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ABSTRACT 
 

Structural vibration control is one of the most important features in structural engineering. 

Real-time information about seismic resultant forces is required for deciding module of 

intelligent control systems. Evaluation of lateral forces during an earthquake is a 

complicated problem considering uncertainties of gravity loads amount and distribution and 

earthquake characteristics. An artificial neural network (ANN) has been trained in this 

article to estimate these forces. This ANN was trained on the results of time history analysis 

of a three-story building under 702 different loadings. Results of numerical examples verify 

that the trained ANN can predict the expected forces with negligible deviations. 
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1. INTRODUCTION 
 

Powerful theoretical methods and mechanical tools are now available to be applied for 

complicated engineering problems of the modern world. Vibration control is one of these 

issues in structural engineering. Precise and real time estimation of lateral seismic loads is 

required for intelligent control systems to mitigate the structural vibration. Reliable 

evaluation of these forces is not practical through closed form analytical methods due to 

uncertainties on gravity loads magnitude and pattern. Moreover, the ground motion 

accelerations is not usually available instantaneously during an earthquake. These make 

seismic loads prediction a complex multivariable dependent problem.  
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For analyzing a complex system, one may decompose it into smaller and naturally 

simpler elements. Finding a simple model for the behavior of these elements, then gathering 

those parts to construct the primary system is a common method [1]. Similar to finite 

element method, which is used for analyzing a structure, there are different approaches in 

the field of artificial intelligence (AI) in computational methods. AI is useful to simulate the 

behavior of systems with unknown or complicated governing equations. 

The theory of soft computing which is related to the field of neural networks, fuzzy logic, 

evolutionary computing, probabilistic computing, and genetic algorithms is one of the best 

approaches to solve these problems [2]. In this research multilayer perceptron (MLP) neural 

network has been used for predicting the effective lateral forces on a structure during an 

earthquake. Artificial neural networks (ANNs) are able to adapt themselves with the natural 

relationships, which exist within an available set of data by using learning rules. After 

completing the adaptation procedure, the network can predict the behavior of a new sample, 

which does not exist in the data set [3]. There are many applications of AI in civil 

engineering: 

Zhao et al. used the radial basis function neural network for preliminary design of 

concrete box girder bridges. They combined this ANN with fuzzy logic to perform the task 

of noisy data filtering, knowledge extraction, and candidate synthesis [4]. A multilayer-

functional-link neural network was trained on the results of 55 experimental test results for 

predicting the confinement efficiency of concentrically loaded reinforced concrete columns 

with rectilinear transverse steel by Tang et al. [5]. Jeng and Mo modeled the critical 

structural response of a prestressed concrete bridge subjected to earthquake excitation of 

various magnitudes along different directions by using MLP neural networks. They trained 

the ANNs on the analytical data obtained from the nonlinear dynamic finite fiber element 

analyses of the bridge [6]. A MLP neural network was trained by Gupta et al. [7] on the 

results of 864 concrete specimens to predict the concrete strength based on concrete mix 

design parameters such as size and shape of specimen, curing technique, and environmental 

conditions. Pei and Smyth introduced a new architecture of multilayer feedforward neural 

network for problems with nonlinear and hysteric dynamic behaviors. They used this ANN 

for simulating the nonlinear dynamic response of single-degree-of-freedom oscillators [8], 

[9]. Von Neumann and Moor neighborhood model of cellular automata (CA) used to 

establish the CA numerical model for masonry wallets by Zhang et al. They used also a 

MLP neural network for predicting the cracking pattern of a wall based on the proposed CA 

model of the wallet and some data of recorded cracking at zones [10]. Ghaboussi and 

Joghataie presented a neurocontroller for linear structural control when the response of the 

structure remained within the linearly elastic range [11]. Bani-Hani and Ghaboussi used a 

neurocontroller for nonlinear  structural control of a three-story steel frame with an actuator 

and tendon system in the first floor [12]. MLP neural network was used for structural 

control of a multi-story building by Chen et al. [13]. Tang used MLP neural network for 

active control of a single-degree-of-freedom system [14]. A counter-propagation neural 

network (CPNN) was trained by Madan to output the control forces required to reduce the 

structural vibrations without any feedback on the correctness of the output control forces. 

This ANN can learn from the control environment to compute the required control forces in 

an unsupervised manner [15]. Cho et al. designed a MLP neural network controller with a 
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single hidden layer for single-degree-of-freedom and two-degree-of-freedom bridge 

systems. They found the optimal number of neurons in the hidden layer based on 

progressively adding one hidden neuron and observing the changes in performance of the 

neural network [16]. Li and Yang proposed a kind of multi-branch back propagation neural 

network (BPNN) to identify a structural dynamic system for predicting the structural future 

dynamic response. They used primary factors such as structure state variables and seismic 

inputs as branches of the model to increase the accuracy of prediction [17]. Li et al. used an 

artificial neural network for modeling the dynamic response of tall buildings. In addition, 

they used genetic algorithm for optimizing the structural control systems [18]. In this paper, 

the effective earthquake loads on different floors of a three-story building is predicted using 

a multilayer perceptron neural network. In fact, the building’s behavior is modeled with a 

trained MLP neural network on different conditions of loadings. To find the building’s 

reaction on a real situation, the time history analysis of 702 different combinations of dead, 

live, and earthquake loads was used. Results of numerical examples verify the high accuracy 

of trained neural network. 

 

 

2. DYNAMIC MODEL OF A MULTI-STORY BUILDING 
 

Dynamic model of a multi-story building has been shown in Figure 1. In general, the 

behavior of this structure is nonlinear. Step-by-step integration is one of the best methods 

for linear and nonlinear analysis of structures. In fact, the response of structure is calculated 

in a sequential series of time increments in this method. Since it is not necessary to 

determine mode shapes, frequencies, and decoupling the system of differential equations of 

motion, step-by-step integration method is under consideration more than modal analysis for 

systems of high degrees of freedom. 

 

 

Figure 1. Dynamic model of a multi-story building 
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Equation of motion for j-th floor of structure, which is shown in Figure 2, is obtained by 

using D'Alembert's principle: 
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where m  and em  are the mass of floor and damper respectively. c  and ec  are the damping 

coefficient of story and damper respectively. k  is the story stiffness and u , u  and u  

respectively are the displacement, velocity and acceleration of each floor relative to the 

base. 0x  denotes the absolute acceleration of the base. 
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Figure 2. Free body diagram of j-th floor 

 

The matrix form of Eq. (1) is: 

 

             01M u C u K u M x     (2) 

 

where [M], [C] and [K]are mass, damping coefficient and stiffness matrixes. Eq. (2) is a set 

of second order coupled differential equations, which governs the vibration of structure. 

Incremental equation of motion for step-by-step method is written as: 
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where {P} can be regarded as base acceleration resultant load vector. considering linear 

variation for acceleration, the changes in velocity and displacement will be of the second 

and third order respectively. Substitution of incremental acceleration and velocity in term of 

incremental displacement into Eq. 3 gives: 
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Eq. (4) is a set of algebraic equations, which may be solved by a standard method. Gauss 

method is used here to find the incremental displacements. Afterward, the velocity 

increment is obtained by: 
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t

uu
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Because of using initial slope of elastic and damping force curves for each time 

increment for k and c, the left hand side of Eq. (3) is an approximate value. To avoid of 

error accumulation, the acceleration at the beginning of each time increment is calculated 

based on equilibrium of all forces. 
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This procedure should be repeated for each time increment [19, 20]. A computer 

program "Dynamic Analysis of Structures" (DAS) has been provided in Delphi to analyze 

multi-story buildings and find the time response of structure under applied loads or base 

excitations such as an earthquake record. Lateral forces on each story can be calculated in 

addition of displacements, velocities, and accelerations. 

 

 

3. MULTILAYER PERCEPTRON NEURAL NETWORK 
 

Multilayer feed-forward network consists of input layer, one or more hidden layers and an 

output layer. Each layer contains several computational nodes considered as neurons. 

Training of this supervised neural network is done by error back-propagation algorithm, 

which is the generalized form of least-mean-square (LMS) algorithm for the special case of 

a single linear neuron. This learning rule consists of two passes through different layers of 

the network: In a forward pass, one of the patterns is applied to the network to find the 

actual response of the network on the output layer after the sequential computations done 

layer by layer. In this step the difference between desired and obtained values are evaluated 

as error signal. On the backward pass, the error signal is propagated through the network to 

apply the back propagation algorithm for correcting the synaptic weights, which are 

constant in the forward pass.  

Important characteristics of the multilayer perceptron network are: 

 A sigmoidal nonlinearity is included in the model of each neuron. This nonlinearity 

should be smooth and usually is applied to neurons by logistic function. 
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where 
jv  is the weighted sum of all synaptic inputs of neuron j , known as induced local 

field of neuron j , and 
jy  is the output of neuron j  for the n-th training example. 
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where m is the total number of inputs applied to neuron j The synaptic weight wj0 

(corresponding to the fixed input y0=+1) equals the bias applied to neuron j. 

 Learning complex models or tasks is guaranteed by using hidden neurons 

 The synapses of the network make high degrees of connectivity. 

 

 

4. BACK-PROPAGATION ALGORITHM 
 

 

After forward pass for each pattern, the error signal at the output layer for j-th neuron at the 

n-th training example is defined by: 
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where dj is the desired response for neuron j. The instantaneous error energy for neuron jis 

defined as   22 ne j . In addition, the total error energy is obtained by: 

 

    21

2
j

j C

E n e n


   (10) 

 

where the set C includes all the neurons in the output layer. The average squared error 

energy is obtained by 
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where, Nis the total number of records which are used for the training procedure. The 

learning performance of the network can be checked by evaluating the rate of decrease in 

the amount of Eav. the performance can be improved by correcting the synaptic weights and 

biases by using delta rule: 
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where   is the learning-rate parameter of the back-propagation algorithm and  is the local 

gradient which is defined by: 
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The amount of learning-rate parameter   indicates the training celerity of MLP neural 

network. It means that using the smaller values for it leads to the smoother trajectory in 

weight space with lower speed of weight matrix correction. On the other hand, using large 

values for the learning-rate parameter speeds up the learning procedure but the network may 

become unstable. To avoid of the network instability, the generalized form of delta rule was 

presented by Rumelhart et al. [21], 
 

        1ji ji j iw n w n n y n       (14) 

 

  is called momentum constant and it is usually a positive number in the range of 

10    to guarantee the neural network convergence [22, 23]. An extensive study has 

been done on the optimal combination of  and   in this research. 

 

 

5. NUMERICAL EXAMPLES 
 

A three-story building has been analyzed via provided dynamic analysis software and 

another reliable software to verify DAS results validity. This benchmark structure has been 

tested by Matsuoka et al. at the National Center for Research on Earthquake Engineering 

(NCREE) [24] and its characteristics are introduced on Table 1. Time response of the third 

floor of the benchmark structure under the north-south component of El Centro (1940) 

earthquake is shown in Figure 3. Earthquake record has been normalized to 
232.0 sm for 

peak ground acceleration. 

 
Table 1: Physical parameters of the 3-story benchmark structure [23]. 

Total height (m)  9 

Width (m)  3 

Span (m)  2 

Mass of each story (tons) m 6 

Stiffness (N/m) 

K1 1.6609×106 
K2 1.9152×106 
K3 1.5694×106 

Damping (Ns/m) coefficient 

C1 8.7314×102 
C2 3.6620×103 
C3 5.4533×103 

Elasticity modulus (N/m
2
) E 1.9620×1011 
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DAS analysis results have been compared on Table 2 both with experimental results and 

ETABS analyses results. According to results compatibility and proofed accuracy of DAS it 

has been employed for time history analyses in this study. 

 

 

 

 
Figure 3. Time response of the benchmark structure. 
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Story shears are the most useful data for decision making by an intelligent control system 

during an earthquake. These forces are dependent on the amount of gravity loads and 

earthquake severity which are uncertain parameters due to variable nature of live loads and 

stochastic characteristics of earthquakes. Since the exact values of these items are unknown 

during an earthquake, it is difficult to determine the lateral forces applied to floors. 

prediction of these forces provides information required for operating control devices such 

as MR-dampers. Artificial neural network is used for this purpose in this research. 

 

Table 2: Benchmark structure analyses results verification 

 Maximum Lateral Displacement (m) 

 First Floor Second Floor Third Floor 

Experiment [23] 0.00815 0.01397 0.01826 

DAS 0.00787515 0.01298839 0.01621277 

ETABS 0.0079 0.0130 0.0162 

 Maximum Velocity (m/s) 

 First Floor Second Floor Third Floor 

Experiment [23] - - - 

DAS 0.05606566 0.09560065 0.12095745 

ETABS 0.0560 0.0954 0.1210 

 Maximum Acceleration (m/s
2
) 

 First Floor Second Floor Third Floor 

Experiment [23] 0.54 0.77 1.10 

DAS 0.54461268 0.77584747 0.97494574 

ETABS 0.5467 0.7753 0.9761 

 

Different values of gravity loads have been applied in combination with El Centro 

excitation in different intensity levels for time history analysis of the benchmark structure. 

Applied loads variation and considered values of peak ground acceleration maxa  are defined 

on Table 3. 
Table 3: The range of different loads and accelerations applied to the benchmark structure 

Load Minimum Maximum Increment 

Dead load (dN/m
2
) 400 650 50 

Live load (dN/m
2
) 50 250 25 

amax (m/s
2
) 0.2 1.4 0.1 

 

A database has been provided through time history analyses of the benchmark structure 

performed by DAS considering 702 different load cases mentioned on Table3. Afterwards, a 

MLP neural network has been trained on the information of database. This ANN predicts 

the lateral forces due to earthquake vibrations based on the measured lateral displacements 

of floors. A computer program has been developed for "Prediction of Lateral Forces by 

Intelligent System" (PLFIS). Therefore, during an earthquake PLFIS is ready to receive a set 

of displacements of floors to calculate the lateral forces by a forward pass from input to 

output layer. These forces are useful for decision making in a control system. This 
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procedure can be repeated as long as the PLFIS receives information about the 

displacements of structure. 

Input layer, first and second hidden layers, and output layer with 3, 10, 10, and 3 neurons 

respectively configure the multilayer perceptron used in PLFIS. Input vector includes the 

lateral drift of the stories and the output vector consists of seismic forces on different floors. 

Different combinations of   and   have been tried to evaluate the influence of learning-

rate parameter and momentum constant on the performance of MLP network used in this 

research. Considering 25 different combinations of the values 0.1, 0.3, 0.5, 0.7, and 0.9 for 

  and   the MLP neural network has been trained on the results of benchmark structure 

analyses. Figure 4 illustrates the rate of changes in average energy of the neural network for 

these combinations. 
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Figure 4. Rate of changes in the average energy for different values of   and   

 

According to Figure 4, for each selection of learning-rate parameter  , there is a specific 
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value for momentum constant , which leads the MLP neural network to its best training 

trajectory. Table 4 shows these values. 

 
Table 4. Best combinations of parameters   and   

Learning-Rate Parameter Momentum Constant Average Energy in the Last Epoch 

0.1 0.9 0.000381 

0.3 0.9 0.000395 

0.5 0.7 0.000405 

0.7 0.7 0.000442 

0.9 0.7 0.000453 

 

Table 4 indicates that the learning rate parameter increase results in a slight decrease in 

momentum constant . The best training graphs of Figure 4 are represented in Figure 5. All 

graphs shown in Figure 5 are closed to each other, although the best training trajectory is 

related to 1.0  and 9.0 . 

 

 

Figure 5. Different combinations of learning-rate parameter and momentum constant 

 

The intelligent system has been trained with the best values of   and  indicated on 

Figure 5. Four examples are presented in Table 5 to show the efficiency and accuracy of the 

trained intelligent system. All examples analyzed by DAS and the exact values of lateral 

displacements of floors and the earthquake forces applied to them are available in Table 5. 

If an earthquake happen while the exact values of gravity loads or the magnitude of the 

earthquake accelerations are unknown, the trained neural network will be able to predict the 

effective earthquake forces on floors when the lateral displacements of them are measured. 

Figure 10 compares the exact and estimated seismic loads on different floors of examples 1 

to 4 if the measured displacements of floors are assumed equal to those values in table 5. 
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Table 5. Different loadings for benchmark structure and its exact results by DAS 

Example 
Dead Load 

(dN/m) 

Live Load 

(dN/m) 
maxa  

(m/s
2
) 

Floor 

Lateral 

Displacement 

(m) 

Effective 

Earthquake Load 

(kN) 

1 

400 60 0.2 

1
st
 0.003153 14.072 

 2
nd

 0.005146 18.357 

 3
rd

 0.006422 22.623 

2 

620 175 1.2 

1
st
 0.020699 81.422 

 2
nd

 0.034698 119.758 

 3
rd

 0.044207 153.127 

3 

430 210 0.6 

1
st
 0.014259 55.215 

 2
nd

 0.023753 81.557 

 3
rd

 0.030077 103.387 

4 

630 110 0.73 

1
st
 0.013237 49.628 

 2
nd

 0.022192 75.009 

 3
rd

 0.028261 93.636 

 

 
Figure 6. Comparison between the exact (DAS) and predicted (PLFIS) earthquake loads 

 

It is clear from Figure 10 that the intelligent system determines the earthquake forces 

with a small amount of errors. In fact, the maximum error is related to the lateral forces on 

the third floor of example 1 which is %13.4 . Therefore it can be used as an estimating 

module of the controller system. 

 

 

6. CONCLUSIONS 
 

Determination of effective lateral forces applied on different floors of a structure, plays 

main role for deciding about the control forces to restrict the vibrations of the structure. 

These forces are functions of different parameters such as the amount of and the distribution 
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of dead and live loads, the pattern of base excitation, and the stiffness of the structure. It is 

not possible to find the mathematical form of these functions by classic methods. MLP 

neural network used for this purpose. A three-story structure analyzed for 702 different 

loadings. Afterwards, the ANN was trained on the information of these cases. Thus, the 

trained ANN is able to predict the lateral forces on floors by receiving the lateral 

displacements, measured by precise devices, of the structure. An extensive study was done 

on the learning-rate parameter and momentum constant in the generalized form of delta rule. 

This study shows that in this problem, for different values of learning-rate parameter, the 

best values of momentum constant are 9.0 and 7.0 with an average value of 8.0 . The 

predicted lateral forces on the floors of the benchmark structure for different examples show 

a high degree of accuracy. In fact, the maximum error is related to the lateral force on the 

third floor of example 1, which is %13.4 . It shows that MLP neural network is suitable for 

prediction of lateral forces during an earthquake. 
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