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ABSTRACT 
 

In this study, an approach for damage detection of large-scale structures is developed by 

employing kinetic and modal strain energies and also Heuristic Particle Swarm Optimization 

(HPSO) algorithm. Kinetic strain energy is employed to determine the location of structural 

damages. After determining the suspected damage locations, the severity of damages is 

obtained based on variations of modal strain energy between the analytical models and the 

responses measured in damaged models using time history dynamic analysis data. In this 

paper, damages are modeled as a reduction of elasticity modulus of structural elements. The 

detection of structural damages is formulated as an unconstrained optimization problem that 

is solved by HPSO algorithm. To evaluate the performance of the proposed method, the 

results are compared with those provided in previous studies. To demonstrate the ability of 

this method for detection of multiple structural damages, different types of damage scenarios 

are considered. The results show that the proposed method can detect the exact locations and 

the severity of damages with a high accuracy in large-scale structures. 
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1. INTRODUCTION 
 

Structural damages can be generally detected by comparing properties of the damaged 

structure with its intact condition. These damages can be represented as small perturbations 

in properties of the original system such as frequencies, mode shapes and damping, stiffness 

and plasticity matrices. If variations of the static or dynamic responses for all cases of 

possible damages are predicted by using an analytical model, the variations of responses 

measured can be compared with them. For all the variations predicted, the one which is 

well-matched with the values measured can be identified and the corresponding damage case 

can be also considered as the real damage of structure. However, the static or dynamic 

responses will change due to damages dependent on both the damage location and the 

damage severity [1]. Due to lack of damaged structural responses, the stiffness matrix of the 

intact structure can be used instead of the stiffness matrix of the damaged structure 

considering small errors [2].  

Several approaches have been proposed to identify the locations and the severity of 

structural damages, such as that provided by Doebling et al. [3]; these methods were based 

on ranking the modes by using modal strain energy. Shi et al. [2] presented a method based 

on variations of modal strain energy of each element before and after damages. Ghaboussi 

and chou [4] used genetic algorithm to detect the damages in a truss structure based on 

measuring the deflection. The results demonstrated that their method is suitable for detecting 

the location of damages, although the responses measured were not adequate. Perera et al. 

[5] used particle swarm optimization method in damage detection problems based on multi-

objective finite element updating procedure to demonstrate the better performance in 

comparison with genetic algorithm. Ge et al. [6] used the dynamic properties such as 

frequencies and mode shapes to locate the structural damaged regions. Fang et al. [7] 

utilized the frequency response functions (FRF) as input data using back-propagation neural 

network and a tunable steepest descent algorithm. Their method could detect the damages 

with a high accuracy. Wang et al. [8] proposed a method based on the modal strain energy 

of structural elements. They employed a technique incorporated with the singular value 

decomposition for detecting the location and the severity of damages. 

The influence of the model incompleteness and errors were studied in structural damage 

detection method based on modal data by MotaSoares et al. [9]. They utilized the static and 

dynamic structural responses in various degrees of freedom. The results of their work 

showed that the dynamic responses have a higher accuracy than the other responses. 

Seyedpoor [10] considered the structural damage detection as an optimization problem using 

a two-stage algorithm. In this method, suspected damage elements were identified by using 

modal strain energy index. The extension of actual damages was also obtained via PSO 

algorithm. Wang et al. [11] utilized the static test data and changes of natural frequencies in 

structural damage detection. In this method, the damage locations were obtained by using 

variations in static deformations and natural frequencies. Bakhary et al. [12] applied a 

substructure and mutli-stage artificial neural network models to detect the location and the 

severity of damages. Hong and Karbhari [13] presented the concept of element modal 

damage index using the modal curvatures. In their proposed method, the damage index was 

obtained based on modal displacement and modal rotation. Yang [14] applied the use of 

modal residual force to detect the damage locations and obtaining the damage severities.  
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Naseralavi et al. [15] established an improved genetic algorithm using sensitivity matrix 

and micro search for structural damage detection. in their method, the sensitivity analysis as 

an operator was added to the genetic algorithm body. Naseralavi et al. [16] presented a 

strategy for damage detection of cyclic structures based on eigenpair sensitivity matrix. In 

this method, sensitivity matrices of eigenvalues and pseudo-eigenvectors were established. 

Beygzadeh et al. [17] proposed efficient methods for optimal sensor placement (OSP) based 

on a new geometrical viewpoint for structural damage detection. Nevertheless, most studies 

for identification of structural damages have been limited to simple analytical models or 

simple laboratory tests. In previous studies, damage detection in large-scale structures has 

been studied less; because there are many difficulties in structural damage detection with 

increasing the variables (elements). 

In this study, a two-stage method is developed based on kinetic and modal strain energy 

variations and also HPSO algorithm to detect the damages in large-scale structures. The 

structural damage detection is formulated as an unconstrained optimization problem. 

Stiffness parameters in finite element model are also considered as the structural damage 

index. 

 

 

2. DAMAGE LOCATION 
 

The kinetic strain energy is employed to identify the location of damages. In finite element 

model, the kinetic strain energy of the jth element in each time of the time history dynamic 

analysis for the intact and the damaged structure is expressed as follows: 
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where I
U

jt
 and D

U
jt

  are the kinetic strain energy of the intact and the damaged structure and 

I
X

jt
 and D

X
jt

 are the vector of nodal displacements of jth element at time t for the intact and 

the damage structures, respectively, and K
j

is the stiffness matrix of jth element of structure. 

In real structures, damages may have a significant effect on the stiffness. Variation in the 

stiffness of structure produces variations in the strain energy of elements. For a small 

perturbation in the stiffness of structure, variation of kinetic strain energy of jth element at 

time t  jt
U  is expressed by the following equation: 
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It is important to utilize the useful parameters to reduce the possible errors. It is better 

that U
jt

  and I
U

jt
 are normalized to their maximums in jth element: 
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where U
jtmax

  and I
U

jtmax
are the maximum of U

jt
  and I

U
jt

 at the various times, 

respectively, and 
j

  and 
j

  are the normalized U
jtmax

 and I
U

jtmax
for jth the structural 

element. When damages occur in structural elements, the value of 
j

  will increase due to 

increasing U
jtmax

. The location of damages is detected with comparison of 
j

  and
j

 . 

According to Equations (4) and (5), if the structural elements are intact, the index j
 will be 

near zero. Otherwise, the index will be greater than zero for the damaged elements. We 

decrease the number of variables (elements) by this method. 
 

 

3. DAMAGE SEVERITY 
 

3.1. Modal Strain Energy 

If it is assumed that the displacements are corresponding to the mode shapes of the damaged 

structure, the finite element form of total modal strain energy (MSE) of the ith mode will be 

calculated as follows: 
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where 
I

U and 
D

U are total strain energy of the intact and the damaged structures in ith 

mode of the intact and the damaged structures, respectively, and I
ji  and D

ji  are the 

vectors corresponding mode shapes of jth element in ith mode of the intact and damaged 

structure, respectively. 
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3.2. Objective Function 

The goal of the damage detection problem is to determine the location and the severity of 

damages in the suspected elements based on the specifications measured in the intact 

structure. The structural damages can generally cause variations of K  in the stiffness 

matrix and also variation of MSE in each structural element. If damages occur in structural 

elements, the total strain energy changes  U is given by: 
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If we define the damaged stiffness matrix as D I
K K K

j j j
   , then corresponding 

perturbed matrix of jth element is
I
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j j j

  , where  0,1X
j
 is the damage parameter 

of  jth element. The variation in total MSE of structure can be expressed as the summation of 

changes in the components of MSE by the following Equations: 
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On the other hand, the total strain energy of the damage structure can be written as: 
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where D
i  is the vector mode shapes of the damaged structure. Therefore, the total strain 

energy changes are rewritten as: 
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To find the severity of damages, the objective function is formulated in terms of 

differences between the finite element and experimental models. Therefore, the objective 

function depends on the modal strain energy changes. By equaling Equations (9) and (11) 

we have: 
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The mode shapes are generally normalized with respect to the structural mass. By 

utilizing the orthogonality of modes and considering  2
D

D
K M

i
 , Eq. (12) can be written 

as the following matrix form: 
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     S X R   (13) 

 

The elements of matrix  S and vector  R can be expressed as follows: 
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where S
ji

 is the modal strain energy of the jth element in ith mode and R  is the response 

changes of the intact and the damaged structure. 

The quantity of the error is defined as the difference between the response predicted in 

the finite element model and the response measured in the damaged structure as follows: 
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where R  is calculated by using Eq. (15)  and R̂  is the response changes for all suspected 

damage elements which is obtained from optimization algorithm by solving Eq. (13). 

The objective function is defined as follows by an unconstrained optimization problem: 
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where  F X is an objective function that should be minimized and Xmin=1 and Xmax=1 are 

respectively the lower and upper bounds of the damage vector. In this study, a heuristic 

particle swarm optimization (HPSO) is employed to determine the damage severity. The 

damage index Xi is a parameter which is estimated during the optimization procedure. 

By using an optimization algorithm and solving Eq. (13), the damage variables are 

determined. To achieve the global minimum, the algorithm is performed in several stages 

and some variables will be eliminated in each stage. In the multi-stage algorithm, first, a 

number of variables in each stage of HPSO algorithm are considered as suspected damage 

elements which already have been detected based on section 2. Then, all the intact elements 

are eliminated in each stage and the algorithm converges to the exact locations and severity 

of damages. Zero values for the variables represents that the ith element of structure is intact 

and a non-zero value refers to the damaged element. If the algorithm does not converge in 

each stage of optimization, the variables with zero values will be eliminated and will be 

substituted by the non-zero values as new variables. 



A TWO-STAGE DAMAGE DETECTION METHOD FOR... 

 

471 

3.3. Heuristic Particle Swarm Optimization 

The heuristic particle swarm optimization (HPSO) is based on the particle swarm optimizer 

with passive congregation (PSOPC) and harmony search (HS) scheme. The HPSO algorithm 

handles the problem with specific constraints, using a fly-back mechanism method and the 

harmony search scheme deals with the variable constraints. The HPSO is initialized with a 

swarm of random particle and then by using an iteration procedure, the optimum is obtained. 

In the each iteration, the particles evaluate their fitness (position relative to the goal) and 

share memories of their best position with the swarm. Subsequently, each particle up- dates 

its velocity and position according to the its best previous position, known as pbest, and that 

of the best particle, known as gbest, found so far in the swarm. In kth iteration, updating of 

the velocity i
V and position i

X of ith particle obtained as follows [18]: 

 

     ( )
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where W is an inertia coefficient balancing global and local search, r1 and r2 and r3 are 

random sequences in the range [0, 1], C1 and C2 are the learning and social scaling factors 

which control the influence of pbest and gbest on the search process, respectively. C3is the 

passive congregation coefficient and Ri is a particle selected randomly from the swarm. Xi 

and Vi represent the current position and the velocity of the ith particle, respectively. 

 

 

4. MAIN STEPS FOR DAMAGE DETECTION METHOD 

 

The main steps for the proposed damage detection method using HPSO algorithm are 

summarized as follows: 

(a) Calculating the αj and βj by Equations (4) and (5). In this step, The possible number of 

damaged elements can be determined by comparing the αj and βj. 

(b) Setting the initial number of design variables equal to the number of suspected damage 

elements.  

(c) Employing the HPSO to find the optimal solution using a few number of optimization 

iteration. 

(d) Finding i as xi=0 for all components of damage vector and determining the total number 

of intact elements. 

(e) Removing the intact elements from the damage vector and reducing the variables of 

optimization problem. 

(f) Performing a new HPSO stage based on the new optimization size to find the optimal 

solution. 

(g) Checking the convergence by comparing R and R̂ . If two response vectors are 

identical, saving the results and stopping the optimization process, otherwise, going to the 

step (d). 
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5. NUMERICAL RESULTS 
 

In this study, three structures are selected as the numerical examples to reveal the robustness 

and accuracy of the proposed damage detection method. These structures are:  

(1) 31-Bar planer truss  

(2) Double-layer barrel vault with 576 elements 

(3) Double-layer grid with 800 elements 

Example 1 is taken from [19] for comparing the efficiency and accuracy of the proposed 

method with the other existing methods. The second and third examples are chosen 

arbitrarily.To evaluate the proposed method, time history analysis has been performed. 

Northridge and Tabas ground motions have been selected from the strong ground motion 

database of the Pacific Earthquake Engineering Research (PEER) Center [20].  

In this study, MATLAB [21] is utilized for programming the process while OpenSees 

software [22] is employed for time history dynamic analysis. The mass matrix is also 

assumed to be constant and the structural damages are simulated as a reduction in the 

Young’s modulus of elements in all examples. The HPSO algorithm parameters for 

examples have been listed in Table 1. 

 
Table 1: Specifications of the HPSO algorithm 

Parameter Description Value 

NPOP Number of initial population 50 

MNI Maximum number of iterations 850 

C1 Learning parameter 2 

C2 Social parameter 2 

C3 Passive congregation coefficient 0.01 

Wmin Minimum of inertia weight 0.4 

Wmax Maximum of inertia weigh 0.9 

 

5.1. Example 1: 31-bar planer truss 

The 31-bar planer truss shown in Figure 1 is selected from [19]. The finite element model 

has 14 nodes and 28 degrees of freedom. The first ten natural frequencies were utilized for 

structural damage detection in [19]. The material properties are taken the mass density
3

2770 kg / m  and the Young’s modulus 70E GPa . The structure is subjected to the 

vertical component of Tabas seismic acceleration. Two different damage Scenarios as shown 

in Table 2 are considered. 

 

 
Figure 1. 31-Bar planer truss  
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Table 2: Two different damages in 31-Bar planer truss 

Scenario Damaged element Damaged Severity 

A 
11 25% 

25 15% 

B 
1 30% 

2 20% 

 

5.1.1. Damage Locations 

In this stage of structural damage detection, kinetic strain energies (KSE) of all structural 

elements are determined for both the intact and the damage structures. Then, αj and βj are 

evaluated for each structural element through Equations (4) and (5). Then, suspected damage 

elements are obtained by comparing αj and βj for each element. Figures 2 and 3 show the 

value of KSE for suspected elements. It can be observed that for the damages considered, 

the KSE of elements No. 11, 25 in scenario A and elements No. 1, 2, 11 in scenario B of 

damaged structure are higher than the intact structure. 

 

 
Figure 2. Suspected damage elements in scenario A 

 

 
Figure 3. Suspected damage elements in scenario B 

 

5.1.2. Damage Severity by HPSO 

After identifying the suspected damages, the damage detection problem reduces to 6 and 7 

damaged elements for scenarios A and B, respectively, instead of 31 variables. The HPSO is 



P. Torkzadeh, Y. Goodarzi and E. Salajegheh 

 

474 474 

employed to find the damage variables through minimizing  F X by Eq. (17). In this study, 

we obtained the damage severity for both scenarios with five mode shapes; while in the 

method presented in [19] the first ten mode shapes have been employed in calculations. The 

estimation results of the damage severity are shown in Figures 4 and 5. These figures show 

that the proposed method results in a more accurate prediction of damage severities than 

Ref. [19]. The numerical results reveal the high performance of the proposed method for 

exact detecting the location and severity of various damage scenarios. 

 

 
Figure 4. Identified damage elements in scenario A 

 

 
Figure 5. Identified damage elements in scenario B 

 

5.2. Example 2: Double-Layer Barrel Vault 

In order to represent the high performance of the proposed method for large-scale structures, 

a double-layer barrel vault with covering surface 
30 40m is considered. This space 

structure with 576 elements and 432 active degrees of freedom is shown in Fig. 6. The cross 

sectional areas of elements in diagonal, bottom and top layers are
2

26 75dA . cm ,

2
30 43bA . cm and

 
2

39 52tA . cm , respectively. The mass density and the Young’s modulus 

are assumed to be 
37850kg / m   and 2

2 1 10E . GPa  . Two damage scenarios as shown in 

Table 3 are assumed in this example. The locations of damaged elements in two scenarios 

are shown in Figures 7 and 8. The structure is also subjected to the vertical component of 

Northridge seismic accelerations. 
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Figure 6. Double-layer barrel vault with 576 elements 

 
Table 3: Damage scenarios in double-layer barrel vault 

Scenario Damaged element Damaged Severity 

A 

15 45% 

84 10% 

95 35% 

140 55% 

200 25% 

314 15% 

B 

2 20% 

10 50% 

48 48% 

66 65% 

84 45% 

120 15% 

164 32% 

282 76% 

298 27% 

556 45% 
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Figure 7. Damaged elements in scenario A Figure 8. Damaged elements in scenario B 

 

For two damage scenarios, αj and βj for structural elements are determined. The first stage 

of the proposed method is performed for each scenario and the results are shown in Figures 

9 and 10. These figures show that the variables reduce from 576 elements to 19 elements in 

scenario A and 16 elements in scenario B. Also, these figures represent that the proposed 

method is very efficient for multiple structural damages; even though the damage severity is 

low. 

 

 
 

Figure 9. Suspected damage elements in scenario A 

 

In the beginning of the damage severity identification, the number of equations is 

considered equal to the number of suspected elements. To solve the Equation (13), we 

employ 19 and 16 mode shapes in scenarios A and B, respectively. The results of damage 

severities determined in different scenarios are shown in Figures 11 and 12 by using the 

HPSO algorithm. These figures show that the intact elements are removed in the second 
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stage of damage detection, though they are chosen as the suspected damage elements in the 

first stage. Figure 12 represents that the accuracy of the damage severity can slightly 

decrease when a lot of damaged elements exist; although this is a large-scale structure with a 

large number of elements. 
 

 
Figure 10. Suspected damage elements in scenario B 

 

 
Figure 11. Identified damage elements in scenario A 

 

 
 

Figure 12. Identified damage elements in scenario B 
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5.3. Example 3: Double-Layer Grid with 800 Elements 

To demonstrate the robustness of the proposed method, a double-layer grid with square on 

square pattern, shown in Figure 13, is considered for damage identification of multiple 

damage conditions. This space structure has 800 elements and 651 active degrees of 

freedom. The material properties of elements include Young’s modulus of E=2.1102 Gpa 

and mass density of ρ=7850 kg/m3. The cross sectional areas of elements in diagonal, 

bottom and top layers are Ad=10 cm2, Ab=12 cm2 and At=18 cm2, respectively. The structure 

is subjected to the vertical component of Tabas seismic acceleration. Table 4 represents the 

two types of damage scenarios with different levels of damage severity. The damaged 

elements are also shown in Figures 14 and 15. 

 

 
Figure 13. Double-layer grid with 800 elements 

 
Table 4: Damage scenarios in double-layer grid 

Scenario Damaged element Damaged Severity 

A 

10 10% 

450 20% 

720 15% 

B 

55 10% 

81 20% 

120 15% 

270 25% 

300 40% 

400 20% 

500 30% 

600 50% 

700 60% 

800 70% 
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For scenarios A and B, the modal parameters obtained for the first 10 and 25 modes are 

used to solve the Equation (13). In the first stage of damage detection, the variables reduce 

from 800 elements to 32 and 60 elements in scenarios A and B, respectively. The results are 

obtained for all the 32 and 60 suspected elements by using the frequency changes in the first 

10 and 25 modes. 

 

  
Figure 14. Damaged elements in scenario A Figure 15. Damaged elements in scenario B 

 

Damage detection results for both damage scenarios are presented in Figures 16 and 17. 

Figure 17 shows that there is an obvious error in the damage severity of element No. 290. 

This means that the accuracy of estimated damage severities can slightly decrease when 

there is a large number of damaged elements. However, this is a large-scale structure with a 

large number of damaged elements. 

 

 
 

Figure 16. Identified damage elements in scenario A 
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Figure 17. Identified damage elements in scenario B 

 

 

6. CONCLUSION 

 

In this study, a two-stage damage detection method is proposed for large-scale structures. 

First, the suspected damage locations are detected by comparing the variations in maximum 

kinetic strain energy of the intact and the damaged structures. Afterwards, the damage 

severities are obtained by employing the modal strain energy and an iterative optimization 

algorithm such as HPSO. 

The results illustrate the high performance and accuracy of the proposed method for 

damage detection of large-scale structures with multiple damages. Employing the kinetic 

strain energy of structural elements in the first stage of damage detection reduces greatly the 

number of variables from the total elements to a number of suspected damage elements. 

Moreover, using the MSE values and HPSO algorithm in the second stage of damage 

detection is more efficient to identify the damage severities; as the suspected damage 

elements have a higher MSE value than the intact elements. 

A large number of structural responses are generally required to identify the damages in 

large-scale structures such as domes, barrel vaults and double-layer grids. As there is no 

sufficient available experimental data for structural responses, errors may occur in structural 

damage detection. The advantage of the proposed method is that the number of required 

mode shapes to determine the damage severities is considered equal to the number of 

suspected damage elements. Also, employing HPSO algorithm is effective; because in each 

step of the process, the dimension of optimization problem is decreased and the numerical 

instability reaches to the minimum value. 
Finally, the results represent that the proposed method can detect the locations and the 

severity of damages in all damage cases such as small and large damage severities and also 

multiple damage cases. However, the proposed method is very efficient for damage detection of 

large-scale structures with a great number of elements and can be used in practical situations. 
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