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ABSTRACT 

 

Computational cost of metaheuristic based optimum design algorithms grows excessively 

with structure size. This results in computational inefficiency of modern metaheuristic 

algorithms in tackling optimum design problems of large scale structural systems. This 

paper attempts to provide a computationally efficient optimization tool for optimum design 

of large scale steel frame structures to AISC-LRFD specifications. To this end an upper 

bound strategy (UBS), which is a recently proposed strategy for reducing the total number 

of structural analyses in metaheuristic optimization algorithms, is used in conjunction with 

an exponential variant of the well-known big bang-big crunch optimization algorithm. The 

performance of the UBS integrated algorithm is investigated in the optimum design of two 

large-scale steel frame structures with 3860 and 11540 structural members. The obtained 

numerical results clearly reveal the usefulness of the employed technique in practical 

optimum design of large-scale structural systems even using regular computers. 
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1. INTRODUCTION 

 

In the recent decades, development of advanced construction technologies has paved the 

way for extensive emergence of large scale structures. Although a general definition cannot 

be stated for the term large scale, however, for instance a high rise building consisting 

thousands of structural elements can be referred to as a large scale system. Besides the 

complexities involved in the construction of large structural systems, the design stage of 

such structures has long been recognized as one of the most challenging fields of the 

engineering design.  

Typically, decision making about an optimum design for a large scale system requires 

seeking the best set of structural members which minimizes the total weight/cost of the 

structure while satisfying the predefined design constraints imposed by a considered design 

code. Generally, the main concern of structural engineers is to adopt an efficient 

optimization tool for optimum design of large scale systems in an acceptable computational 

time. In this regard, two difficulties may arise in practical applications as follows. On one 

hand, due to the large number of structural components, the optimum solution should be 

sought in a vast design space with numerous design variables. Accordingly, sometimes even 

finding a feasible solution satisfying all the imposed strength and serviceability constraints 

may become a dilemma. On the other hand, since structural analysis of a large scale system 

requires an excessive computational effort, an employed optimization technique may need 

an unacceptably extreme computational time to locate a reasonable solution [1]. 

In the recent years an extensive work has been conducted in developing efficient 

structural optimization techniques for practical applications. Generally, majority of the 

developed techniques are belonging to the class of stochastic search algorithms or the so 

called metaheuristics [2]. In spite of numerous applications of metaheuristics reported in the 

literature of structural optimization [3-5], due to the large number of structural analyses 

required by metaheuristic based techniques, the existing algorithms in their original form are 

not applicable to large scale systems without using expensive high performance computing 

techniques, such as parallel or distributed computing methods. Furthermore, since 

practically it is not possible to carry out numerous independent optimization runs for large 

scale systems, conducting modifications in the formulation of metaheuristics (e.g. parameter 

study) for tackling large scale problems is almost impossible in real applications. As a 

result, in spite of sound reputation of metaheurictic algorithms in global optimization, only a 

few papers have been published on optimum design of large scale steel frames using 

metaheuristics [1, 6].   

Regarding the inherent nature of metaheuristic algorithms that need many structural 

analyses to find an optimum design, employing an upper bound strategy (UBS) [7] by which 

unnecessary structural analyses are avoided in the course of optimization can be useful. 

Although simple, the UBS is found to be successful in diminishing the total computational 

cost of a metaheuristic design optimization algorithm. Thus, investigating the performance 

of the UBS in optimum design of large scale structural systems can pave the way for 

computationally efficient optimization of such structures without employing high 

performance computing techniques. To this end first a robust and efficient metaheuristic 

technique should be adopted. Next, through integration of the UBS with the employed 
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optimization algorithm, its efficiency in optimum design of large scale systems can be 

evaluated.  

In the present study as an enhanced metaheuristic optimization tool an exponential big 

bang-big crunch (EBB-BC) algorithm [8], which is an improved variant of the well known 

big bang-big crunch (BB-BC) algorithm [9], is employed in conjunction with the upper 

bound strategy (UBS) for tackling challenging design instances of large scale steel frames. 

The EBB-BC algorithm is adopted here due to its promising performance in discrete sizing 

optimization of steel frames under code provisions [8]. Although traditionally practical 

design optimization of large-scale steel frame structures is carried out typically through 

employing high performance computing techniques, the study attempts to facilitate such 

design optimizations in reasonable computational times using inexpensive regular 

computers. To this end, first, the UBS is integrated into the optimum design algorithm for 

further reduction of the number of structural analysis in the course of optimization. Next, the 

performance of the UBS integrated algorithm is investigated in the optimum design of two 

large-scale steel frame structures with 3860 and 11540 structural members according to 

AISC-LRFD [10] specifications; and the numerical results are discussed in detail. The 

remaining sections of the paper are organized as follows. The second section briefly 

describes the optimum design problem based on AISC-LRFD [10] specifications. In the 

third section the BB-BC algorithm and its exponential variant is described. The fourth 

section provides a detailed statement of the UBS in the design optimization process. The 

efficiency of the employed UBS integrated algorithm is investigated in the fifth section 

through large scale design examples of steel frames. A brief conclusion of the study is 

provided in the last section. 

 

2. DISCRETE SIZING OPTIMIZATION OF STEEL FRAMES TO AISC-LRFD 

 

This section covers the utilized design procedure based on the AISC-LRFD [10] code. In 

industrial applications the frame members are typically selected from a set of available steel 

sections which yields a discrete sizing optimization problem. For a steel frame composed of 

mN  members grouped into dN
 
design groups, the optimum design problem, based on 

AISC-LRFD [10] code, can be stated as follows. The objective is to find a vector of integer 

values I  (Eq. 1) representing the sequence numbers of steel sections assigned to dN  

member groups 

 

 
dN

T III ,...,, 21I                                                                (1) 

 

to minimize the weight, ,W  of the structure  
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where iA  and i  
are the length and unit weight of the steel section selected for member 
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group i, respectively, tN  is the total number of members in group i, and jL  is the length of 

the member j which belongs to group i. Here, the objective of finding the minimum weight 

structure is subjected to several design constraints, including strength and serviceability 

requirements. According to AISC-LRFD [10] code of practice, the following relations must 

be satisfied for the strength requirements. 
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In Eqs. (3) to (5), IEL=1, 2, …, NEL is the element number, NEL is the total number of 

elements, J=1, 2, …, N is the load combination number and N is the total number of design 

load combinations. JuP  is the required axial (tensile or compressive) strength, under J-th 

design load combination. JuxM  and JuyM  are the required flexural strengths for bending 

about x and y, under the J-th design load combination, respectively; where subscripts x and 

y are the relating symbols for strong and weak axes bending, respectively. On the other 

hand, nP , nxM and nyM  are the nominal axial (tensile or compressive) and flexural (for 

bending about x and y axes) strengths of the IEL-th member under consideration.    is the 

resistance factor for axial strength, which is 0.85 for compression and 0.9 for tension (based 

on yielding in the gross section) and b  is the resistance factor for flexure, which is equal to 

0.9. Here, Eq. (5) is used for checking members’ shear capacity wherein JuV
 
is the required 

shear strength under J-th load combination and nV
 
is the nominal shear strength of the IEL-

th member under consideration. In order to calculate the design shear strength the nominal 

shear strength is multiplied by a resistance factor v  of 0.9. 

In addition to the strength requirements, the serviceability criteria should be considered 

in the design process. The serviceability requirements considered in this research are 

formulated as follows: 

 

                                   
0 a
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Eq. (6) compares the maximum lateral displacement of the structure under J-th load 
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combination JMax  with the maximum allowable lateral displacement 
a
Max . Similarly, 

Eq. (7) checks the interstory drift of the F-th story (F=1, 2, …, NF) under the J-th load 

combination SJ ][  against the related permitted value S
a ][ ; here NF is the total number 

of stories. 

 

2.1. NOMINAL STRENGTHS 

 

Based on AISC-LRFD [10] specification, the nominal tensile strength of a member, based 

on yielding in the gross section, is equal to: 

 

                                                           gyn AFP                                                           (8) 

 

where yF  is the member’s specified yield stress and gA  is the gross section of the member. 

The nominal compressive strength of a member is the smallest value obtained from the 

limit states of flexural buckling, torsional buckling, and flexural-torsional buckling. For 

members with compact and/or non-compact elements, the nominal compressive strength of 

the member for the limit state of flexural buckling is as follows: 

 

                                      gcrn AFP                                              (9) 

 

where crF  is the critical stress based on flexural buckling of the member, calculated as: 
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In the above equations, l  is the laterally unbraced length of the member, K  is the 

effective length factor, r  is the governing radius of gyration about the axis of buckling and 

E  is the modulus of elasticity.  

The AISC-LRFD [10] code addresses the nominal compressive strength based on the 

limit state of torsional and flexural-torsional buckling, for doubly symmetric members with 

compact and/or non-compact elements. For this limit state, Eq. (9) is still applicable with 

the following modifications: 

 

                           for    5.1e             ycr FF e )658.0(
2

                              (12) 



S. Kazemzadeh Azad, O. Hasançebi, and S. Kazemzadeh Azad 

 

238 

       for    5.1e             y

e

cr FF















2

877.0


                               (13) 

where  

              eye FF                                                        (14) 
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In Eq. (15), wC  is the warping constant, G  is the shear modulus, J  is the torsional 

constant, xI  and yI are moments of inertia about principal axes, zl  is the unbraced length 

for torsional buckling, and zK  is the effective length factor for torsional buckling. In this 

study zK  is conservatively taken as unity.  

The nominal flexural strength of a member is the minimum value obtained according to 

the limit states of yielding, lateral-torsional buckling, flange local buckling, and web local 

buckling. The flexural capacity based on the limit state of yielding is as follows: 

 

                yypn FSFZMM 5.1                                      (16) 

 

where Z is the plastic modulus and S is the section modulus of the member for the axis of 

bending. For doubly symmetric sections, the flexural capacity considering the limit state of 

lateral-torsional buckling is as follows: 
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where bL
 
is the laterally unbraced length of the member, pL  is the limiting laterally 

unbraced length for full plastic bending capacity, rL
 
is the limiting laterally unbraced 

length for inelastic lateral-torsional buckling, rM
 
is the limiting buckling moment, and 

crM
 
is the critical elastic moment for the lateral-torsional buckling. The modification factor 

for non-uniform moment diagram, bC , is defined by Eq. (18), 
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where maxM , AM , BM , and CM  are absolute values of maximum moment, moment at 

quarter point, centerline, and three-quarter point of the unbraced segment, respectively.  

The nominal flexural strength of members with doubly symmetric sections and non-

compact flanges, considering the limit state of flange local buckling, is given below: 
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where f  is the flange slenderness parameter, 
f
p  is the limiting value of f  for full 

plastic bending capacity, 
f
r  is the limiting value of f  for inelastic flange local buckling, 

f
rM  is the limiting moment for flange buckling, and 

f
crM  is the critical elastic moment for 

flange local buckling.  

The nominal flexural strength of members with doubly symmetric sections and non-

compact webs, considering the limit state of flange web buckling, is given below: 
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where w  is the web slenderness parameter, 
w
p  is the limiting value of w  for full plastic 

bending capacity, 
w
r  is the limiting value of f  for inelastic web local buckling, 

w
rM  is 

the limiting moment for web buckling, and 
w
crM  is the critical elastic moment for web local 

buckling.  

The nominal shear strength of unstiffened webs of doubly symmetric members, subjected 

to shear in the plane of the web, is as follows: 

 

  wywnyww AFVFthfor 6.0418                                   (21) 
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where h  is the clear distance between flanges less the fillet or corner radius for rolled 

shapes, wt  is the web thickness, wA  is the shear area, and ywF  is the yield stress of the web 

in ksi; also nV  in Eq. (23) is in ksi. Here, to keep the original formulation of the code, Eqs. 
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(21) to (23) are presented in British units. For members subjected to shear perpendicular to 

the plane of the web, the nominal shear strength is calculated through Eq. (21) as well. 

 

2.2. EFFECTIVE LENGH FACTOR 

In order to calculate the nominal compressive strength, the effective length factor, K, should 

be determined for each member. This factor can be computed using the frame buckling 

monograph developed by Jackson and Moreland [11]. For sway frames, the effective length 

factor for columns is computed as follows: 
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where K  , i and j subscripts correspond to end-i and end-j of the compression 

member, and subscripts c and b, in building structures, refer to columns and beams 

connecting to the joint under consideration, respectively. Parameters I and l in the above 

equations, represent the moment of inertia and unbraced length of the member, respectively. 

Here, K factor for beam, bracings and non-sway column elements is taken as 1. 

 

3. OPTIMIZATION ALGORITHM 

 

The big bang-big crunch (BB-BC) optimization algorithm is a novel metaheuristic technique 

based on the BB-BC theory of the universe evolution [9]. Numerous engineering 

optimization applications of the algorithm have been reported in the literature so far [12-21]. 

This section outlines the main steps in the implementation of a standard BB-BC algorithm 

as follows. 

Step1. Initial population: Form an initial population through randomly spreading 

individuals (candidate solutions) over all the search space (first big bang) in a uniform 

manner. This step is applied once. 

Step 2. Evaluation: The initial population is evaluated, where structural analyses of all 

the individuals are carried out with the set of steel sections adopted for design variables, and 

force and deformation responses are obtained under the loads. The objective function values 

of the feasible individuals that satisfy all the problem constraints are directly computed from 

Eq. (2). However, infeasible individuals that violate some of the problem constraints are 

penalized using an external penalty function approach, and their objective function values 

are computed according to Eq. (26) [22]. 
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In Eq. (26), f  is the constrained objective function value, ic  is  i-th problem constraint 

violation and p  is the penalty coefficient used to tune the intensity of penalization as a 

whole. This parameter is generally set to an appropriate static value of 1p . The fitness 

scores of the individuals are then calculated by taking the inverse of their objective function 

values (i.e. fitness = 1/W or 1/ f  for feasible and infeasible solutions, respectively). The 

fitness scores are assigned as the mass values for the individuals.  

Step 3. Big crunch phase: Calculate the center of mass by taking the weighted average 

using the coordinates (design variables) and the mass values of every single individual or 

choose the fittest individual amongst all as their center of mass (the latter approach is used 

in the present study). 

Step 4. Big bang phase: Generate new individuals by using normal distribution (big 

bang phase). For a continuous variable optimization problem, Eq. (27) is used at each 

iteration to generate new solutions around the center of mass. 
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where c

ix  is the value of i-th continuous design variable in the fittest individual, min

ix  and 
max

ix  are the lower and upper bounds on the value of i-th design variable, respectively, 

iN )1,0(  is a random number generated according to a standard normal distribution with 

mean () zero and standard deviation () equal to one, k is the iteration number, and α is a 

constant.  

However, when a discrete set of available sections is used for sizing the frame members, 

Eq. (28) is employed to round off the real values to the nearest integers representing the 

sequence number of available sections in a given section list. 
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where 
c
iI  is the value of i-th discrete design variable in the fittest individual, and 

min
iI  and 

max
iI  are its lower and upper bounds, respectively. 

Step 5. Elitism: Keep the fittest individual found so far in a separate place or as a 

member of the population. 

Step 6. Termination: Go to Step 2 until a stopping criterion is satisfied, which can be 

imposed as a maximum number of iterations or no improvement of the best design over a 

certain number of iterations. 

Recently, in order to enhance the performance of the BB-BC algorithm in discrete design 

optimization, Eq. (29) is proposed in Ref. [8] as a new formulation in lieu of Eq. (28). In the 

new formulation the use of n-th power (n ≥ 2) of a random number 
ir  is motivated using any 

appropriate statistical distribution, which may not be necessarily a normal distribution.  
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The rationale behind Eq. (29) is to achieve a satisfactory trade-off between the 

exploration and exploitation characteristics of the BB-BC algorithm. Accordingly, Eq. (30) 

provided in Ref. [8] is an instance of Eq. (29), referred to as the exponential BB-BC (EBB-

BC) algorithm, where the use of an exponential distribution in conjunction with the third 

power of random number is preferred. 
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While using the EBB-BC algorithm for discrete optimization, it is noted that sometimes 

after a certain number of iterations, no new solutions are generated; i.e. the subsequent 

individuals simply replicate the former ones. As a remedy to this situation, the following 

routine proposed in Ref. [8] is integrated into the algorithm to make sure that a new solution 

will differ from the former one at least by one variable. 

 

Set  := 1.0; 

Quitloop:= False; 

Repeat 

     Generate Inew from Ic using Eq. (30) 

     If Inew = Ic then Quitloop := true 

                        else   :=  + 1.0 

Until Quitloop; 

 

Accordingly, if all the design variables in a newly generated solution remain unchanged 

after applying Eq. (30), the generation process is iterated in the same way by increasing the 

standard deviation of normal distribution  by one every time till a different design is 

produced. Apparently, the increased standard deviation facilitates occurrence of larger 

changes in the generated individuals.  

 

4. UBS IN METAHEURISTIC BASED DESIGN OPTIMIZATION 

   

The UBS [7] is a simple yet efficient technique which can be utilized in conjunction with all 

metaheuristic algorithms that employ a    selection scheme in their algorithmic models. 

This selection scheme is first characterized by the well-known variant of evolution strategies 

(ES) technique referred to as ES)(   in the literature [23]. Typically, at each 

generation of the ES)(  , µ parents generate λ offspring; and then a deterministic 

selection is performed by selecting the  best individuals out of  parents and  offspring in 

reference to the individuals’ fitness scores [24]. This way, the number of individuals to 

produce the next generation is reduced back to  every time. It should be noted that the 

evolutionary scheme employed in the EBB-BC algorithm works on the basis of the same 
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principle. At each iteration of the EBB-BC algorithm 1  parent generates λ candidate 

solutions (λ=50 in this study), and only one individual survives out of 1  solutions after 

implementing the selection and elitism schemes.  

In the EBB-BC algorithm discussed in the previous section, the current best design found 

during the optimization process is used to generate new candidate solutions for the next 

iteration. Then, every candidate solution generated is subjected to evaluation such that a 

conventional structural analysis is first carried out per design and then its penalized weight 

(which is the base of comparison between the solutions) is computed through the 

application of Eq. (26). The idea behind the UBS is to impose the current best design as the 

upper bound for the forthcoming candidates to eliminate unnecessary structural analysis and 

associated fitness computations for those candidates that have no chance of surpassing the 

best solution. Basically, the key factor in this approach is to define the penalized weight of 

the current best solution found during the previous iterations as an upper bound for the net 

weight of the newly generated candidate solutions. Thus, any new candidate solution with a 

net weight greater than this upper bound will not be analyzed and this will lessen the 

computational burden of the optimization algorithm.  

The pseudo-code for the utilized UBS integrated optimization algorithm is outlined 

below, where ite_cnt and ite_max stand for the current and maximum iteration numbers, 

respectively. 

     

Repeat  

Generate iI (i:=1,..) from bestI  using Eq. (30)  

For i:=1 to   do  

begin 

Calculate )( iW I
 
 

If )()( besti fW II   

then 

Perform structural analysis of iI  

Compute )( iP I  and )( if I
 

If )()( besti ff II 
 

then 

      Update the upper bound )()( ibest ff II 
 

end 

else 

Activate  UBS 

Eliminate iI  

end    

Set new bestI  

ite_cnt:=ite_cnt+1; 

       until ite_cnt>ite_max 
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In the aforementioned strategy,   number of candidate solutions iI are first generated 

from the current best design in a usual manner, i.e. through application of Eq. (30). Then, in 

the first step the net weight )( iW I  of each candidate solution is calculated only; not the 

penalized weight. This computation is straightforward and can be done with a trivial 

computational effort. If a candidate solution has a net weight )( iW I  smaller than or equal to 

the penalized weight of the current best design )( bestf I , the structural analysis of the 

candidate solution is processed and its penalized weight is computed. In the opposite case, 

i.e. )()( besti fW II  , however, the UBS is activated and the candidate solution is 

automatically removed from the population without undergoing structural analysis phase for 

response computations, since such a candidate is unlikely to improve the current best design 

bestI . 

As reflected in the pseudo-code, it is noticed that the upper bound value can be 

dynamically modified during the analysis of the individuals of a population as well. In this 

study the employed UBS updates the upper bound value dynamically with respect to the 

penalized weight of each individual immediately after it is analyzed. In this strategy if the 

penalized weight of the individual is less than the current upper bound value, then the upper 

bound value is updated to the lower value i.e. the penalized weight of the individual. 

It is apparent that, at each iteration of the UBS integrated optimization algorithm the 

number of analyzed individuals is not necessarily equal to the population size. It is worth 

mentioning that, for further increasing the efficiency of the UBS during the design 

optimization process, the structural analysis of the candidate designs is accomplished in an 

order based on their net weights. In other words, for a population of candidate designs the 

structural analyses of candidate designs with smaller net weights are performed prior to 

those have larger net weights. This can further increase the probability of excluding the 

remaining individuals from the structural analysis stage without changing the algorithmic 

structure of the utilized strategy. The main concern here is the amount of reduction in 

computational effort using the abovementioned approach. This is investigated in the next 

section through design examples of large scale steel frames. 

 

5. NUMERICAL EXAMPLES 

 

In this section the efficiency of the UBS in reducing the number of structural analyses is 

investigated through two design optimization examples of large scale frames. To this end, 

the optimization algorithm is coded in MATLAB [25] and employed in conjunction with 

SAP2000 v14.1 [26] structural analysis package using application programming interface 

(API) for analysis and design of structural systems sampled during the course of 

optimization process.  

The population size of the algorithm is set to 50 and the value of parameter α in Eq. (30) 

is selected as 0.25. The value of penalty constant p is taken as 1. Further, the maximum 

number of iterations (ite_max) is considered as the termination criterion. This is set to 500 

iterations for both the examples. The material properties of steel are taken as follows: 
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modulus of elasticity (E)  200 GPa, yield stress (
yF )  248.2 Mpa, and unit weight of the 

steel (  )  7.85 ton/m3.   

In the following examples the UEBB-BC notation is used to refer to the UBS integrated 

optimization algorithm. It should be underlined that since the efficiency and robustness of 

the EBB-BC algorithm is recently demonstrated by the authors in Ref. [8], an improvement 

of the algorithm in terms of quality of the optimum solution located is not intended in the 

present study. Instead, the aim of the study is to accelerate computational efficiency of the 

sizing optimization by reducing the computing cost through a smaller number of structural 

analyses.  

 

5.1. EXAMPLE 1: 3860-MEMBER STEEL FRAME 
 

The 20-story steel frame shown in Figure 1 is adopted as the first design example. The 

frame is composed of 3860 structural members, including 1836 beam, 1064 column and 960 

bracing elements. The stability of structure is provided through moment resisting 

connections as well as X-type bracing systems along the x and y directions. Considering 

practical fabrication requirements, the 3860 members of the frame are collected under 73 

member groups. The member grouping is performed in both plan and elevation levels. In 

elevation level the structural members are grouped in every two stories. In plan level, 

columns are considered in 5 different column groups (CG1 through CG5) as depicted in 

Figure 2; beams are divided into two groups as outer and inner beams; and bracings are 

assumed to be in one group. Therefore, based on both elevation and plan level groupings, 

there are totally 43 column groups, 20 beam groups, and 10 bracing groups considered as 73 

sizing design variables in this example. It is worth mentioning that floor slabs shown in 

Figure 1(a) are just for better illustration of the structure; and are not modeled in the 

analysis stage. For design purpose, the frame is subjected to the following 10 load 

combinations according to ASCE 7-98 [27]: 
 

(1) 1.4D 

(2) 1.2D + 1.6L 

(3) 1.2D + 1.0Ex + 0.5L 

(4) 1.2D + 1.0Eex + 0.5L 

(5) 1.2D + 1.0Ey + 0.5L 

(6) 1.2D + 1.0Eey + 0.5L 

(7) 0.9D + 1.0Ex 

(8) 0.9D + 1.0Eex 

(9) 0.9D + 1.0Ey 

(10) 0.9D + 1.0Eey 

 

where D and L denote the dead and live loads, respectively; Ex and Ey are the earthquake 

loads applied to the center of mass in x and y directions, respectively; Eex and Eey are the 

earthquake loads applied considering the effect of accidental eccentricity of the center of 

mass in x and y directions, respectively. Based on ASCE 7-98 [27] the amount of 

eccentricity is set to 5% of the dimension of the structure perpendicular to the direction of 

the applied earthquake load. 



S. Kazemzadeh Azad, O. Hasançebi, and S. Kazemzadeh Azad 

 

246 

The live loads acting on the floor and roof beams are 10 and 7 kN/m, respectively.  In the 

case of dead loads, besides the uniformly distributed loads of 14 and 12 kN/m applied on 

floor and roof beams, respectively, the self-weight of the structure is also considered.  

The earthquake loads, are calculated based on the equivalent lateral force procedure 

outlined in ASCE 7-98 [27]. Here, the resulting seismic base shear (V) is taken as V = 0.1Ws 

where Ws is the total dead load of the building. The computed base shear is distributed to 

each floor based on the following equation:  

                                     

              





n

i

k
ii

k
xx

x

hw

Vhw
F

1

                                                 (31) 

 

where xF is the induced lateral seismic force at level x; w is portion of the total gravity load 

assigned to the related level (i.e. level i or x); and h  is the height from base to the related 

level. Here, k is determined based on the structure period. It is equal to 1 for structures with 

a period of 0.5 sec or less; and 2 for structures with a period of 2.5 sec or more.  For 

structures with a period in range of 0.5 to 2.5 sec, k is calculated through linear interpolation 

[27]. It is worth mentioning that the period of the structure is calculated using the following 

equation given in ASCE 7-98 [27]. 

 

                                                         
4/3

nT hCT 
                                                 (32)  

       

where TC  is taken as 0.0488 and nh  is the height of the building; namely 70 m for this 

example. Hence, the period of the structure, T, is 1.181 sec. Based on the obtained period 

the value of parameter k in Eq. (31) is taken as 1.341 for this example. It should be noticed 

that since the self-weight of the structure changes during the course of optimization, 

apparently, the values of dead and earthquake loads change accordingly. 

The beam elements are continuously braced along their lengths by the floor system; and 

columns and bracings are assumed to be unbraced along their lengths. The effective length 

factor, K, for buckling of columns as well as beams and bracings is taken as 1. The 

maximum lateral displacement of the top story is limited to 0.18 m and the upper limit of 

interstory drift is taken as h/400, where h is the story height. The interstory drifts are 

calculated based on the displacement of center of mass of each story. The maximum lateral 

displacement of the top story is calculated with respect to the maximum displacements of 

the ends of the structure. Here, horizontal displacements of all joints of each story are 

constrained to each other based on a rigid diaphragm assumption. For this example, the 

wide-flange (W) profile list composed of 268 ready sections is used to size the structural 

members. 

Optimum desing of the frame is carried out using the UEBB-BC algorithm and the 

results are tabulated in Table 1. The algorithm is executed until the termination condition, 

which is the maximum number of iterations, i.e. 500, is met. The optimization history of the 

frame is presented in Figure 3, which shows the variation of the penalized weight of the 
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current best design obtained so far in the search process. Here, the number of structural 

analyses performed in the UBS integrated algorithm is calculated by counting candidate 

designs that undergo structural analysis. For the original algorithm, i.e. EBB-BC, this can be 

simply obtained through multiplying the total number of iterations (ite_cnt) by the 

population size . Bearing in mind that a population size of  =50 is employed over a 

maximum number of 500 iterations (ite_max = 500), the number of structural analyses 

performed by the EBB-BC algorithm (without UBS) is equal to 25000. However, as 

tabulated in Table 1, when UEBB-BC algorithm is employed, it is found that only 9979 

structural analyses are required for sizing the frame. In this example, 15021 unnecessary 

analyses are avoided as a result of employing the UEBB-BC algorithm. 

 

 

 
(a) 
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                   (b)                                       (c) 

 

 

 
 

                (d) 
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            (e)                                        (f) 

 

 

 
 

(g) 

 

Figure 1: 3860-member steel frame, (a) 3-D view (b) side view of frames B, D, F, and H (c) 

side view of frames C, E, and G (d) side view of frames A, and I (e) side view of frames 1, 

3, 5, and 7 (f) side view of frames 2, 4, and 6 (g) plan view. 
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Figure 2: Column grouping in plan level for 3860-member steel frame 

 

 

 

 

     Figure 3: Optimization history of 3860-member steel frame example 
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Table 1: Optimum design obtained for 3860-member steel frame  

Stories Groups Ready Section Stories Groups Ready Section 

1-2 

CG1* W27X146 

11-12 

CG1 N.A. 

CG2 W12X210 CG2 W30X99 

CG3 W36X359 CG3 W12X305 

CG4 W40X593 CG4 W30X261 

CG5 W8X67 CG5 W44X230 

IB* W40X183 IB W44X230 

OB* W14X22 OB W40X149 

BR* W40X167 BR W16X77 

3-4 

CG1 W40X167 

13-14 

CG1 N.A. 

CG2 W12X230 CG2 W16X89 

CG3 W36X650 CG3 W40X174 

CG4 W24X335 CG4 W16X100 

CG5 W14X68 CG5 W10X100 

IB W16X26 IB W14X43 

OB W40X235 OB W36X135 

BR W12X53 BR W33X152 

5-6 

CG1 W24X335 

15-16 

CG1 N.A. 

CG2 W27X178 CG2 W12X79 

CG3 W27X539 CG3 W44X262 

CG4 W36X439 CG4 W24X250 

CG5 W30X99 CG5 W33X263 

IB W44X230 IB W30X132 

OB W14X26 OB W14X68 

BR W12X72 BR W21X62 

7-8 

CG1 N.A. 

17-18 

CG1 N.A. 

CG2 W27X368 CG2 W24X117 

CG3 W18X234 CG3 W40X167 

CG4 W33X221 CG4 W36X245 

CG5 W40X321 CG5 W30X292 

IB W12X72 IB W40X149 

OB W33X130 OB W33X141 

BR W12X72 BR W14X48 

9-10 

CG1 N.A. 

19-20 

CG1 N.A. 

CG2 W30X326 CG2 W36X300 

CG3 W14X455 CG3 W18X60 

CG4 W12X120 CG4 W44X230 

CG5 W18X86 CG5 W10X54 

IB W27X94 IB W21X50 

OB W44X230 OB W30X116 

BR W24X84 BR W24X62 

Weight (ton)                                                                             4117.43 

No. analyses required without UBS                                          25000 

No. analyses performed                                                             9979 

No. saved analyses                                                                    15021 

     *CG denotes column group with respect to Figure 2, IB: inner beams, OB: outer beams, BR: bracings  
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5.2. EXAMPLE 2: 11540-MEMBER STEEL FRAME 

 

The 20-story steel frame depicted in Figure 4 is selected as the second example. The frame, 

which is one of the largest steel frame instances investigated so far, is composed of 11540 

structural members, including 6240 beam, 3380 column and 1920 bracing elements. The 

stability of structure is provided through moment resisting connections as well as X-type 

bracing systems along the x and y directions. Considering practical fabrication requirements, 

the 11540 members of the frame are collected under 100 member groups. The member 

grouping is performed in both plan and elevation levels. In elevation level the structural 

members are grouped in every two stories. In plan level, columns are considered in 7 

different column groups (CG1 through CG7) as depicted in Figure 6 (where all columns 

located on each square are treated as one column group); beams are divided into two groups 

as outer and inner beams; and bracings are assumed to be in one group. Therefore, based on 

both elevation and plan level groupings, there are totally 70 column groups, 20 beam 

groups, and 10 bracing groups considered as 100 sizing design variables in this example. For 

the sake of clarity, columns’ orientations are shown in Figure 5. It is worth mentioning that 

floor slabs shown in Figure 4(a) are just for better illustration of the structure; and are not 

modeled in the analysis stage. 

For design purpose, the frame is subjected to the same 10 load combinations described in 

the first example. The live loads acting on the floor and roof beams are 12 and 7 kN/m, 

respectively.  In the case of dead loads, besides the uniformly distributed loads of 15 and 12 

kN/m applied on floor and roof beams, respectively, the self-weight of the structure is also 

considered. The earthquake loads, are calculated based on the same procedure described in 

the first example. Here, the resulting seismic base shear (V) is taken as V = 0.1Ws where Ws 

is the total dead load of the building. Further, in Eq. (32), TC  is taken as 0.0488 and nh  
is 

70 m. Hence, the period of the structure, T, is computed as 1.181 sec. Based on the obtained 

period the value of parameter k in Eq. (31) is taken as 1.341 for this example.  

The beam elements are continuously braced along their lengths by the floor system; and 

columns and bracings are assumed to be unbraced along their lengths. The effective length 

factor, K, for buckling of columns as well as beams and bracings is taken as 1. The 

maximum lateral displacement of the top story is limited to 0.18 m and the upper limit of 

interstory drift is taken as h/400, where h is the story height. Here, the wide-flange (W) 

profile list composed of 162 ready sections (W16 through W44) is used to size the structural 

members. 

Optimum design of the 11540-member frame is performed using the UEBB-BC 

algorithm and the results are given in Table 2. The algorithm is executed until the 

termination condition, which is the maximum number of iterations, i.e. 500, is met. The 

optimization history of the frame is presented in Figure 7. Bearing in mind that a population 

size of  =50 is employed over a maximum number of 500 iterations (ite_max = 500), the 

number of structural analyses performed by the EBB-BC algorithm (without UBS) is equal 

to 25000. However, as presented in Table 2, when UEBB-BC algorithm is employed, it is 

found that only 7616 structural analyses are needed. Here, 17384 unnecessary analyses are 

avoided as a result of employing the UEBB-BC algorithm. The numerical results attained in 

the investigated examples clearly indicate the fruitfulness of integrating the UBS with 



COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF... 

 

253 

modern optimization techniques (e.g. EBB-BC) for computationally efficient optimum 

design of large scale steel frames. 

 

 

(a) 

 

 

               (b)             (c) 
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                 (d) 

Figure 4: 11540-member steel frame, (a) 3-D view (b) side view of frames 2, 3, 4, 6, 7, 8, 10, 

11, 12, B, C, D, F, G, H, J, K and L (c) side view of  frames 1, 5, 9, 13, A, E, I, and M (d) plan 

view 

 

 

Figure 5: Columns’ orientations of 11540-member steel frame 
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Figure 6: Outline of column grouping in plan level for 11540-member steel frame  

 

 

     Figure 7: Optimization history of 11540-member steel frame example 
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Table 2: Optimum design obtained for 11540-member steel frame  

Stories Groups Ready Section Stories Groups Ready Section 

1-2 

CG1* W36X393 

11-12 

CG1 W24X408 

CG2 W40X249 CG2 W33X118 

CG3 W36X393 CG3 W18X234 

CG4 W40X297 CG4 W36X328 

CG5 W44X335 CG5 W30X235 

CG6 W18X258 CG6 W36X170 

CG7 W40X431 CG7 W27X146 

IB* W18X40 IB W40X199 

OB* W21X57 OB W33X291 

BR* W18X211 BR W21X62 

3-4 

CG1 W24X250 

13-14 

CG1 W24X250 

CG2 W40X372 CG2 W33X118 

CG3 W44X262 CG3 W30X191 

CG4 W36X256 CG4 W40X264 

CG5 W40X277 CG5 W21X93 

CG6 W27X258 CG6 W33X241 

CG7 W33X291 CG7 W16X89 

IB W16X26 IB W27X84 

OB W18X40 OB W33X291 

BR W33X130 BR W27X129 

5-6 

CG1 W44X290 

15-16 

CG1 W24X117 

CG2 W18X234 CG2 W24X84 

CG3 W44X335 CG3 W36X256 

CG4 W36X245 CG4 W36X232 

CG5 W33X241 CG5 W16X89 

CG6 W18X258 CG6 W33X130 

CG7 W44X290 CG7 W40X167 

IB W40X174 IB W24X62 

OB W40X199 OB W18X60 

BR W27X94 BR W21X68 

7-8 

CG1 W21X182 

17-18 

CG1 W18X192 

CG2 W33X152 CG2 W24X117 

CG3 W18X175 CG3 W33X118 

CG4 W33X291 CG4 W44X262 

CG5 W27X178 CG5 W44X335 

CG6 W40X199 CG6 W40X297 

CG7 W24X250 CG7 W36X160 

IB W36X135 IB W36X150 

OB W24X68 OB W24X62 

BR W40X174 BR W21X62 

9-10 

CG1 W40X372 

19-20 

CG1 W18X119 

CG2 W33X169 CG2 W33X152 

CG3 W24X250 CG3 W24X76 

CG4 W30X261 CG4 W16X36 

CG5 W24X335 CG5 W16X36 



COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF... 

 

257 

Stories Groups Ready Section Stories Groups Ready Section 

CG6 W27X178 CG6 W18X143 

CG7 W27X448 CG7 W30X108 

IB W24X55 IB W24X55 

OB W40X277 OB W40X167 

BR W27X94 BR W18X40 

Weight (ton)                                                                                       10756.63          

No. analyses required without UBS                                                     25000 

No. analyses performed                                                                        7616 

No. saved analyses                                                                               17384 

     *CG denotes column group with respect to Figure 6, IB: inner beams, OB: outer beams, BR: bracings  

 

6. CONCLUDING REMARKS 

 

An upper bound strategy (UBS) is utilized for computationally efficient optimum design of 

large scale steel frame structures. In order to investigate the efficiency of the strategy, the 

EBB-BC optimization algorithm is integrated with the UBS for optimum design of large 

scale steel frames to AISC-LRFD [10] specifications. Based on the employed UBS, the 

upper bound limit for the net weights of the newly generated candidate solutions is 

dynamically updated, resulting in a considerable reduction in computational cost of the 

optimization process. The numerical results obtained through discrete sizing optimization of 

two large scale steel frames with 3860 and 11540 structural members clearly reveal that the 

UBS is capable of reducing the computational effort required to approach a reasonable 

design in large scale optimization applications. It can be deducted that the UBS integrated 

optimization techniques can be efficiently utilized as alternative methods to the expensive 

high-performance computing techniques; and can pave the way for practical optimum 

design of large scale structures using inexpensive computers.  
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