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ABSTRACT 
 

This paper presents an improved multi-objective group search optimizer (IMGSO) that is 

based on Pareto theory that is designed to handle multi-objective optimization problems. 

The optimizer includes improvements in three areas: the transition-feasible region is used to 

address constraints, the Dealer’s Principle is used to construct the non-dominated set, and 

the producer is updated using a tabu search and a crowded distance operator. Two objective 

optimization problems, the minimum weight and maximum fundamental frequency, of four 

truss structures were optimized using the IMGSO. The results show that IMGSO rapidly 

generates the non-dominated set and is able to handle constraints. The Pareto front of the 

solutions from IMGSO is clearly dominant and has good diversity. 
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1. INTRODUCTION 
 

In recent years, dynamic optimization, such as optimizing the properties of structural systems 

[1], has
 
been used in structural engineering to efficiently control the dynamic response of 

structures. The main studies of structural dynamic optimization have focused on dynamic 

property optimization [2-4] and dynamic response optimization [5, 6]. In optimizing the 
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dynamic properties of a structural design, researchers primarily consider the stiffness, classical 

damping, weight, natural frequencies and modes of the system as constraints or objectives. 

Many studies have considered the natural frequencies of a building as constraints or objectives; 

such buildings contain trusses, frames, shells and beams, which have simple constructions and 

clear interactions between elements [4, 7]. Dynamic response optimization considers factors 

such as the amplitude of vibration, velocity, acceleration, and stress and strain. Dynamic 

response optimization is more difficult than dynamic property optimization because the 

objective functions are more complex. 

Multi-objective optimization problems [8], whose solutions have to be searched for in 

feasible regions of designs for all fitness functions and constraints, are much more similar to 

practical engineering problems. A multi-objective optimization problem can be solved by 

converting it to a single-objective problem; however, because the solving method has strict 

demands on the fitness functions, it cannot efficiently be used for practical engineering. Many 

efficient multi-objective algorithms based on Pareto-optimal fronts have emerged in recent 

years; among these, genetic algorithms [9-11] and particle swarm optimizers [12-14] for multi-

objective optimization have been studied by many researchers and are utilized widely. The 

deficiencies of genetic algorithms are their low search efficiencies, slow convergence speeds 

and their tendency to fall into locally optimal solutions. The disadvantage of the particle swarm 

optimizer is that it is time consuming because of its search strategy. The group search optimizer 

(GSO) [15, 16], which is inspired by the behavior of animals, has been successfully applied to 

optimal structural design [17-19]. In particular, the multi-objective group search optimizer 

(MGSO), which is based on GSO, has been used to solve optimization problems with multiple 

objectives. However, research has mostly focused on static property optimization, and dynamic 

optimization can be improved greatly. 

The aim of this paper is to propose an improved multi-objective group search optimizer 

(IMGSO) that is based on MGSO and can be used for structural multi-objective optimization. 

The first natural frequency (fundamental frequency) and the weight of the structure are 

considered as the two main objectives of the optimization. This paper analyzes the capability 

and applicability of IMGSO for the multi-objective dynamic optimization of truss structures. 

 

 

2. GROUP SEARCH OPTIMIZER (GSO) 
 

The group search optimizer (GSO), which is based on the producer-scrounger model 

proposed by biologists, contains three searching group members, the producer, scrounger 

and ranger, and each member has different functions [15]. The producer and scroungers are 

the key members for searching and are the basis of the producer-scrounger model, while the 

ranger is used in GSO to avoid entrapment in locally optimal solutions and performs random 

walks around the entire search region. The producer is the individual with the best fitness 

value (under the current conditions). At the end of each iteration, the GSO program chooses 

one individual as the producer based on the best fitness value. Scroungers then join the 

resource found by the producer to randomly find a better solution around the producer. 

Finally, rangers move over the entire search space. 

In an n-dimensional search space, the ith member in the kth iteration has a current 

position 
k n

iX R , a head angle 
1

1 ( 1)( ,..., )k k k n

i i i n R   

   and a direction 
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1( ) ( ,..., )k k k k n

i i i inD d d R   . In each interaction, each member in the group performs in the 

following manner. 

The producer scans at zero degrees and then scans laterally by randomly sampling three 

points in the scanning field at zero degrees, the left side and the right side according to 

equations (1), (2) and (3), respectively. The scroungers follow the producer and walk toward 

it randomly according to equation (4). Rangers move over the search space randomly. If the 

ith member in the kth iteration is chosen as a ranger, it will choose a random head angle and 

distance based on equations (5) and (6), respectively, and walk toward the new position 

based on equation (7). 

 

1 max ( )k k k

z p pX X rl D  
 

(1) 

1 max 2 max( / 2)k k k

l p pX X rl D r   
 

(2) 

1 max 2 max( / 2)k k k

r p pX X rl D r   
 

(3) 

1

3( )k k k k

i i p iX X r X X   
 

(4) 

1

2 max

k k r    
 

(5) 

1 maxil a r l 
 (6) 

1 1( )k k k k

i i i iX X l D   
 

(7) 

 

Where 
1

1r R  is a normally distributed random number with a mean of 0 and a standard 

deviation of 1; 
1

2

nr R   is a random sequence in the range (0, 1), and 3

nr R  is a uniform 

random sequence in the range (0, 1). 

An essential difference between multi-objective optimal problems and single-objective 

optimal problems is that a result of the former is a set of solutions or groups of sets, while 

the result of the latter is one solution or one set of solutions. However, the successful 

implementation of GSO to solve a single-objective optimal problem [14, 15] does not 

necessarily illustrate its effectiveness for multi-objective optimal problems. 

 

 

3. MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER (MGSO) 
 

The multi-objective group search optimizer (MGSO) proposed by Li et al. [20] is based on 

the GSO. The major difference between MGSO and GSO is the comparison rule of the 

fitness values. MGSO sorts each member to generate the non-dominated set by the 

members’ non-dominated ranks and crowded distance and then chooses a member from the 

non-dominated set as a producer in each interaction. The merits and demerits of MGSO are 

as follows: 

1. The crowded-comparison operator [11] is used to simply and conveniently guide 

members in each interaction to obtain uniformly-spread Pareto optimal front solutions. 

However, this ability of the operator declines gradually after each interaction, so suitable 

operators should be considered during the rest interactions and especially approaching the 
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maximum interaction. 

2. MGSO chooses the member with an infinite crowding distance as the producer, which 

is normally distributed at the two ends of the Pareto front. The advantages of doing this are 

that it is easy to converge to a widely spread-out but non-uniform Pareto front. However, the 

disadvantages are that non-dominate solutions concentrate near the extreme solutions and 

thus form a non-uniform distribution of non-dominate solutions. 

3. To handle the given constraints, MGSO uses a method of multiplication by a large 

number. Whenever a member violates the constraints, its fitness values are assigned to inf or 

zero for the maximum or minimum optimal problem, respectively. The feasible solutions 

dominate the infeasible solutions. Thus, all of the infeasible solutions are ignored, including 

the infeasible solutions that are close to boundaries, but they may be useful. 

4. Repeated comparisons, or comparing non-dominated members generated at every 

interaction, is used by MGSO to update the non-dominated external archive or the Pareto 

non-dominated set. Consequently, the required computational time is increased. 

 

 

4. IMPROVED MULTI-OBJECTIVE GROUP SEARCH OPTIMIZER 

(IMGSO) 
 

This paper describes three improvements to MGSO: choosing the producer, handling 

constraints and updating the non-dominated external archive. 

 

4.1 Transition-feasible region 

Handling constraint suitably is a technical aspect of solving constrained optimization 

problems. In the literature of constrained optimization problems, optimal solutions are 

always distributed near or on the constrained boundary. If this condition is not true, then the 

constraints do not work or do not work efficiently. Under this condition, the results are not 

closely related to the constraints. For some problems, the fitness value of an infeasible 

solution may be better than that of the feasible solution. In fact, the feasible solution, which 

lies around an infeasible solution near the feasible region, exists even if the researcher does 

not have enough information to find it. Consequently, it is more practical and convenient to 

search for a globally optimal solution using information about an infeasible solution than by 

comparing feasible solutions; this is especially true for algorithms that are based on GSO. 

Based on the analysis presented above, an improved GSO with the transition-feasible region 

is presented and is shown in Fig. 1. 

Definition 1: The distance [21] between an arbitrary point x and the feasible region F is 

defined as 

 

mixkFxd
m

i

i ,,2,1)}(,0max{),(
1


  

(8) 

 

where )(xki  is the ith constraint function; whenever point x satisfies this function, then 

0)( xki  or 0)( xki . Obviously, the relationship between point x and the feasible region F is 
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the same as the following expression: 
FxotherwiseFxthenFxdIf  0),(  

 

 
Figure 1. The transition-feasible region 

 

Definition 2: For a given positive constant  ( R ), region H, which satisfies 

 ),(0 Fxd , is the transition-feasible region, and   is called the transition-feasible width. 

Solutions that are distributed in the region H are defined as the transition-feasible solutions. 

The transition-feasible solutions can be chosen by the objective function or by 

comparison of Pareto dominance together with the feasible fitness values. The main use of 

the transition-feasible region is to ensure that the producer is chosen from either the feasible 

or transition-feasible region. For a producer that controls the iteration direction of GSO, the 

producer assures the correctness of the evolutionary direction. The analysis presented above 

concludes as follows: (1) in the case of a feasible region that is much smaller than the entire 

search space, it is faster to use the transition-feasible solutions to search for feasible 

solutions in separate directions and is easy to converge to the Pareto front, especially for 

transition-feasible solutions with lower ),( Fxd ; (2) the transition-feasible solutions may 

help to find the globally optimal solution if the true Pareto-optimal front is near the feasible 

boundary. 

Due to the infeasibility of transition-feasible solutions, the Pareto non-dominated set will 

be infeasible when transition-feasible solutions are included. A measure that can filter 

transition-feasible solutions out of the external elite set is taken whenever the interaction 

reaches certain points, which can make full use of the transition-feasible information. On 

the other hand, the final solutions, which are filtered several times, are all feasible and are 

distributed uniformly. 

 

4.2 Building a non-dominated set using the Dealer’s Principle 

Most of the studies on multi-objective optimal design are based on Pareto-optimal solutions. 

The non-dominated set is adjusted by repeatedly maintaining and updating it to achieve the 
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true Pareto-optimal front. Within the non-dominated set, the best members are evaluated by 

the crowded-comparison operator of Pareto. The non-dominated set is a locally optimal set 

before converging. The main procedure of multi-objective algorithm convergence can be 

summarized as follows: (1) randomly generate the initial members; (2) construct or update 

all of the members of the non-dominated set based on the crowded-comparison operator [8]; 

(3) generate the new members in each iteration using the evolutionary mechanism; (4) 

combine the new members and old members; (5) repeat steps (2) to (4) until the 

convergence criterion is met. Thus, the critical technique of Pareto-optimal set construction 

is step (2). The procedure described in this paper replaces the crowded-comparison operator 

with the Dealer’s Principle [22] to reduce the computational time. 

The Dealer’s Principle is a non-backtracking method. New non-dominated solutions are 

only generated by the current generation; a comparison of the current generation with the 

current non-dominated set is not needed. The current generation is copied to a temporary set 

Q before adding any new non-dominated members. A dealer, which is randomly chosen 

from Q and deleted from Q at the same time, will compare the remaining members in Q 

based on the domination relationship. If the dealer dominates some members in the current 

Q, those members will be canceled; if the dealer is not dominated, it will join the non-

dominated set. These operations repeat until Q is empty. The procedure of generating the 

non-dominated set for the current generation P can be summarized as follows: 

Construct a temporary set Q; originally, Q=P. Initialize the non-dominated set NDSet; 

originally, NDSet=Ø; 

Choose a member X from Q, modify Q as Q=Q-{X}, and reset the dominated set 

DSet=Ø； 

Make },{ QYYXYDSetDSet   ; 

Make Q=Q-DSet; if Z Q   is untrue, then Z X , { }NDSet NDSet X ; 

Repeat steps (2) to (4) until Q is empty. 

 

4.3 Selection of the producer 

The members of the non-dominated external archive are candidates for the producer (the 

global best individual). The producer is chosen from the archive and has great influence on 

the updating of the generation, the solution’s diversity and the globally optimum 

convergence. It is important to utilize a reasonable method to choose the producer, which 

will guide the entire evolutionary direction, determine a much better spread of solutions and 

ultimately obtain better convergence near the true Pareto-optimal front. 

In this paper, a producer is selected using a hybrid mechanism that consists of a tabu 

search and a crowded distance operator. In the earlier interaction, members with inf 

crowding distances are selected from the non-dominated external archive to play the role as 

producer and extend the diversity of the archive. The archive then gradually becomes 

spread-out and uniform but is not close enough to the true Pareto-optimal front. A tabu 

search is utilized in the latter interaction. 

The memory function of the tabu search is performed using a tabu list, which records the 

members chosen as producers when the latter interaction begins. An essential point is that 

whenever a member is selected as a producer candidate, the member will not be selected 
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again in later interactions; thus, the producers will not be the same at any one time. Because 

of its stochastic nature, an intelligent algorithm may converge to the local optimum. To 

prevent this from happening, the producer performs a novel evolutionary direction and leads 

the generation to a search space that has not been used before. This provides more equal 

opportunities for all of the members in the non-dominated external archive to be chosen and 

keeps the External Elite Set (EES), which is trimmed by the non-dominated external 

archive, much closer to the true Pareto-optimal front in each interaction. 

 

4.4 External Elite Set 

In the multi-objective optimal problem, because the true Pareto-optimal front may be 

extensive and have an infinite number of members, it is unnecessary to present all non-

dominated solutions. A reasonable way is to collect representative members into the EES, 

which is an external archive with a maximum capacity of N. These members have excellent 

convergence, uniformity and diversity. The members from the non-dominated external 

archive are inserted into the EES based on their traits in each interaction. By continually 

maintaining and updating the EES, the last EES is the final optimal solution set. 

The EES converges to the true Pareto-optimal front by eliminating dominated solutions 

in EES based on the dominated relationship of the Pareto solutions. Several general methods 

[13] can fulfill this requirement, including information entropy, adaptive grid and crowding-

distance calculation methods. This study adopted the crowding-distance calculation method 

to maintain the EES. As shown in Fig. 2, members with smaller crowding distances have 

greater crowding densities. 

 

n

1

f1

f2

i-1

i+1

i

 
Figure 2. Diagram of crowding distance 

 

As shown in Fig. 2, f1 and f2 are two objectives of the problem. The crowding distance of 

the ith member is half the perimeter of the rectangle. Suppose cedisiP tan][  is the crowding 

distance of the ith member, and miP ].[  is the fitness value of member i for objective m. 

Then: 
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)].1[].1[()].1[].1[(][ 2211tan fiPfiPfiPfiPiP cedis 
 (9) 

 

Generally, for r objectives, the crowding distance of the ith member can be expressed as: 

 





r

k

kkcedis fiPfiPiP
1

tan )].1[].1[(][

 
(10) 

 

A greater distance of a member from its surrounding members means it has a lower 

crowding density and vice versa. The use of the crowding distance can be summarized as: 

Determine the maximum capacity n for EES; 

For every EES member i, initialize its crowding distance as 0][ tan cedisiP ; 

Sort the mth fitness value of the ith member by their fitness values in ascending order, 

namely ),( misortI  ; 

The distance of the members, especially the first and the last in the order sorted in step 

(3), is set to infinity; namely  cediscedis nPP tantan ][]1[ ; 

For the members that are from 2nd to (n-1)th in order, the crowding distance is 

calculated by (11) as: 

 

minmaxtantan

].1[].1[
][][

mm

cediscedis
ff

miPmiP
iPiP






 
(11) 

 

(6)Return to step (3) and repeat until the crowding distance calculations are complete for 

all members. 

 

4.5 Improved multi-objective group search optimizer (IMGSO) 

IMGSO utilizes the EES to store the non-dominated set, uses the transition-feasible region 

to handle constraints and sets a feasible filter to ensure that the final Pareto-optimal 

solutions are feasible. Adoption of the Dealer’s Principle reduces the comparative frequency 

and enhances the efficiency with less computational time. The hybrid mechanism that 

combines a tabu search and the crowded distance operator is a reasonable method to choose 

the producer, which allows the generation to evolve in the latter interactions and improves 

the diversity. 

IMGSO includes three different groups: the searching group based on GSO, the non-

dominated set in each interaction and the EES, which reserves excellent members. The 

operations and relationships between the three groups are shown in Fig. 3. 

When the procedure starts running, it initializes the population randomly and constructs 

the current non-dominated set based on the current population. It should be noted that the 

non-dominated set includes members that are generated by the current population based on 

Pareto dominance. The EES is a limited set that includes excellent members or 

representative members from the non-dominated set. To attain a uniformly spread-out EES, 

members of the non-dominated set are inserted into the EES to maintain and update it. At 

the end of the procedure, the EES is output. As mentioned previously, the members of the 
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EES are chosen as producers using a reasonable measure, and the producer will then guide 

the population to evolve in the next interaction. 

 

 
Figure 3. Relationships between three groups of IMGSO 

 

4.6 IMGSO optimization procedure 

Based on the technique described above, the IMGSO process can be described as follows: 

I. Initialize the positions and head angles of all of the members randomly. 

II. Determine the transition-feasible width  ; evaluate the fitness function of the current 

population; construct the non-dominated set by Pareto dominance; calculate the crowding 

distance and sort members in a certain order; select members as producers by the greatest 

crowding distance. 

III. Build an external non-dominated set and an EES to manage the non-dominated 

solutions. The maximum capacities of the external non-dominated set and the EES are inf 

and M, respectively. The former stores all of the non-dominated solutions, while the latter 

stores the best solutions as M. 

IV. Producer’s search behavior: 

1. First scan at zero degrees; then, three points at zero degrees, the left side and right side 

are checked using equations (1), (2) and (3), respectively; 

2. Check if any dimensions cross the boundary of the variables, then replace the bad 

dimensions by the primary dimension of the producer (fly-back mechanism); 

3. Compare the three new positions with the primary position based on Pareto dominance; 

eliminate the dominated positions and keep the non-dominated positions. 

Scrounger’s search behavior: 80% of the rest group members are randomly selected as 

scroungers. The scroungers will conduct a uniform search around the producer using 

equation (4). 

Ranger’s search behavior: the remaining group members are introduced as rangers, 
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which walk randomly in the search space. First, generate a random head angle using 

equation (5), then choose a random distance from the Gaussian distribution using equation 

(6), and finally move to the new point using equation (7). 

V. Check all of the members to determine if any dimension crosses the boundary of the 

variables, then replace the bad dimension based on the fly-back mechanism. 

VI. Evaluate the fitness functions for the current group members, reconstruct the non-

dominated set and maintain the EES, and choose a new producer based on the method 

described in section 3.3. 

VII. Stop the procedure if the stopping criterion is fulfilled; otherwise go to step (iv). 

 

 

5. MATHEMATICAL MODEL AND NUMERICAL EXAMPLES 
 

5.1 Multi-objective dynamic performance optimization problem 

The variables of the multi-objective dynamic properties for truss structures are the frame 

sections. The multi-objective problem considers the minimum weight and the maximum 

fundamental frequency. The constraints of the problem are based on the frame stress and the 

joint displacement. The mathematical model is shown as: 
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(12) 

 

where f1 and f2 are two objective functions; W is the weight of the structure; is the 

fundamental frequency;
T

mAAAA ],,,[ 21   represents m variables of the frame section 

area with either continuous variables or discrete variables;
T

nc
XXXX ],,,[ 21 

 represents 

cn
 variables of the joint displacement, which are continuous variables; ),( XAgn are Gn  

deterministic constraints of stress and displacement; },,,{ 21 enSSSS   is a given set of 

discrete values for the section area; 
min

kX  and 
max

kX  are the lower and upper bounds, 

respectively; and i  and iL  are the density and the length of the frame elements, 

respectively. 

In this study, the structural analysis is performed using Matlab and ANSYS. The main 

optimization process is written in Matlab, and the static analysis and calculations of the 

natural frequencies are performed by functions in ANSYS. 
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5.2 Numerical examples 

1. The 10-bar plane truss structure 

The 10-bar plane truss structure is shown in Fig. 4. Specific details about the geometry, 

material and load case can be found in reference [4]. The design variables are the frame 

section areas, which are discrete variables. Stress and displacement are considered as 

constraints. The maximum capacity of the EES is 30, the size of the population is 300, and 

the transition-feasible width   is one-tenth of the allowable stress. IMGSO and MGSO [4] 

perform 50 iterations and 100 iterations, respectively. The solutions are shown in Fig. 5 and 

Fig. 6. 

 

 
Figure. 4 The 10-bar plane truss structure 

 

200 300 400 500 600 700 800 900 1000 1100

550

600

650

700

750

800

850

900

950

IMGSO

MGSO [4]

F
u
n
d
a
m
e
n
t
a
l
 
f
r
e
q
u
e
n
c
y
 

/ 
ra

d·
s
-
1

Total weight/kg

 
Figure. 5 Results of the EES after 50 iterations 

 

As shown in Fig. 5, the non-dominated set of IMGSO almost always dominates that of 

MGSO; this dominance is clear in the middle of the non-dominated set and illustrates that 
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the selection of the producer works effectively in the earlier interactions. The EES of 

IMGSO is more uniform than that of MGSO. However, the uneven curves indicate that it 

may converge to a better Pareto-optimal curve by continuously maintaining the EES based 

on the measure presented in this paper. 

The extreme solution of IMGSO after 50 interactions for (maxW, max  ) is (1003.1181 

kg, 902.4423 rad/s), and the extreme solution for (minW, min  ) is (293.6646 kg, 578.4806 

rad/s). The ranges of the weight and the fundamental frequency are 293.6646 

kg≤W≤1003.1181 kg and 578.4806 rad/s≤ ≤902.4423 rad/s, respectively. 
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Figure. 6 Results of the EES after 100 iterations 

 

Fig. 6 shows that the non-dominated set of IMGSO completely dominates that of MGSO 

after 100 interactions. The dominance is superior to that shown in Fig. 5 and is improved 

even for solutions near the extreme solutions. It should be noted that the search ability of 

IMGSO is still effective in the latter interactions. IMGSO is effective in dealing with the 

constraints. The mechanism that handles constraints also demonstrates that the transition-

feasible region helps to find better non-dominated solutions. 

The extreme solution of IMGSO after 100 interactions for (maxW, max  ) is (881.6371 

kg, 923.3845 rad/s), and the extreme solution for (minW, min ) is (285.4306 kg, 636.0439 

rad/s). The ranges of the weight and the fundamental frequency are 285.4306 

kg≤W≤881.6371 kg and 636.0439 rad/s≤ ≤923.3845 rad/s, respectively. Fig. 5 and Fig. 6 

show that the range of 100 interactions is larger than that of 50 interactions; this is because 

the former is closer to the true Pareto-optimal front than the latter is. The range of solutions 

of the former represents the range of the true Pareto-optimal front. 

The result of IMGSO, which is better than that of MGSO, illustrates the advantage of 

IMGSO in dynamic performance optimizations. Unlike the single-objective optimization 

algorithm, the multi-objective optimization algorithm searches the non-dominated set for 
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the minimum weight and the maximum frequency, which provides more possible solutions 

as a compromise for the final design scheme. 

2. The 40-bar plane truss structure 

The 40-bar plane truss structure is shown in Figure 7. Specific details about the 

geometry, material and load case can be found in reference [4]. Because of the large number 

of design variables, the maximum capacity of the EES is inf, which means that the EES is 

the same as the non-dominated set. The size of the population is 300, and the transition-

feasible width   is the sum of one-tenth of the allowable stress and one-fifth of the 

allowable displacement. Both IMGSO and MGSO [4] perform 50 iterations. The optimal 

results are shown in Fig. 8. 

 

 
Figure. 7 The 40-bar plane truss structure 
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Figure. 8 Results of the EES after 50 iterations 

 

As shown in Fig. 8, the non-dominated set of IMGSO completely dominates that of 

MGSO after 50 interactions, and IMGSO attains 34 non-dominated solutions, while MGSO 
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attains 21. MGSO utilizes a death penalty to handle constraints. If a member violates the 

constraints, its fitness values will be assigned to inf, which ignores any available 

information from infeasible solutions. However, IMGSO reuses these infeasible solutions by 

introducing the transition-feasible region and thus attains more feasible solutions than 

MGSO does. 

Reference [4] did not provide the result of 100 interactions. When MGSO was used to 

run 100 interactions in reference [4], there was no apparent improvement of the results, 

which illustrates that MGSO is not practical for solving complex multi-constraint 

optimization problems. Figure 8 shows that the non-dominated set of IMGSO is complex 

and that the curve is uneven after 50 interactions. It should be noted that the non-dominated 

set is still far from the true Pareto-optimal front. The optimal results of IMGSO after 100 

and 50 interactions are shown in Fig. 9.  
 

Figure 9. Comparison of the results of the EES after 100 iterations and 50 iterations 

 

Fig. 9 shows that the non-dominated set of IMGSO after 100 interactions dominates the 

set after 50 interactions. The former obtains 69 non-dominated solutions, and the latter 

obtains 34. The non-dominated set approaches the true Pareto-optimal front as the number 

of interactions increases. The non-dominated curve, which is composed of the discrete 

solutions, is uniform and smooth after 100 interactions, which indicates that the solution is 

much closer to the true Pareto-optimal front 

The extreme solution of IMGSO after 100 interactions for (maxW, max  ) is (8927.3265 

kg, 226.5194 rad/s), and the extreme solution for (minW, min  ) is (4090.5623 kg, 

135.5479 rad/s). The ranges of the weight and the fundamental frequency are 4090.5623 

kg≤W≤8927.3265 kg and 135.5479 rad/s≤ ≤226.5194 rad/s, respectively. A compromise 
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solution based on the Euclidean distance is chosen as (5222.1442 kg, 177.5935 rad/s). 

3. The 15-bar spatial truss structure 

The 15-bar spatial truss structure is shown in Fig. 10. Specific details about the 

geometry, material and load case can be found in reference [4]. The size of the population is 

300, and the maximum capacity of the EES is inf. The IMGSO and MGSO [4] perform 50 

and 100 iterations, respectively. The results are shown in Figs. 11 and 12. 

 

 
Figure. 10 The 15-bar spatial truss structure 
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Figure. 11 Results of the Pareto front after 50 iterations 
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Figure. 12 Results of the Pareto front after 100 iterations 

 

As shown in Fig. 11 and Fig. 12, the non-dominated sets of IMGSO dominate those of 

MGSO after 50 and 100 interactions, respectively. The dominance of IMGSO improves 

after 100 interactions. IMGSO attains 140 non-dominated solutions, which is slightly more 

than the 122 attained by MGSO. The advantage of IMGSO is clear in the earlier 

interactions. However, the effectiveness of the constraint handling is not as apparent. This 

case demonstrates that the superiority of IMGSO in dynamic property optimization will 

improve when the number of interactions increases. 

4. The 25-bar spatial truss structure 

The 25-bar spatial truss structure is shown in Fig. 13. Specific details about the 

geometry, material and load case can be found in reference [4]. The size of the population is 

300, and the maximum capacity of EES is inf. The IMGSO and MGSO [4] perform 50 and 

100 iterations, respectively. The results are shown in Figs. 14 and 15. 

 

 
Figure 13. The 25-bar spatial truss structure 



DYNAMIC PERFORMANCE OPTIMIZATION OF TRUSS STRUCTURES BASED... 

 

203 

60 80 100 120 140 160 180 200 220 240

300

350

400

450

500

550

600

650

 IMGSO

 MGSO [4]

F
u
n
d
a
m
e
n
t
a
l
 
f
r
e
q
u
e
n
c
y
 

/ 
r
ad

·
s
-
1

Total weight / kg

 
Figure 14. Results of the Pareto front after 50 iterations 
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Figure 15. Results of the Pareto front after 100 iterations 

 

As shown in Fig. 14 and Fig. 15, the non-dominated sets of IMGSO completely dominate 

those of MGSO after 50 interactions and 100 interactions, respectively. The superiority of 

IMGSO shown in Fig. 15 is not as good as that shown in Fig. 14. Its dominance is still 

apparent after 100 interactions, and IMGSO attains 48 non-dominated solutions, while 

MGSO attains 46 solutions. Fig. 15 shows that the non-dominated curve is not smooth, 

which indicates that IMGSO has the potential for further evolution. The result after 200 

interactions is shown in Fig. 16. 
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Figure16. Results of the Pareto front after 200 iterations 

 

As shown in Fig. 16, the non-dominated solutions of IMGSO can form smooth and 

uniform curves. Although the superiority decreases, it is obvious that the non-dominated 

curve of IMGSO dominates that of MGSO. The number of non-dominated solutions of 

IMGSO is greater than that of MGSO. 
 

 

6. CONCLUSIONS 

 

Four truss structures were examined for multi-objective optimization of the minimum 

weight and maximum fundamental frequency. The results of the optimizations show that 

IMGSO is a rapid search algorithm that finds non-dominated solutions using fewer 

generations than other methods. IMGSO shows clear dominance over MGSO after 50 

interactions and has a good distribution, which demonstrates the effectiveness and 

superiority of IMGSO in handling constraints. Based on examples of two plane truss 

structures and two spatial truss structures, IMGSO is better in dealing with multi-

dimensional variables and multiple constraints when solving complex problems. The results 

show that IMGSO is an efficient, practical multi-objective optimizer for the structural 

optimization of trusses.  
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