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ABSTRACT 
 

This paper is concerned with the determination of optimal sensor locations for structural 

modal identification in a strap-braced cold formed steel frame based on an improved genetic 

algorithm (IGA). Six different optimal sensor placement performance indices have been 

taken as the fitness functions; two based on modal assurance criterion (MAC), two based on 

maximization of the determinant of a Fisher information matrix (FIM), one aim on the 

maximization of the modal energy and the last is a combination of two aforementioned 

indices. The decimal two-dimension array coding method instead of binary coding method 

is applied to code the solution. Forced mutation operator is applied whenever the identical 

genes produce via the crossover procedure. An improvement is also introduced to mutation 

operator of the IGA. A verified computational simulation of a strap-braced cold formed 

steel frame model has been implemented to demonstrate the effectiveness and application of 

the proposed method. The obtained optimal sensor placements using IGA are compared 

with those gained by the conventional methods based on several criteria such as norms of 

FIM and minimum in off-diagonal terms of MAC. The results showed that the proposed 

IGA can provide sensor locations as well as the conventional methods. More important, 

based on the criteria, four of the six fitness functions, can identify the vibration 

characteristics of the frame model accurately. It is shown through the example that in 

comparison with the MAC-based performance indices, the use of the FIM-based fitness 

functions results in more acceptable and reasonable configurations. 
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1. INTRODUCTION 
 

Parameter identification is a main part of health monitoring, model updating and control of 

structures. Modal parameters, consisting of mode shapes and modal frequencies, are kind of 

structural parameters which can used to describe the dynamic behavior of a structural 

system. In order to investigate the modal parameters of a structure accurately, selection of 

target modes and sensor placements are the main important factors. In particular, the 

robustness of modal parameter identification strongly depends on the robustness of the 

measured vibration data, which are dependent on the locations of sensors in the structure 

[1]. Therefore determining the optimal sensor placement (OSP) has a key role in an accurate 

modal parameter identification process. OSP process provides the condition under which 

modes can be clearly identified with the most valuable information [2]. 

In the past two decades, various techniques and criteria have been developed for OSP of 

the structures. In most cases, an optimal configuration is one which provides the best 

observability and distinguishability for the identified target modes [3]. For example, 

approaches based on maximization of the determinant of the Fisher information matrix 

(FIM) [4, 5] and minimization of the off-diagonal terms of the modal assurance criterion 

(MAC) matrix [6]. One of the most common OSP methods called the effective 

independence (EFI) method used for the structural modal identification was developed by 

Kammer in 1991 [4]. The method starts with a relative large candidate set for sensor places, 

ranks all the candidate places based on their contributions to the determinant of a FIM, and 

then removes the lowest ranked candidate. The new reduced candidate sensor set is then re-

ranked and the place with the lowest rank is again eliminated. This process continues until 

the initial candidate set is reduced to the certain number of sensors. Cherng accelerated the 

optimization process by a backward deletion algorithm [2]. Kammer also presented a 

method iteratively expands an initial set of sensors instead of iteratively reducing a large 

candidate set for triaxial sensor set selection [7]. Li and Fritzen [8] addressed the connection 

between EFI and modal kinetic energy (MKE) methods for sensor placement. Li et al. [9] 

proposed an extension of the minMAC algorithm to aid sensor placement for modal tests. 

Tang and Li [10] presented a method based on the uniform design theory to optimize sensor 

locations for structural vibration measurements. Cherng [2] used signal subspace correlation 

to optimize the sensor placement for modal identification. Papadimitriou [1] used the 

information entropy as the performance measure of a sensor configuration. He also 

developed appropriate information entropy indices as the optimality criteria for pareto 

optimal sensor configurations for multiple model classes [11]. 

In recent years, computational intelligence methods have been applied for OSP of the 

structures. One example is genetic algorithm (GA) based on the theory of biological 

evolution [12]. GA has been an effective alternative to the previous heuristic algorithms 

which are not guaranteed to give the optimal result for the problem of sensor placement. 

Yao et al. [12] took GA as an alternative to the EFI method with the determinant of the FIM 

as the fitness function. Papadimitriou and Beck [13] used a GA to minimize the entropy 

measure as the optimality criterion over the set of possible sensor configurations. 

Vosoughifar et al. [14, 15] used GA for the optimal sensor placement of two different 

systems, i.e. light steel frame system and steel structure with unbonded braced frame system 
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to identify the dynamic parameters of the systems. Although GA has been proved to be a 

powerful tool for OSP, it still has some faults need to be improved [12, 16, 17 and 18]. 

When GA is applied to OSP, the general crossover and mutation operators may produce 

generations which don’t satisfy the constraints [3]. Different genetic operators, such as force 

mutation [12], filter operator [16] and Partially Matched Crossover [17], have been 

presented to improve these defects. Some researches have been made to improve GA by 

another artificial intelligence method. For example, Javadi et al. [18] presented a hybrid 

intelligent GA which was based on a combination of neural network and GA. Hwang and 

He [19] used simulated annealing and adaptive mechanism to improve the convergence 

speed and to insure the solution quality. In order to improve the convergence speed and 

avoid premature convergence, virus evolutionary theory [20-24] was introduced into 

partheno-genetic algorithm. There are also some attempts to use GA for the OSP problems 

with some improvements. For example, Liu et al. [25] introduced an improved genetic 

algorithm to find the optimal placement of sensors and proposed to code the solution by the 

decimal two-dimension array coding method instead of binary coding method. The results 

of a computational simulation of a 12-bay plain truss model showed that proposed GA could 

enlarge the genes storage and improve the convergence of the algorithm. Kang et al. [3] 

introduced virus coevolution partheno-genetic algorithms which combined a partheno-

genetic algorithm with virus evolutionary theory to place sensors optimally on a large space 

structure for the purpose of modal identification. YI et al. [26] proposed generalized genetic 

algorithm to find the optimal placement of sensors for the tallest building in the north of the 

China. The dual-structure coding method instead of binary coding method was proposed to 

code the solution, which could improve the convergence of the algorithm and get the better 

placement scheme. Yi et al. [27] presented a hybrid method based on multiple 

optimizations. The initial sensor placement was firstly obtained by the QR factorization. 

Then, using the minimization of the off-diagonal elements in the MAC, the quantity of the 

sensors was determined by the forward and backward sequential sensor placement algorithm 

together. Finally, the locations of the sensor were determined by the dual-structure coding-

based generalized genetic algorithm. 

The research presented in this paper applied an improved genetic algorithm (IGA) to find 

the best solution for the problem of placing certain numbers of sensors for modal 

identification of a strap-braced cold formed steel (CFS) frame. The layout of the paper is as 

follows: Section 2; gives the basic theory of the IGA including the selection of the fitness 

functions, the presented coding system, genetic operators and convergence criteria. Section 

3 describes the computational simulation using a strap-braced cold formed steel frame 

model; The result of presented optimization strategy is demonstrated and compared with the 

results obtained by three conventional methods effective independence (EFI), effective 

independence-driving point residue (EFI-DPR) and minMAC, in Section 3. Different 

evaluation criteria are applied to assess the results obtained by aforementioned methods in 

Section 4. Finally, in Section 5, based on the results, the appropriate methods for OSP of the 

CFS frame are proposed and the optimal configurations of sensors are presented. 
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2. IMPROVED GENETIC ALGORITHM 
 

Genetic algorithm is an optimization technique based on the principles of natural selection 

and genetics. A GA allows a population composed of many individuals to evolve under 

specified selection rules to a state that maximizes the fitness function [28]. The method was 

developed by John Holland in 1975 [29] and finally popularized by David Goldberg in 1989 

[30]. Since then, many versions of evolutionary programming have been tried with varying 

degrees of success. The GA process is initiated by defining the optimization variables and 

the fitness function. It continues by creation of an initial population from input variables, 

either heuristically or randomly. Then the initial population is encouraged to evolve over 

generations to produce new designs, which are better or fitter. The quality or fitness of the 

designs is evaluated according to the fitness function. Finally, it ends by testing for 

convergence. 

However GA has been proved to be a powerful tool for OSP, there are still some 

shortcomings which decrease the efficiency of the method. For example, when GA is used 

for OSP problem, the general crossover and mutation operators may generate chromosomes 

that do not satisfy the constraints. One location may be occupied by two or more sensors 

causing the number of sensors to become less than the desired certain number. Therefore, 

some improvements are implemented to GA in the frame of improved genetic algorithm 

(IGA) to overcome these difficulties. 

 

2.1 Defining variables 

The IGA process is initiated by defining the input variables to be optimized. To apply IGA 

to the OSP for modal identification of the CFS frame, input variables are defined as the 

possible degrees of freedom (DOFs) for sensor locations. Each DOF with this ability is 

represented as an integer (the "gene"). If there are m sensors to be placed in the total s 

degrees of freedom, therefore m genes are concentrated into an integer string (the " 

chromosome") with the coding length of m. Each value of the string is the number of DOF 

on which the sensor is located. Each chromosome represents a possible set of DOFs for 

sensor locations. For example in a system which is needed to have five sensors in optimal 

locations, the chromosome of "3 5 6 10 14" means that five sensors located on 3rd, 5th, 6th, 

10th, and 14th DOFs (the " genes") of the structure. Several chromosomes in a matrix make 

a "population". At the first generation of IGA, initial population is produced randomly or 

heuristically but in the next generations, it is reproduced by IGA operators. If the size of the 

initial population of individuals is k, then the population is formed as Table 1:  

 
Table 1: The decimal two- dimension array coding system for m=8. 

p
o

p
u

la
ti

o
n

 No of gene: 1 2 3 4 5 6 7 8 

chromosome 1: 11 12 53 54 116 117 158 159 

chromosome 2: 13 15 61 72 100 121 154 160 

.... ... ... ... ... ... ... ... ... 

chromosome k: 10 13 54 63 109 131 159 166 
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in which the number of sensors m is 8 and the total DOFs s is 168 in this paper. (Referred to 

the illustrative example presented subsequently in Section 3). 

This coding system named the decimal two-dimension array coding system is the first 

improvement applied to the simple GA in this paper. To demonstrate the advantage of the 

decimal coding method in order to reduce the requirement for the storage space, two binary 

coding methods are introduced as Tables 2 and 3. Table 2 shows one kind of binary coding 

method in which the coding length of a string is the total DOFs s. If the value of the ith bit 

position of the string is 1, it denotes that a sensor is located on the ith DOF. In contrast, if 

the value of the ith bit position is 0, it denotes that there is no sensor on the ith DOF [31]. 

Table 3 shows another kind of binary coding method in which one sensor location is 

represented by a binary string, and then all the strings are connected in series as a total string 

[25]. Liu et al. showed that the dissipative storage space of the decimal two-dimension array 

coding method is minimal as well as its convergence is the best among the aforementioned 

existing GA coding systems [25]. 

 

2.2 Defining fitness function 

The IGA aims to find a set of DOFs, as the "best" chromosome, for sensor locations to 

maximize the fitness function. The fitness function generates an output from a set of input 

variables. In this case the fitness functions are defined in six different fitness models: 
1 and 2-modal assurance criterion (MAC): The MAC can be defined as Eq. (1), which 

measures the correlation between mode shapes. 

 

 
 

  j

T

ji

T

i

j

T

i

ijMAC



2

  (1) 

 

where i and j  represent the ith mode shape vector and the jth mode shape vector, 

respectively, and the superscript T represents the transpose of the vector. 

For an optimal sensor configuration, the MAC matrix will be diagonal. Therefore, the 

size of the off-diagonal terms of MAC is a criterion for performance of OSP and can be 

considered as an indication of fitness function. In this study the MAC matrix is used to 

construct two fitness functions. The first is the average value of all the off-diagonal elements 

in MAC matrix and the second is the biggest value in all the off-diagonal elements in MAC 

matrix. The first fitness function made of MAC named f1 is given as Eq. (2) and the second 

fitness function f2 is taken as Eq. (3). 

 

 jiMACabsaveragef ij  )),((11  (2) 

 

 jiMACabsf ij  )),(max(12  (3) 

 

where average (.) represents the average value, abs (.) represents the absolute value and max 

(.) represents the maximal value. 
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3- The effective independence (EFI) index: According to structural dynamics [32], the 

mathematical model for OSP of an elastic structure can be defined in the uncoupled modal 

form: 

 

 


 

qy

FMKqMqCMq T111 
 (4) 

 

where 
NRq  represents the modal coordinate vector; M, K, 

NMRC  are modal mass, 

stiffness and damp matrix of the structure, respectively; 
NMR  is the mode shape 

matrix, whose column represents mode shape vector; 
MRF  is the force vector; The 

superscripts -1 and T denote the inversion and transpose of a matrix, respectively; 
MRy  

is the normal coordinate vector; 
MR  is the sensor noise vector, which is often assumed 

to be a stationary Gaussian white noise with zero mean and positive definite covariance 

intensity matrix 
MMRR  such that: 

 

   ))(()()()( 2

M

T diagtRtE    (5) 

 

where E  is the expectation operator;   represents the standard deviation of Gaussian white 

noise and ))(( 2

Mdiag  shows the diagonal matrix whose the all diagonal terms are 
2 . 

Eq. (4) indicates that the response in any point of an elastic structure can be obtained as a 

linear combination of mode shape values. In this case, the ith coefficient of y is a linear 

combination of ith mode shape vectors, where qi is a function either of time or frequency 

and acts as a multiplier coefficient. By an efficient unbiased estimator to evaluate the 

coefficient response vector, the covariance matrix of the estimate error is given by: 

 

   1

2

1
)ˆ)(ˆ( 








 FqqqqEC m

T

m

T


 (6) 

 

where C represents the covariance matrix, F is the Fisher information matrix (FIM), 

  m

T

mm

T

m yq 
1

ˆ  denotes the vector of an efficient unbiased estimator of q and m is the 

number of desired sensor locations. Since the best estimation of q occurs when F is 

maximized, therefore the procedure for selecting the best sensor placement is to select the 

candidate sensors such that the determinant of the FIM will be maximized. In order to 

achieve this, the third fitness function can be defined as Eq. (7). 

 

 )det()det(3 TFf   (7) 

 

4- The EFI- driving point residue (EFI-DPR) index: A limitation of the EFI index -based 

method is that sensor locations with low energy can be selected, which decreases the signal 
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to noise ratio causing the difficulty in mode shape identification. The EFI-DPR index 

eliminates this problem by weighting the EFI indices with the corresponding DPR [33]: 

 

 
1 TDPR  (8) 

 

where   shows a term-by- term matrix multiplication.   is a column vector consisting of 

circular frequencies corresponding to  , and 
1  denotes the inverse of each term in  . 

DPR evaluates the average contribution of a candidate location sensor to the mode shapes. 

By consideration of DPR, the third fitness function changes to the fourth fitness function as 

Eq. (9). 

 

 )det( 1

4

 Tf  (9) 

 

5- The modal energy based index: When data are noise contaminated, the signal to noise 

ratio (SNR) can effect on accuracy of measured data. In this case, increasing the energy of 

target mode shapes raises SNR and thus improves the modal identification process [2]. 

Based on SNR, Cheng proposed backward deletion algorithm (BDA) which is a modal 

energy based method [2]. It is proposed to normalize each mode shape before ranking to 

eliminate the energy gap among them. Therefore the modes are treated equally before 

ranking. This can be done by Eq.(10). 
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where ir is the normalized contribution of the ith sensor placement to the rth mode shape, 

r is the rth mode shape and ir is the ith element of r . 

The contribution matrix   can be defined as follows: 
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The ranking index  can be showed as follows: 

 

 
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  (12) 

 

Eq. (12) indicates that the modal contribution can be evaluated mode by mode. 
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Therefore, the fifth fitness function can be selected as: 

 

 
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irf
1 1

5   (13) 

 

where α is a parameter to tune the fitness values into an appropriate range. 

6. A combined index: A drawback of the EFI method is that sensor places with low 

energy content can be selected with a consequent possible loss of valuable information. In 

order to eliminate this problem, the combined method of EFI and BDA proposed by Kang et 

al. [3], is taken as the sixth fitness function: 
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where β is a parameter to tune the fitness values into an appropriate range. This fitness 

function means that the selected sensor locations not only maximize the spatial 

independence but also maximize the modal energy. 

 

2.3 IGA operators 

The IGA has three main operators: parent selection, crossover & forced mutation, and 

mutation. 

 

2.3.1 Parent selection 

Natural selection occurs each generation or iteration of the algorithm. If Npop is the number 

of population and Nkeep is the number of chromosomes which are survived from one 

generation to next. Of the Npop chromosomes in a generation, only the top Nkeep (with the 

highest fitness values) survive for mating, and the bottom Npop - Nkeep are discarded to 

make room for the new offspring. Chromosomes of Nkeep are kept in mating pool and 

parents are selected among them. There are numbers of parent selection schemes commonly 

used in GA. These include proportionate reproduction, ranking selection, tournament 

selection, steady state selection, and greedy over-selection. In this study, tournament 

selection is used which is closely mimics mating competition in nature. Tournament 

selection approach is to randomly pick a small subset of chromosomes (two or three) from 

the Nkeep of mating pool, and the chromosome with the highest fitness in this subset 

becomes a parent. The tournament repeats for every parent needed. 

 

2.3.2 Crossover and forced mutation 

Crossover is the operator that produces new offspring by exchanging some genes of a couple 

of parents. There are several methods to do this for example: one-point crossover, two point 

crossover, scattered crossover and so on. Figure 1 shows the two-point crossover operation 

which is used in this study. As shown in Figure 1, first, two random points are chosen 

among genes of the parents; the point 1 is chosen between the genes two and three, and the 
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point 2 is chosen between the genes six and seven. The first parent's genes are depicted by 

bold numbers while the second parent's genes are shown by italic numbers. When crossover 

applied, the first parent's genes before point 1 and after point 2 are transferred to offspring 

one as depicted by the Figure. The other genes of the first parent are located on offspring 2. 

The process is reversed for the genes of the second parent. More detailed of this method are 

discussed in reference [30]. In some cases, however the parent strings satisfy the constraint, 

the new offspring may still violate the constraint. In this case, the same DOF may be 

occupied by two or more sensors synchronously which is impractical and must be avoided 

in the crossover process. Therefore, forced mutation [28] is applied to improve the crossover 

operator. The detailed operation process is presented and shown in Table 4. The first two 

lines in Table 4 are the two selected parents which are mated by two-point crossover 

method. The two new offspring will be generated as shown in the second two lines in Table 

4. Unfortunately, the 6th gene of one new offspring (offspring 1) is the same with the 7th 

gene of it (the underlined numbers). That means one DOF (number 122) has been placed 

with two sensors synchronously. So the forced mutation operator is introduced to change 

one value of the same two numbers to the other value, which is not included in the offspring 

1. In this example, the second value 122 is changed to 135 (the bold underlined number in 

the fifth line in Table 4), which is different from other genes in the offspring 1. 

 

 

Figure 1. Two-point crossover operation for m=8. 

 
Table 4: Operation of forced mutation in IGA for m=8. 

  1 2 3 4 5 6 7 8 

chromosome pair before 

crossover 

Parent 1: 10 23 45 62 89 93 122 149 

Parent 2: 11 31 45 55 74 122 134 167 

chromosome pair after 

crossover 

Offspring 1: 10 23 45 55 74 122 122 149 

Offspring 2: 11 31 45 62 89 93 134 167 

chromosome pair after 

forced mutation 

Modified 

offspring 1: 
10 23 45 55 74 122 135 149 

Offspring 2: 11 31 45 62 89 93 134 167 

 

2.3.3 Mutation 

To apply improved mutation in this study, first the chromosomes randomly selected for 

mutation are encoded from decimal coding to binary coding as shown in Table 5. Then, the 
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mutation operation randomly selects one gene position from the ones whose value is 1 in a 

chromosome, for example DOF 45 in third row of Table 5. Then the mutation operation 

randomly selects another gene position from the ones whose value is 0 in the chromosome, 

for example DOF 64 in third row of Table 5. Finally, the positions of the two genes are 

swapped to produce an offspring. Therefore, DOF 45 as a sensor placement is converted to 

DOF 64 as shown in the last row of the Table. By this method the numbers of 1 which is an 

indication of the number of sensors will be unchanged. Finally, the new chromosome binary 

code is converted to decimal code. The improved mutation scheme is shown in Table 5. 

Through the operation of aforementioned crossover-force mutation and mutation, the 

offspring satisfy the constraints as their parents do. 

 
Table 5: Improved mutation for m=8. 

Chromosom

e for 

mutation 

11               31           45            62            89            93            134             166 

Encoding 

chromosome 
1 2 ... 43 44 45 ... 62 63 64 65 ... 166 167 168 

 0 0  0 0 1  1 0 0 0  1 0 0 

Mutation of 

chromosome 
0 0  0 0 0  1 0 1 0  1 0 0 

Decoding 

mutated 

chromosome 

11              31            62             64            89            93             134           166 

 

2.4. IGA Convergence 

After the improved mutations take place, the fitness functions corresponding to the offspring 

and mutated chromosomes are evaluated. The process described is iterated in terms of 

generations until the convergence criteria are met. The three termination criteria are given 

for IGA as follows: 

(1) A convergence criterion is given as  avgfitfitmax , where fitmax represents 

maximum fitness,  fitavg  represents average fitness and ε is a small number. 

(2) A relative large number N is selected to avoid redundant iteration. The IGA process 

will be stopped automatically if the fittest chromosome in the population does not change in 

continuous N iteration. 

(3) A maximum number of generations is set to stop the process after a relative large 

number of iterations. 

If either of the three convergence criteria is met, the genetic operation should be 

terminated. 

The whole flowchart of the presented improved genetic algorithm for the optimal sensor 

placement is shown in Figure 2. 
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Figure 2. Flowchart of improved genetic algorithm. 

 

 

3. NUMERICAL EXAMPLE 
 

In this section, the proposed OSP method is applied to a two-dimensional strap-braced cold 

formed steel (CFS) frame as follows: 

 

3.1 Description of the CFS frame model 

The CFS frame modeled in this paper is a 2.4 to 2.4 m shear wall with solid X straps on 

both sides connecting to the wall’s corners. This frame was tested in the Structural 

Laboratory of the School of Civil Engineering at the University of Queensland [34]. Figure 

3 shows the general configuration of the strap-braced CFS frame. All of the frame elements, 

such as studs, top and bottom tracks and noggins were made using an identical C-section of 

dimensions 90 x 36 x 0.55 mm. The detailed section geometry is depicted in Figure 4 and 

the section structural material properties are listed in Table 6. The dimensions, cross section 

and structural material properties of the straps are presented in Table 7.  All studs were 

connected together at each flange using just one rivet. In order to increase the buckling 

capacity of the chords and studs, a noggin was used in the middle height of the frame. Four 
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brackets are added to the corners of the frame to improve wall's lateral performance 

characteristics; such as strength, stiffness and ductility [35]. 

 
Table 6: Mechanical properties of the C section [34]. 

No. Property Value No. Property Value 

1 Nominal grade 550 MPa 5 Yield strain 0.45% 

2 Nominal thickness 0.55 mm 6 Ultimate stress uF  617MPa 

3 Elastic modulus 169 GPa 7 Ultimate strain 2.86% 

4 Yield stress yF  592 MPa 8 
yu FF /  1.04 

 
Table 7: Mechanical properties of the Straps [34]. 

No. Property Value No. Property Value 

1 Nominal grade 300 MPa 5 Yield stress yF  310 MPa 

2 Nominal thickness 0.8 mm 6 Yield strain 0.18% 

3 Elastic modulus 163 GPa 7 Ultimate stress uF  370 MPa 

 

3.2 Finite element model of the frame 

A finite element (FE) model of the CFS frame was established using commercial FE 

package ABAQUS [36]. The FE model shown in Figure 5 represents the frame with the 

geometry and structural properties corresponding to the specimen described in the last 

section. 

All the members are modeled by shell element S4R in ABAQUS, associated with 6 

DOFs in each node. Totally, 13010 nodes and 11462 elements are generated. “Tie” 

technique has been applied to model the rivet connections. Also in order to consider the 

effects of screws’ holes on the straps’ behaviour, two types of materials were defined for the 

straps between brackets, and between brackets and the corners, based on reference [35]. 

Initial imperfection which has considerable effects on nonlinear behaviour of the frame is 

not considered in this linear modal analysis of the frame for simplicity. Furthermore, the 

effect of residual stresses and perforations are small enough to be negligible in the studied 

frame [35] and therefore they are not applied to the model. In order to verify the model with 

experimental test, a pushover analysis has been carried out. Figure 6 shows the reasonable 

agreement between experimental and numerical pushover curves obtained from 

experimental results and pushover analysis, respectively. Therefore, in order to provide 

input data for the sensor placement, the modal analysis was carried out using frequency 

analysis in ABAQUS. The first six mode shapes of the CFS frame are illustrated in Figure 7. 

Of the first six modes, the fifth and sixth mode shapes, which are corresponding to the 

general frame, have been considered as target modes. The other mode shapes are attributed 

to the buckling modes of the straps and are not appropriate for modal identification process. 
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Figure 3. Strap-braced CFS frame. 

 

 
Figure 4. Detailed dimensions of stud C 90x36x0.55 in mm [34]. 
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Figure 5. FE model of the CFS frame. 
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Figure 6: Pushover curves of the CFS frame. 
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Mode no. 1      Mode no.2      Mode no.3        

  
 

Mode no.4        Mode no.5        Mode no.6        

Figure 7. The first six mode shapes of the CFS frame. 

 

3.3 Optimization results 

The initial sensor candidate locations are shown in Figure 8 among them optimal sensor 

places would e selected for two, four and eight sensors. For this configuration, only the 

exterior chords and tracks have been chosen as the initial locations for sensor placement. In 

this case, 84 nodes were selected as the initial set of candidate sensor locations, giving 168 

candidate DOFs due to lateral and vertical DOFs of each node. Based on the mode shape 

matrix calculated by finite element method (FEM), the above six IGA approaches which 

differ only in the chosen of objective function are implemented to select the best sensor 

locations among the initial candidate DOFs. The basic parameters of IGA are listed as Table 

8: 

 

 
Table 8: Basic parameters of IGA 

Number of target modes (n) 2 Parent size (Nkeep) 20 

Number of sensors (m) 2, 4, 8 Offspring size (Npop-Nkeep) 80 

Number of DOFs for sensor 

placement (s) 

168 probability of mutation 0.2 

Population size (Npop) 100 number of generations 300 
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Figure 8: Initial candidates for sensor locations. 

 

 

Figure 9: Sensor configuration by IGA with fit3 for 8 sensors. 

 

All the best results for two, four and eight sensor locations are listed and in Table 9. The 

best sensor placement for 8 sensors is also shown in Figure 9 based on the IGA with fit3.  In 
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order to evaluate the reliability of the above results, all the convergence curves of different 

fitness functions are shown as Figure 10 for maximum values and average values of the 

fitness functions. It is obvious that all the maximum fitness values tend to a constant quickly 

and along with increasing number of generations the average fitness values steadily tend to 

the maximum fitness values. It indicates a reasonable characteristic of convergence. 

 

3.4 Comparison study 

To demonstrate the effectiveness of the IGA, the conventional methods of EFI, EFI-DPR 

and minMAC are performed and compared with the one proposed in this paper as follows: 

 

3.4.1 The EFI method 

In the EFI method, the procedure for OSP is to eliminate candidate sensor locations such 

that the determinant of the Fisher information matrix (FIM) is maximized. In order to 

achieve this, the effective independence (EFI) indices is proposed by Kammer [4] and 

evaluated by: 

 

   )(
1 TT

D diagE 


= )( TQQdiag  (15) 

 

The bracketed term in the expression   T

m

T

mP 
1

 is a projection matrix made 

by the mode shape matrix , which can be decomposed by QR , where Q is 

orthonormal matrix and R is upper triangular matrix. EFI indices indicate the fractional 

contribution of each sensor placement to the independence of the target mode shapes. 

Therefore, to enhance the maximization of the determinant of FIM, an iterative algorithm is 

developed: at each step, the smallest term in DE  is eliminated, and then corresponding row 

in  is also removed until the desired number of rows is obtained. One of the major 

limitations of EFI is that in order to have a non-singular FIM, the minimum sensor number 

employable must be equal to the target mode shape number n. 

From this OSP technique, sensor networks have been determined for the studied frame as 

presented in Table 9. 

 

3.4.2 The EFI-DPR method 

As mentioned in section 2.2, by the EFI method, the sensor locations with low energy may 

be selected and therefore mode shape would be identified difficulty. The EFI-DPR method 

eliminates this problem by weighting the EFI indices with DPR defined by Eq. (8) [33]: 

DPR calculates the average contribution of each candidate position to the mode shapes 

and changes of the ED vector expression as follows [33]: 

 

 
1)(  TT

D QQdiagE  (16) 

 

As shown in Table 9, this methodology gets a similar result to the EFI method for the 
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studied frame. 

 

3.4.3 The minMAC method 

Came and Dohrmann [6] presented the minMAC method for OSP based upon the modal 

assurance criterion (MAC). MAC is defined by Eq. (1) and provides a useful evaluation for 

the correlation of mode shapes. ijMAC  represents the cosine of the angle between two 

vectors, hence the smaller the cosine, the more distinguishable the mode shape vectors. 

Therefore to achieve a set of sensors of well vector correspondence, the off-diagonal 

elements of MAC matrix must be minimized. 

The results in Table 9 show that the sensor locations identified by the minMAC method 

are distributed asymmetrically in the entire frame. 
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Figure 10. Convergence process of IGA with different fitness functions, a)fit1,b)fit2, c)fit3, d)fit4, 

e)fit5, f)fit6 for m=8, 4, 2. 

 

 

4. CRITERIA- BASED EVALUATION OF THE OSP METHODS 
 

In order to compare the capability of the aforementioned OSP techniques for identification 

of the vibration behaviour of the CFS frame, different criteria have been used: 1- 

Determinant, trace and SVD of FIM, 2- Maximum in off-diagonal terms (MOD) of MAC, 3- 
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Root mean square (RMS), and 4- SVD of mode shapes. 

 

4.1 Determinant, trace and SVD of FIM 

FIM is the inverse of the covariance matrix of estimators and indicates the volume of 

information acquired from mode shapes. In practice, different norms of the FIM are used as 

the criteria for the estimation of the amount of information. The determinant, the trace, and 

the minimum singular value of the FIM, are three common norms of FIM which are 

maximized to increase the information. That is to say, different sensor placement methods 

based on maximization of the trace, maximization of the determinant or maximization of the 

minimum singular value of the FIM will yield similar results for most cases [37]. 

The criteria of the FIM evaluating the sensor placement methods are listed in Table 10. 

All the methods, except the MAC-based methods, show good performance under these three 

criteria. As the number of sensors increased, the values of the norms of the FIM are 

increased too. 

 

4.2 Maximum in Off-Diagonal (MOD) terms of MAC 

The size of the off-diagonal elements of Modal Assurance Criterion (MAC) matrix could be 

another means to assess the capability of the chosen sensor locations to distinguish mode 

shapes accurately. The element values of the MAC matrix range between 0 and 1, where 

zero indicates that there is little or no correlation between the off-diagonal element MACij (i 

≠ j) and one denotes that there is a high degree of similarity between the modal vectors. The 

off-diagonal terms should be as small as possible for distinguishable mode shapes. Thus, the 

MOD of MAC provides a criterion for linear independency of mode shapes. In Table 10, the 

maximum off-diagonal term of MAC matrix is listed for comparison of the methods under 

consideration. 

4.3 Root Mean Square (RMS) 

RMS defined by Eq. (17) is a kind of criterion to assess the independency of mode shapes. 

But it is more general measurement than MOD of MAC. 
 

  njminjiRMS
ji

ij 












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

1,1,,2  (17) 

 

Similar to MOD, the smaller RMS indicates more independent of the mode shape vectors. 
 

4.4 Singular Value Decomposition (SVD) 

The SVD of the mode shape matrix specified at certain degrees of freedom provides another 

criterion of the capability of the sensor placement methods [38]. The criterion evaluates the 

ratio of the largest to the smallest singular value of the mode shape matrix as follows: 
 

 
m

SVD


1  (18) 

 

where 1  and m  show the largest and smallest singular value of the mode shape matrix, 
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respectively. The lower limit of the SVD ratio is one and occurs in an ideal situation in 

which the mode shapes are orthonormal. The evaluation of the performance of the sensor 

placement methods using the SVD ratio criterion is shown in the Tables 10. Based on this 

criterion, almost all the methods show good performance for the number of 8 sensors. By 

decreasing the number of sensors, the value of SVD is rising in most cases. 
 

Table 9: Optimal sensor placements for two, four and eight sensors. 

method 2 4 8 

fit1 
26 

y 

31 

x 

12 

x 

9 

y 

37 

y 

50 

y 

9 

x 

50 

x 

26 

y 

27 

y 

28 

y 

38 

y 

53 

y 

71 

y 

fit2 

50 

x 

77 

y 

53 

x 

56 

x 

71 

y 

74 

y 

13 

x 

14 

x 

37 

x 

57 

x 

5 

y 

17 

y 

38 

y 

68 

y 

fit3 
12 

x 

32 

y 

11 

x 

12 

x 

32 

y 

75 

y 

11 

x 

12 

x 

32 

y 

33 

y 

53 

x 

54 

x 

74 

y 

75 

y 

fit4 
12 

x 

32 

y 

11 

x 

12 

x 

32 

y 

75 

y 

11 

x 

12 

x 

32 

y 

33 

y 

53 

x 

54 

x 

74 

y 

75 

y 

fit5 
53 

x 

33 

y 

11 

x 

53 

x 

33 

y 

75 

y 

11 

x 

12 

x 

32 

y 

33 

y 

53 

x 

54 

x 

75 

y 

76 

y 

fit6 
53 

x 

75 

y 

11 

x 

53 

x 

32 

y 

75 

y 

11 

x 

12 

x 

32 

y 

33 

y 

53 

x 

54 

x 

75 

y 

76 

y 

EFI 
12 

x 

32 

y 

11 

x 

12 

x 

32 

y 

75 

y 

11 

x 

12 

x 

32 

y 

33 

y 

53 

x 

54 

x 

74 

y 

75 

y 

EFI-DPR 
12 

x 

32 

y 

11 

x 

12 

x 

32 

y 

75 

y 

11 

x 

12 

x 

32 

y 

33 

y 

53 

x 

54 

x 

74 

y 

75 

y 

MAC 
12 

x 

37 

y 

12 

x 

37 

y 

54 

x 

68 

x 

12 

x 

26 

y 

32 

x 

37 

y 

54 

x 

58 

x 

68 

x 

70 

x 

 
Table 10: Results of sensor placement methods based on the criteria. 

method 

Number 

of 

sensors 

Determinant 

of FIM 

Trace of 

FIM 

SVD of 

FIM 
MAC RMS SVD 

fit1 

2 0.0022 0.1186 0.0225 0 0 2.0667 

4 0.2892 1.2568 0.3033 0 0.06460 1.7279 

8 1.7781 2.6703 1.2679 0 1.4303 1.0517 

fit2 

2 0.4297 1.3127 0.6242 0 0.0141 1.0502 

4 2.3318 3.0749 1.3587 0 1.1239 1.5166 

8 0.5809 2.5741 0.2499 0 1.5973 3.0494 

fit3 

2 0.8754 1.8719 0.9111 0.0005 0.0149 1.0269 

4 3.4775 3.7301 1.8355 0 1.6695 1.016 

8 13.7402 7.4148 3.6382 0 2.5444 1.0188 

fit4 

2 0.8754 1.8719 0.9111 0.0005 0.0149 1.0269 

4 3.4775 3.7301 1.8355 0 1.6695 1.016 

8 13.7402 7.415 3.6382 0 2.5444 1.0188 
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fit5 

2 0.8484 1.8442 0.8792 0.0017 0.0283 1.0477 

4 3.4233 3.7023 1.7916 0.0007 1.6610 1.7916 

8 13.5178 7.3565 3.5701 0.0002 2.5329 1.0298 

fit6 

2 0.8609 1.8565 0.9010 0.0007 0.0206 1.0298 

4 3.4607 3.7211 1.8292 0.0001 1.6667 1.0170 

8 13.7402 7.415 3.6382 0 2.5444 1.0188 

EFI 

2 0.8754 1.8719 0.9111 0.0005 0.0149 1.0269 

4 3.4775 3.7301 1.8355 0 1.6695 1.016 

8 13.7402 7.4148 3.6382 0 2.5444 1.0188 

EFI-DPR 

2 0.8754 1.8719 0.9111 0.0005 0.0149 1.0269 

4 3.4775 3.7301 1.8355 0 1.6695 1.016 

8 13.7402 7.415 3.6382 0 2.5444 1.0188 

MAC 

2 9.2e-5 0.9504 9.8e-5 0 0.9748 98.6156 

4 0.0004 1.8915 0.0002 0 1.3753 85.5291 

8 0.7238 2.6930 0.3028 0 1.6342 2.8095 

 

 

5. CONCLUSION 
 

In this paper, an improved genetic algorithm (IGA) was adopted for the purpose of optimal 

sensor placement (OSP) for accurate modal identification of a strap-braced cold formed 

steel (CFS) frame. Based on different fitness functions, six approaches were considered to 

optimize the sensor locations. In addition to the proposed method, three conventional 

methods EFI, EFI-DPR and minMAC were applied for OSP of the frame. The results 

obtained from the proposed method and conventional methods are compared based on the 

criteria selected to access the effectiveness of the methods. The conclusions are summarized 

as follows: 

- The IGA applied to the frame shows good convergence for all the fitness functions. 

- Due to limited number of mode shapes for the studied frame, there are various 

configurations of sensor that can yield the maximum of the MAC-based fitness functions of 

fit1 and fit2. Therefore, the results of the IGA based on fit1 and fit2, as well as the result of 

minMAC method, are not recommended for final sensor network of the frame. 

- The results of IGA for fitness functions of fit3 and fit4 which are based on EFI and EFI-

DPR indices, respectively, are same as those obtained by conventional methods of EFI and 

EFI-DPR. 

- The IGA methods by fit3 and fit4 as well as EFI and EFI-DPR are relatively useful and 

effective approaches based upon the evaluation criteria. 

- The results of the methods based on fitness functions of fit5 and fit6 are similar to those 

based on fit3 and fit4, except for some limited DOFs. 

- In comparison among fitness functions of fit3 to fit6, those based on EFI and EFI-DPR 

indices (fit3 and fit4) satisfy the criteria more than those based on ranking the mode shapes 

(fit5 and fit6). But all the mentioned methods yield reasonable results for optimal sensor 

locations of the frame. 

- The overall deployment of the acceptable methods is satisfactory as the sensors locate 
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in a relatively regular fashion. 

- The IGA proposed in this paper has the capability of solving OSP problem of the strap-

braced CFS frame. 

 

 

REFERENCES 
 

1. Papadimitriou C. Optimal sensor placement methodology for parametric identification 

of structural systems, Journal of Sound and Vibration, 2004; 278: 923-947. 

2. Cherng AP.  Optimal sensor placement for modal parameter identification using signal 

subspace correlation techniques, Mechanical Systems and Signal Processing, 2003; 17 

(2): 361-378. 

3. Kang F, Li JJ, Xu Q. Virus coevolution partheno-genetic algorithms for optimal sensor 

placement, Advanced Engineering Informatics, 2008; 22: 362–370. 

4. Kammer DC. Sensor placement for on-orbit modal identification and correlation of 

large space structures, Journal of Guidance, Control and Dynamics, 1991; 14 (2): 251-

259. 

5. Lim KB. Method for optimal actuator and sensor placements for large flexible 

structures, Journal of Guidance, Control and Dynamics, 1992; 15(1): 49-57. 

6. Came TG,  Dohrmann CR.  A modal test design strategy for model correlation, 

Proceedings of the 13th International Modal Analysis Conference, Nashville, 

Tennessee, USA, 1995, pp.927-933. 

7. Kammer DC. Sensor set expansion for modal vibration testing, Mechanical Systems 

and Signal Processing, 2005; 19(4): 700-713. 

8. Li DS, Li HN, Fritzen CP. The connection between effective independence and modal 

kinetic energy methods for sensor placement, Journal of Sound and Vibration, 2007; 

305: 945-955. 

9. Li DS, Fritzen CP, Li HN. Extended MinMAC algorithm and comparison of sensor 

placement Methods, Conference of 2008 IMAC-XXVI: International Modal Analysis 

Conference & Exposition on Structural Dynamics: Conference & Exposition on 

Structural Dynamics, Jacksonville, Florida, USA, 2008, on CD-ROM. 

10. Li ZN, Tang J, Li QS.  Optimal sensor locations for structural vibration measurements, 

Applied Acoustics, 2004; 65: 807-818. 

11. Papadimitriou C.  Pareto optimal sensor locations for structural identification, 

Computer Methods in Applied Mechanics and Engineering, Special Issue on 

Computational Methods in Stochastic Mechanics and Reliability Analysis, 2005; 194: 

1655-1673. 

12. Yao L, Sethares WA, Kammer DC. Sensor placement for on-orbit modal identification 

via a genetic algorithm, AIAA Journal, 1993; 31(10): 1922-1928. 

13. Papadimitriou C, Beck JL, Au SK. Entropy- based optimal sensor location for structural 

model updating, Journal of Vibration and Control, 2000; 6(5): 781-800. 

14. Vosoughifar HR, Shokouhi SKS. Health monitoring of LSF Structure via novel TTFD 

approach, Civil Structural Health Monitoring Workshop (CSHM-4), Berlin, Germany, 

2012. 

http://www.sciencedirect.com/science/journal/08883270
http://www.sciencedirect.com/science/journal/08883270
http://www.sciencedirect.com/science/journal/08883270
http://www.sciencedirect.com/science/journal/08883270/19/4
http://www.sciencedirect.com/science/journal/00457825


  F. Zahedi Tajrishi and A. R. Mirza Goltabar Roshan 

 

118 118 

15. Vosoughifar HR, Shokouhi SKS, Farshadmanesh P. Optimal sensor placement of steel 

structure with UBF system for SHM using hybrid FEM-GA technique, Civil Structural 

Health Monitoring Workshop (CSHM-4), Berlin, Germany, 2012. 

16. Abdullah MM, Richardson A, Jameel H. Placement of sensors/ actuators on civil 

structures using genetic algorithm, Earthquake Engineering and Structural Dynamics, 

2001; 30(8): 1167-1184. 

17. Huang WP, Liu J, Li HJ. Optimal sensor placement based on genetic algorithms, 

Engineering Mechanics, 2005; 22(1): 113-117. 

18. Javadi AA, Farmani R, Tan TP, A hybrid intelligent genetic algorithm, Advanced 

Engineering Informatics, 2005; 19(4): 255-262. 

19. Hwang SF, He RS. A hybrid real-parameter genetic algorithm for function 

optimization, Advanced Engineering Informatics, 2006; 20(1): 7-21. 

20. Kubota N, Fukuda T, Shimojima K. Virus-evolutionary genetic algorithm for a self-

organizing manufacturing system, Computers & Industrial Engineering Journal, 1996; 

30(2): 1015-1026. 

21. Kubota N, Shimojima K, Fukuda T. The role of virus infection in virus-evolutionary 

genetic algorithm, Proceedings of IEEE International Conference on Evolutionary 

Computation, Nagoya, Japan: IEEE, 1996, pp. 182-187. 

22. Hu SC, Xu XF, Li XY. A Virus Coevolution genetic algorithm for project optimization 

scheduling, Journal of software, 2004; 15(1): 49-57. 

23. Ning FH, Chen ZC, Xiong L. Decision model and algorithm of task coordination for 

collaborative logistics network, Control and Decision, 2007; 22(1): 109-112. 

24. Yang Y, Gu ZQ, Hu L. The application of virus evolutionary genetic algorithm to 

dynamic path planning, Automotive Engineering, 2007; 29(1): 67–70. 

25. Liu W, Gao WC, Sun Y, Xu MJ. Optimal sensor placement for spatial lattice structure 

based on genetic algorithms, Journal of Sound and Vibration, 2008; 317: 175-189. 

26. Yi TH, Li HN, Gu M. Optimal sensor placement for health monitoring of high-rise 

structure based on genetic algorithm, Mathematical Problems in Engineering, 2011; 

Article ID 395101, 12 pages, doi: 10.1155/2011/395101. 

27. Y TH, Li HN, Gu M. Optimal sensor placement for structural health monitoring based 

on multiple optimization strategies, The Structural Design of Tall and Special 

Buildings, 2011; 20: 881–900. 

28. Haupt RL, Haupt SE. Practical Genetic Algorithms, John Wiley & Sons, 2nd Edition, 

2004, 253 pp. 

29. Holland JH. Adaptation in Natural and Artificial Systems, Ann Arbor: University of 

Michigan Press, 1975. 

30. Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning, 

Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.  

31. Guo HY, Zhang L, Zhang LL, Zhou JX. Optimal placement of sensors for structural 

health monitoring using improved genetic algorithms, Smart Materials and Structures, 

2004; 13: 528-534. 

32. Clough RW, Penzien J. Dynamics of Structures, McGraw Hill, 2nd edition,  New York, 

1993. 

33. Worden K, Burrows AP. Optimal sensor placement for fault detection, Engineering 



OPTIMAL SENSOR PLACEMENT FOR MODAL IDENTIFICATION OF A... 

 

119 

Structures, 2001; 23: 885-901. 

34. Zeynalian M, Ronagh HR, Experimental study on seismic performance of strap-braced 

cold-formed steel shear walls, Advances in Structural Engineering, 2013; 16. 
35. Abaqus 6.11. Abaqus/ CAE user's manual. 2011. 

36. Zeynalian M, Ronagh HR. A numerical study on seismic performance of strap-braced 

cold formed steel shear walls, Thin- walled structures, 2012; 60: 229–238. 

37. Basseville M, Benveniste A, Moustakides GV, Rougee A. Optimal sensor location for 

detecting changes in dynamic behavior, Ieee Transactions on Automatic Control, 1987; 

32: 1067-1075. 

38. Golub GH, Van Loan CF. Matrix Computations, Johns Hopkins University Press, 1996. 

 


