neighborhood topology is established. However, in the case 
of MOOPs, the conflicting nature of multiple objectives makes the choice of a single 
optimum solution difficult. To resolve this problem, we update the  based on the crowding 
distance (CD) [1] value. 

 

 
(26) 

 
where fj is the jth objective function. 
In each iteration the crowding distance value of all elements in the repository is 

calculated and the higher crowding distance value signifies the best solution. The position Xi 
and velocity Vi of bats are updated. The loudness Ai and the rate ri of pulse emission 
parameters of bats are updated based on the definition of Pareto dominance. Random walk 
is performed based on chaos theory and Levy flight described earlier.  

4) When a termination criterion is meet, the solutions exist in the repository are 
introduced as the PF of the MOOP at hand. 
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4.3 Handling of design constraints 

In the framework of the proposed MOOAs the constraints are handled by a simple method 
which was utilized in [1,3,9]. In order to compare two bats Z1 and Z2, first they are checked 
for constraint violation. If both are feasible, then the non-dominance is recognized as 
winner. If Z1 is feasible and Z2 is infeasible, Z1 dominates. If both are infeasible, then the 
one with the lowest amount of constraint violation dominates the other one.  
 
 

5. NUMERICAL RESULTS 
 

The computational performance of the proposed MOOAs is compared with that of some 
other well-known algorithms in the case of constrained structural optimization problems. In 
order to compare the performance of different MOOAs, PFs obtained by different ones are 
graphically compared. For all of the presented examples the repository size of 100 and a 
population of 50 individuals are employed.  

 
5.1 10-Bar planar truss 

The 10-bar planar truss is illustrated in Figure 1. The objective is to minimize the volume of 
the structure and the vertical displacement at node 6 simultaneously considering the cross-
sectional areas of the 10 truss numbers as design variables. The upper and lower bounds of 
design variables are 0.1 and 30 in2, respectively. External load P and modulus of elasticity E 
are 100000 lb and 104 ksi, respectively. Limitations on the axial stress of elements are 
design constraints and the maximum allowable stress is set to 25 ksi. In this example, 
maximum number of function evaluations is set to 25,000.   

 

 
Figure 1. 10-bar planar truss 

 
In this example, the results of MO-FA and MO-CLFBA are compared with those of the 

constrained multi-objective immune algorithm (C-MOIA) [5]. The obtained PF from 
different MOOAs are presented in Figure 2. Furthermore, the extreme objective values 
obtained by the mentioned MOOAs are presented in Table 1. 
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Figure 2. 10-bar planar truss Pareto front for different MOOAs 
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Table 1: Extreme solutions for 10-bar truss in PF obtained by different MOOAs 

MOOA 

Extreme point 1 (Minimum 
Weight) 

Extreme point 2 (Minimum 
Displacement) 

Weight(Ib) Displacement (in) Weight(Ib) Displacement (in) 

C-MOIA [5] 1793.51 6.3562 10841.35 1.3611 

MO-CLFBA 1594.34 7.1953 11513.00 1.3034 

MO-FA 1625.81 7.0221 11701.20 1.3093 

 
It can be observed that the proposed MO-CLFBA and MO-FA appropriately cover the 

Pareto front while the other algorithm couldn’t achieve this task. Furthermore, the 
convergence to the Pareto front of the MO-CLFBA and its ability in covering all parts of it 
is better in comparison with the MO-FA. 

 
5.2 25-Bar space truss 

Figure 3 shows the 25-bar space truss structure. Members of the structure are divided into 
eight groups, as follows: (1) A1, (2) A2–A5, (3) A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–
A17, (7) A18–A21 and (8) A22–A25. The loading details are as: Fx(1)=4.45 kN, Fy(1)=-44.5 kN,  
Fz(1)=-44.5 kN, Fy(2) =-44.5 kN, Fz(2)=-44.5 kN, Fx(3)=2.25 kN and Fx(6)=2.67 kN. 

 

 
Figure 3. 25-bar space truss 

 
In this example, the objective functions to be minimized are the structural weight and the 

displacement in Y-direction at node 1. The upper and lower bounds for the cross sections of 
truss elements are 0.1 and 3.4 in2, respectively. Modulus of elasticity and weight density are 
E=104 ksi and =0.1lb/in2, respectively. As the design constraints the axial stress in truss 
elements is limited to 40 ksi. In the present example maximum number of function 
evaluations is set to 30,000. The results of proposed algorithms in this study are compared 
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with those of the charge system search multi-objective particle swarm optimization (CSS-
MOPSO) [7]. The PF obtained by different MOOAs are presented in Figure 4. 

 

 

 
Figure 4. 25-bar space truss Pareto front for different MOOAs 
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Table 2 compares the extreme objective values obtained by MO-CLFBA and MO-FA 
with those of the CSS-MOPSO [7]. The results imply that the proposed MO-CLFBA 
outperforms the CSS-MOPSO [7] and MO-FA in terms of the convergence to the Pareto 
front and ability in covering all parts of it. 

 
Table 2: Extreme solutions for 25-bar space truss in PF obtained by different MOOAs 

MOOA 

Extreme point 1 (Minimum 
Weight) 

Extreme point 2 (Minimum 
Displacement) 

Weight(kN) Displacement (mm) Weight(kN) Displacement (mm) 

CSS-MOPSO [7] 4.8111 5.8437 0.3440 62.9807 

MO-CLFBA 4.8916 5.8108 0.3125 63.7685 

MO-FA 4.9796 5.8093 0.3270 60.7876 

 
5.3 56-Bar space dome 

The third example of the present study is a 56-bar space dome illustrated in Figure 5.  
 

 

 
Figure 5. 56-bar space dome 
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Figure 6. 56-bar space dome Pareto front for different MOOAs 
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All free nodes are loaded with 4 kN in the Y-direction. In the Z-direction Joint 1 is 
loaded with 30 kN, while the remaining free nodes are loaded with 10 kN. The modulus of 
elasticity is set to 210 kN/mm2 and the lower and upper bounds on the member cross-
sectional areas are taken as 200 and 2000 mm2, respectively. the vertical displacements of 
joints 4, 5, 6, 12, 13 and 14 is restricted to 4 mm and the displacement of joint 8 in the Y-
direction is limited to 2 mm.  

The objective functions which should be minimized in this example are as follows: 
 

 (27) 

 
(28) 

 
where Ai and li are the cross-sectional area and length of the ith member; ,  and  

are displacements of Joint 1 in X-, Y- and Z- directions, respectively. 
In the present example the number of function evaluations is limited to 30,000. The 

results of MO-CLFBA and MO-FA are compared with those of the CSS-MOPSO [7]. Figure 
6 compares the PF of the mentioned MOOAs for this example. The extreme objective 
values obtained by MO-CLFBA and MO-FA are compared with those of the CSS-MOPSO 
[7] in Table 3. 

 
Table 3: Extreme solutions for 56-bar space dome in PF obtained by different MOOAs 

MOOA 
Extreme point 1 (Minimum Weight) 

Extreme point 2 (Minimum 
Displacement) 

f1×108 (mm3) Displacement (mm) f1×108 (mm3) Displacement (mm) 

CSS-MOPSO [7] 4.02923368 2.2148 1.20812690 7.5495 

MO-CLFBA 4.02417574 2.2138 1.19803356 7.3713 

MO-FA 4.02111310 2.2095 1.19926203 7.5629 

 
The obtained numerical results indicate that the proposed MO-CLFBA and MO-FA are 

slightly better than the CSS-MOPSO [7] in terms of the convergence to the Pareto front and 
covering all parts of it. In addition the computational performance of the MO-CLFBA and 
MO-FA are almost the same.   

 
 

6. CONCLUSIONS 
 

In the present work, two advanced MOOAs are proposed for tackling multi-objective 
optimization problems of truss structures. The main optimization engines in the presented 
MOOAs are FA and CLFBA and thus these algorithms are termed as MO-FA and MO-
CLFBA, respectively. In the frameworks of MO-FA a new operator is employed for 
regeneration of fireflies in the neighboring regions of the non-dominated fireflies of the 
repository. This operator improves the overall computational performance of the algorithm. 
For the MO-CLFBA chaotic sequence and Levy flight are combined to efficiently achieve 
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the optimization task. The numerical results demonstrate that the proposed MOOAs possess 
appropriate computational abilities in solving complex multi-objective optimization 
problems in comparison with other existent algorithms. 
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