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ABSTRACT

The main aim of the present paper is to proposarambd multi-objective optimization
algorithms (MOOAS) to tackle truss structure optation problems. The proposed meta-
heuristic algorithms are based on the firefly alipon (FA) and bat algorithm (BA), which
have been recently developed for single-objectptmazation. In order to produce a well
distributed Pareto front, some improvements ardempnted on the basic algorithms. The
proposed MOOAs are examined for three truss opéitiam problems, and the results are
compared to those of some other well-known methdds. numerical results demonstrate
that the proposed MOOAs possess better computdpentormance compared to the other
algorithms.
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1. INTRODUCTION

The main aim of structural optimization problemsasminimize a function of structural
design variables, such as the weight or cost ofthecture, subject to some constraints on
stresses, displacements, frequencies and so ofactp optimization is the process of
searching for a solution such that no other supetution can be found. In the most real-
world problems, multiple conflicting objectives nile satisfied simultaneously in order to
obtain optimal solutions. For example, for optintigza of a truss structure the following
objectives can be considered: minimizing the tatilght, minimizing maximum deflection,
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maximizing the allowable stress of members and soFormulation of multi-objective
optimization lets such multiple objectives to badiiad in the framework of an optimization
problem. By solving a multi-objective optimizatiggmoblem (MOOP) a set of solutions,
which provide valuable information about the desigmblem at hand, are obtained.
Investigating the obtained solutions in variouswpeints enables the designers to select
their desired solution among all the solutions.

During the last years, a number of multi-objectiyatimization algorithms (MOOA)
have been proposed by researchers, such as nomatedhisorting GA (NSGA-II) [1],
Pareto archive evolution strategy (PAES) [2] and ltrabjective particle swarm
optimization (MOPSO) [3]. Up to now, many succeksipplications of various MOOAs
have been reported in the literature to tacklestinectural optimization problems. Coello
and Christiansen [4] utilized genetic algorithm (&ar solving MOOP of truss structures.
In their study the weight of the truss, the displaent of each free node and the stress that
each member has to support were minimized. LuhGingeh [5] proposed an algorithm for
finding constrained Pareto-optimal solutions basedhe features of a biological immune
system. The objective of their study is to minimike weight of trusses and the maximum
displacement at a certain node. Kaveh et al. [BHUSA for performing optimal design of
reinforced concrete retaining walls considering imination of the economic cost and
reinforcing bar congestion as the objective fumidn [7] Kaveh and Laknejadi designed
truss structures by a MOOA based on a modified irobiective particle swarm
optimization, tournament decision making process, @ local search algorithm. As well as
the other reviewed works, their objective functicare the weight of structures and the
maximum displacement of a certain node in a spedirection. Richardson et al. [8]
integrated GA and kinematic stability repair (KS$jategy for single and multi-objective
topology optimization of truss-like structures.drmost recent work, Kaveh and Laknejadi
[9] proposed a MOOA based on charged system se@@88) meta-heuristic. They
employed the CSS as an optimizer in combinatioh witistering and particle regeneration
procedures.

In the present study, two new MOOA are proposedhich firefly algorithm (FA) [10]
and bat algorithm (BA) [11] acts as the main optation engines. Three illustrative
examples of truss optimization are presented toomsinate the efficiency of the proposed
MOOAs.

2. FORMULATION OF MOOPS

In fact solving a MOORP is the process of findingestor of design variables to minimize a
vector function satisfying some constraints. Thisams that MOOPs are more complicated
compared with single objective optimization andteasl of finding a single solution an
optimality front must be determined. In order tonfiolate MOOPs some basic concepts
[12] can be described as follows:

General Multi-Objective Optimization Problem: General form of a MOOP can be

stated as follows
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Find:x:{-rp.r:,...,xﬂ}'?, ¥eA _ (1)
To minimize:F(x) = {f X), £, ... £ GOV @)
Subject tog: ) €0, i=12...k 3)

where X is the vector of design variables of sizelnis the domain of the design
variables; F is the vector function of m objectfuactions;: is the ith constraint and k is
the number of constraints.

Pareto  Dominance:  Vector  z!={z{z3 ..z} ...z5}" dominates  vector
zr=1{z2z2 ...2%...z2}0 if and only if zt is partially less tharz?. This statement can be
mathematically represented as follows:

e lvielz o nhzl=sagiella. nbizt <27 4)

Pareto Optimal: A candidate solutiory € &4 is Pareto optimal if and only if there is no
other solution fea for which 22 = (£ (D). £ (T, ... fr, (AT dominates
Zt={f(X), £ (X, ... £, (x1T. The phrase Pareto optimal is taken to mean \epect to the
entire design variable space unless otherwise fepeci

Pareto Optimal Set: Pareto optimal or non-dominated solution is defias a solution
that it is not dominated by another solution. Tlaefo optimal seP for a MOOP can be
defined with respect to the vector functigitt) as follows:

P={¥ e A]aT e & F(D) < FOXN )

Pareto Front: The Pareto front (PF) for a MOOP can be defineth wespect to the
vector functionF(x) and Pareto optimal sBtas follows:

PF={FX) ={fA )£, .. .G |X € P) (6)

In general, for complex MOOPs, finding exact Pfas$ possible and in such cases, the
aim is to find a Pareto optimal set that approxesahe exact PF as close as possible by
generating a diverse range of solutions.

3.METAHEURISTIC ALGORITHMS

Metaheuristics have received more and more popylarithe last years. Their use in many
applications shows their efficiency and effectivenéo solve large and complex problems
[13]. During the recent years, many Metaheuridtiage been developed by researchers and
the most popular ones are GA, PSO, CSS, harmonglhs€dsS), ant colony optimization
(ACO), and etc. In the field of structural optintiom, many successful applications of these
algorithms have been reported in literature. Rirafyorithm (FA) and bat algorithm (BA) are
the recent additions to the metaheuristics and gwperiority to GA and PSO for handling
engineering and structural optimization problemgHhaeen demonstrated in [14-15].

A glance at the literature on the multi-objectivatimization reveals that the well-known
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GA, PSO and CSS metaheuristics were used by rémraras the main optimizer in the
framework of MOOAs. A simple version of multi-objae firefly algorithm (MOFA) has
been proposed in [16] for solving continuous optiaion problems. Also, in [17] BA has
been used to design a simple MOOA based on conmdsmat all objectives into a single
function. It is clear that optimization of a weight sum of all objectives as a single
objective is inadequate for multi-modal problemshwiarge number of variables. In the
present paper two new and more efficient MOOAs thame FA and BA are proposed to
tackle structural optimization problems. The needt®ns describe the basic concepts of FA
and BA and their multi-objective versions.

3.1 Sandard firefly algorithm

The FA is a metaheuristic inspired by the flashbehaviour of fireflies. The FA is a
population-based algorithm, which may share manyilaiities with PSO. Fireflies
communicate, search for pray and find mates usiaminescence with varied flashing
patterns. In order to develop the firefly algorithmatural flashing characteristics of fireflies
have been idealized using the following three r{d€3:

All of the fireflies are unisex; thus, one fireflyill be attracted to other ones regardless
of their sex.

Attractiveness of each firefly is proportional te brightness, thus for any two flashing
fireflies, the less bright firefly will move towasdthe brighter one. The attractiveness is
proportional to the brightness and they both desmress their distance increases. If there is
no brighter one than a particular firefly, it wilove randomly.

The brightness of a firefly is determined accordimghe nature of the objective function.

The attractiveness of a firefly is determined Isybtightness or light intensity which is
obtained from the objective function of the optiatibn problem. However, the
attractivenesg, which is related to the judgment of the beholdarjes with the distance
between two fireflies. The attractivengssan be defined as follows [10]:

B=5e"" (7)
whered, £ andy are the distance of two fireflies, the attractees atd = 0, andy the

light absorption coefficient, respectively.
The distance between two firefliesandj at X; and X; respectively, is determined as

follows:
d =Hxi _XjH =m (8)

wherex; \ is thek-th parameter of the spatial coordingtef thei-th firefly.
In the FA, the movement of a firefltowards a more attractive firefly is determined
as follows [10]:

= x4 _ﬁne_""d‘;*"{xf = XETN) + Ay(r - 0.5) ©)
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where the second term is related to the attractidmle the third term is randomization
with i; being the randomization parameter between 0 andslg random number generator
uniformly distributed in [0, 1].

3.2 Standard bat algorithm

BA is a meta-heuristic optimization method devebtbpey Yang [11] based on the
echolocation behavior of bats. Bats use echoloca@tsa hearing based navigation system to
detect objects in their surroundings by emittingoand to the environment. An idealized
model of the echolocation can be briefly descriasdiollows: Thath bat flies at positioiX;
with a velocityV;, a varying frequency or wavelength and loudn&sdt finds pray by
tuning its frequency, loudness and pulse emissata. rFurthermore, bats intensify their
searches by a local random walk. The fundamenéal kEhind the BA is that a population
including » bats use echolocation to fly randomly througld-dimensional search space
updating their positions and velocities.

Each solutiony; = {x,.%..... X} is evaluated by its fitness function valgéx;) and the
bats’ flight aims at finding the best solutions €Tjpositions and velocities of bats have to be

updated in search space. The new solut@ohand velocitied:" at iteratiork are as follows:

ﬂ[_= ﬂr‘rli" + mmn —ﬂﬂ.m:],f} (10)
W= v (- xEt).0; (12)
XF = xF-t gt (12)

where,;, and,., are the lower and upper bounds imposed for trguéecy range of
bats; # £ [0.1] is a vector containing uniformly distribution ramd numbers;& is the
current global best solution.

A local search is implemented on a randomly setebtd from the current population as
follows:

Xy = Xig + 24 (13)

where: € [-1,+1] iS a random numbey* is the average loudness of all the bats at the
current iteration.

As the loudness usually decrease once a bat had ftauprey, the rate of pulse emission
increases in order to raise the attack accuradhisncase, the loudnegsand the rate of
pulse emission should be updated during the opaitioiz process as follows:

f = i (1)
,J,tﬁ' — '?"lD.I:l _ E—;.-'l:;i—lj:l (15)

wheree (the loudness decay factor) anfthe pulse increase factor) are constants.
It is clear thatr andy are two important parameters on the computatipegbrmance of
BA and their best values can be determined by setsanalysis.
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3.3 Chaotic levy flight bat algorithm

An efficient metaheuristic optimization algorithrhasild possess balanced exploration and
exploitation characteristics. For a metaheurisiith \sominant exploration characteristic the
convergence rate would be slow while the dominaqpicgtation characteristic results in
trapping in local optima. In the both cases, theéameuristic is not able to find the global or
even near global optimum. The diversification \@domization provides a good way to
balance between exploration and exploitation amddsvthe solutions being trapped at local
optima. Employing a uniform distribution is not tbaly way to achieve randomization. In
fact, random walks such as Levy flights [18] onl@bgl scale are more efficient. Levy flight
process is a random walk that is characterized bgrees of instantaneous jumps chosen
from a probability density function which has a wvaw tail. This process represents the
optimum random search pattern and is frequentiyndoun nature [19]. The Levy flight-
based random walk in thieh step of optimization process is usually représeas follows:

Xif._"g,h. = Xé";d +£.L§1:'}-‘{HTJ (16)

whereLewry (1) is Levy flight and its random steps are drawn frarevy distribution for
large steps as follows:

Lewy(1) =k, 1=1=3 (17)

Infinite variance of Levy distribution allows lorjgmps in design space to regions far
from the vicinity of the previous point and thishgarevent the optimizer from trapping into
local optima. On the other hand, small jumps ageiired to exploit the optimum solutions
in some regions.

With the development of theories and applicatiohsamlinear dynamics, chaos concept
has attracted great attention in various fieldd.[Z®e chaos has the property of the non-
repetition, ergodicity, pseudo-randomness and ulee@y [21] and the track of chaotic
variable can travel ergodically over the whole dgesspace. In the last years, many
successful combination of the chaos theory withowsr metheuristic algorithms have been
reported in literature [22]. The chaos theory aeshLflight were utilized in [20] to improve
the performance of BA. The well-known logistic mayghich exhibits the sensitive
dependence on initial conditions was employed ttegete the chaotic sequerdor the
parameter in Levy flight:

ek +1) =4c,().(1—c, (&), 0 e ()= 1 (18)

In the chaotic Levy flight bat algorithm (CLFBARé following equation was used as a
neighbor generation method:

Xiew = Xiig +0oiLevy (A) (19)

Because the chaotic sequence can generate sew&giiborhoods of suboptimal
solutions to maintain the variability in the sobirts, it can prevent the search process from
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becoming premature. Due to its ergodicity, chad®guence can generate several
neighborhoods of near-optimal solutions. The atpari probably converges to a space in
the search space where good solutions are den@rlf2the CLFBA employed in the
present work the following frequency updating edrats utilized:

i = Oy + mmcr _ﬂm[ﬂ:]' Cr (20)

The position and velocity of each bat are updassdguEgs (8) and (9), respectively.

4. ADVANCED MULTI-OBJECTIVE OPTIMIZATION ALGORITHMS

In order to solve a MOOP a non-dominated front &hde such determined that is close to
the true Pareto front while maintaining a good ity along the resulting Pareto front. In
the case of MOOP with many design variables, ablatMOOA should possess two main
features of high convergence rate and maintainimgrsity. In the present work, two multi-
objective metaheuristics based on FA and BA aresguied for multi-objective optimum
design of truss structures. The basic conceptshe$et multi-objective metaheuristics,
termed as multi-objective firefly algorithm (MO-FANnd multi-objective chaotic levy-flight
bat algorithm (MO-CLFBA), are explained in the @ling sunsections.

4.1 Multi-objective-firefly algorithm

In this study, the FA is extended to produce PFM@OPSs. In the so called MO-FA the
search process can be summarized as follows.

1) A number of fireflies are randomly selected frone tlesign space and objective
(brightness) values of all the fireflies are evédola

2) All non-dominated fireflies are added to the repwsi If the repository has no
member, all of the non-dominated solutions in tlerent iteration are included to the
repository. Otherwise, all of the non-dominatedusohs of current iteration are added to
the repository and all dominated members of thesikpry are removed.

3) The most attractive firefly &) is updated. In iteratiork, the best solutiont;y
minimizes the combined objective functig¥) defined as follows:

¥ = o (21)
4=7 Tr.e=1 (22)
wherep; are the uniformly distributed random numbers betw@ and 1.
At each iteration the weight should be chosen randomly, so that the non-doeuhat
solution can sample diversely along the Pareta fi8].
If a firefly is not dominated by others it movesanding to Eq. (23). Furthermore, the
randomness is reduced as the iterations proceeddieg to Eq. (24).

Xiew = Xf + Ax(r — 0.5) (23)
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A, = 0.9% (24)

4) A new swarm of fireflies is regenerated for the tnigaration in the neighborhood of
the non-dominated fireflies of the repository. & & simple equation has been proposed for
population regeneration which is utilized in thegent work. In this case one new patrticle
is generated as follows:

X =X + w(Xpox — Xmin ) vandng. (1 — -

Rmax

) (25)

whererandn; is a random number from a standard normal digiobhuvhich changes for
each firefly, Xyin and X are the minimum and maximum of all design varialle the
repository respectively¥, is one randomly selected member of the repositmgw is a
parameter which increase the domain of new gereepatgicles and in this study is set to 4.

5) When a termination criterion is meet, the solutiamgst in the repository are
introduced as thBF of the MOOP at hand.

4.2 Multi-objective-chaotic levy flight bat algorithm

In this work, a new and efficient multi-objectiveawntic Levy flight bat algorithm (MO-
CLFBA) is proposed to tackle MOOP. In the algorith@LFBA acts as optimizer until the
loop reaches its maximum limit. For each loop tbe-dominated solutions are stored in a
repository and all dominated solutions are removed.

In the framework of the proposed MOOA, the desdili&l FBA in section 3.2 is
employed as the optimizer and the search procesx@nplished as follows.

1) Individuals of a population of bats are randomliested from the search space and
they are evaluated.

2) All non-dominated bats are added to the repository.

3) The global best position of bat&:] is updated. The global best position is the best
solution obtained by neighbors of a bat so far. Wé&ving a single-objective problem, it is
completely determined once a neighborhood topolegstablished. However, in the case
of MOOPs, the conflicting nature of multiple objees makes the choice of a single
optimum solution difficult. To resolve this probleme update thé? based on the crowding
distance CD) [1] value.

ChD; = E;J;j_(l B wit s ) (26)

Fimax—Ff. minl

wheref; is thejth objective function.

In each iteration the crowding distance value df eédéments in the repository is
calculated and the higher crowding distance vailgiifges the best solution. The positign
and velocityV; of bats are updated. The loudnegsand the rate; of pulse emission
parameters of bats are updated based on the aefinit Pareto dominance. Random walk
is performed based on chaos theory and Levy fligistribed earlier.

4) When a termination criterion is meet, the solusi exist in the repository are
introduced as thBF of the MOOP at hand.
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4.3 Handling of design constraints

In the framework of the proposed MOOAs the consteaare handled by a simple method
which was utilized in [1,3,9]. In order to compaveo batsz* andZ?, first they are checked
for constraint violation. If both are feasible, théhe non-dominance is recognized as
winner. If Z* is feasible and? is infeasibleZ* dominates. If both are infeasible, then the
one with the lowest amount of constraint violatdmminates the other one.

5.NUMERICAL RESULTS

The computational performance of the proposed MO@Asompared with that of some

other well-known algorithms in the case of constedi structural optimization problems. In

order to compare the performance of different MOORSs obtained by different ones are
graphically compared. For all of the presented eptamthe repository size of 100 and a
population of 50 individuals are employed.

5.1 10-Bar planar truss

The 10-bar planar truss is illustrated in Figurd@ e objective is to minimize the volume of
the structure and the vertical displacement at rbdenultaneously considering the cross-
sectional areas of the 10 truss numbers as deaiggbles. The upper and lower bounds of
design variables are 0.1 and 3§ irespectively. External lod@ and modulus of elasticity
are 100000 Ib and 1Gksi, respectively. Limitations on the axial strefselements are
design constraints and the maximum allowable stresset to 25 ksi. In this example,
maximum number of function evaluations is set t®@286.

L 360" e 360" >
1 1) 2 () 3

8) (10)
5), 6) 360"

%
() ©)

4 3) 5 4) 6]

v v
P

P
Figure 1. 10-bar planar truss

In this example, the results of MO-FA and MO-CLFRfe compared with those of the
constrained multi-objective immune algorithm (C-MQI[5]. The obtained PF from
different MOOAs are presented in Figure 2. Furtheem the extreme objective values
obtained by the mentioned MOOAs are presented ImeTh
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Table 1: Extreme solutions for 10-bar truss in BRamed by different MOOASs

Extreme point 1 (Minimum Extreme point 2 (Minimum
MOOA Weight) Displacement)
Weight(lb)  Displacement (in)  Weight(lb) Displacenéim)
C-MOIA [5] 1793.51 6.3562 10841.35 1.3611
MO-CLFBA 1594.34 7.1953 11513.00 1.3034
MO-FA 1625.81 7.0221 11701.20 1.3093

It can be observed that the proposed MO-CLFBA ar@-BRA appropriately cover the
Pareto front while the other algorithm couldn’t ke this task. Furthermore, the
convergence to the Pareto front of the MO-CLFBA #sadbility in covering all parts of it
is better in comparison with the MO-FA.

5.2 25-Bar space truss

Figure 3 shows the 25-bar space truss structurenbdes of the structure are divided into
eight groups, as follows: (1);A(2) A—As, (3) Ac—Ag, (4) Aic—A11, (B) Ai-Ass (6) A
A1z, (7) Ais—Aziand (8) ArAgs. The loading details are a8;1=4.45 kN,Fy1=-44.5 kN,
Fz(l):'44-5 kN,Fy(z) =-44.5 kN,FZ(2)=-44.5 kN,FX(3):2.25 kN and:X(5)=2.67 kN.

N (@)

200 in; " A
™~
(9) o
200 in.
~a <

Figure 3. 25-bar space truss

In this example, the objective functions to be mizied are the structural weight and the
displacement in Y-direction at node 1. The uppel lawer bounds for the cross sections of
truss elements are 0.1 and 3.2 iespectively. Modulus of elasticity and weighhsigy are
E=10 ksi and?=0.1Ib/irf, respectively. As the design constraints the asiess in truss
elements is limited to 40 ksi. In the present exXemmaximum number of function
evaluations is set to 30,000. The results of pregadgorithms in this study are compared
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with those of the charge system search multi-objegtarticle swarm optimization (CSS-
MOPSO) [7]. The PF obtained by different MOOASs presented in Figure 4.
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Table 2 compares the extreme objective values mddaby MO-CLFBA and MO-FA
with those of the CSS-MOPSO [7]. The results imgtat the proposed MO-CLFBA
outperforms the CSS-MOPSO [7] and MO-FA in termgha& convergence to the Pareto
front and ability in covering all parts of it.

Table 2: Extreme solutions for 25-bar space trng3H obtained by different MOOAS

Extreme point 1 (Minimum Extreme point 2 (Minimum
MOOA Weight) Displacement)
Weight(kN)  Displacement (mm) Weight(kN) Displacement (mm)
CSS-MOPSO [7] 4.8111 5.8437 0.3440 62.9807
MO-CLFBA 4.8916 5.8108 0.3125 63.7685
MO-FA 4.9796 5.8093 0.3270 60.7876

5.3 56-Bar space dome
The third example of the present study is a 56space dome illustrated in Figure 5.
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Figure 5. 56-bar space dome
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All free nodes are loaded with 4 kN in the Y-ditent In the Z-direction Joint 1 is
loaded with 30 kN, while the remaining free nodes laaded with 10 kN. The modulus of
elasticity is set to 210 kN/mfimand the lower and upper bounds on the member -cross
sectional areas are taken as 200 and 2000, maspectively. the vertical displacements of
joints 4, 5, 6, 12, 13 and 14 is restricted to 4 amd the displacement of joint 8 in the Y-
direction is limited to 2 mm.

The objective functions which should be minimizedhis example are as follows:

file) = B2, Al (27)
filx) = ﬂl 6, + 65, +67 (28)

whereA; andl; are the cross-sectional area and length oitthememberg,.., 61,y andé,.
are displacements of Joint 1 in X-, Y- and Z- dil@ts, respectively.

In the present example the number of function extadus is limited to 30,000. The
results of MO-CLFBA and MO-FA are compared withsbmf the CSS-MOPSO [7]. Figure
6 compares the PF of the mentioned MOOAs for thxsngle. The extreme objective
values obtained by MO-CLFBA and MO-FA are compangith those of the CSS-MOPSO
[7]in Table 3.

Table 3: Extreme solutions for 56-bar space dontHmbtained by different MOOAS

Extreme point 1 (Minimum Weight) Extreme point 2 (Minimum

MOOA Displacement)
f,x10° (mn?)  Displacement (mm) f,x10° (mnt)  Displacement (mm)
CSS-MOPSO [7]  4.0292336¢ 2.2148 1.20812690 7.5495
MO-CLFBA 4.02417574 2.2138 1.19803355 7.3713
MO-FA 4.02111310 2.2095 1.19926203 7.5629

The obtained numerical results indicate that theppsed MO-CLFBA and MO-FA are
slightly better than the CSS-MOPSO [7] in termshaf convergence to the Pareto front and
covering all parts of it. In addition the computeital performance of the MO-CLFBA and
MO-FA are almost the same.

6. CONCLUSIONS

In the present work, two advanced MOOAs are prapdee tackling multi-objective

optimization problems of truss structures. The n@timization engines in the presented
MOOAs are FA and CLFBA and thus these algorithres tarmed as MO-FA and MO-

CLFBA, respectively. In the frameworks of MO-FA a&wm operator is employed for
regeneration of fireflies in the neighboring regoof the non-dominated fireflies of the
repository. This operator improves the overall cataponal performance of the algorithm.
For the MO-CLFBA chaotic sequence and Levy fligre aombined to efficiently achieve
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the optimization task. The numerical results dertrates that the proposed MOOAs possess
appropriate computational abilities in solving cdexp multi-objective optimization
problems in comparison with other existent algonish
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