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ABSTRACT 
 

This study was prompted by the need to elaborate on recent developments in plastic design of, 

parallel chord Vierendeel girders (VG). The paper proposes exact, general solutions to two 

novel classes of VG under practical loading conditions, a-VG of uniform section, where the 

chords and the verticals may be composed of two different prismatic sections, and b-VG of 

uniform strength, where the constituent elements are selected in such a way as to induce a state 

of equal stress for all members of the structure. It has been shown that the total weight of both 

classes of VG can be minimized by the proper selection of the relative strengths of the 

members of each system. The essence of the paper is based on a novel failure mechanism 

presented for the first time in this article. It has been shown that racking moments can be 

utilized to conduct spot checks on final solutions. Several generic examples have been 

provided to demonstrate the applications and the validity of the proposed solutions. 
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1. INTRODUCTION 
 

Despite their increased use as parts of buildings and bridges [1, 2], the plastic design of VG 

has remained a scant subject in the literature [3-5] since the early1960s.This may be attributed 

to the abundance of elastic design software as well as technical difficulties associated with the 

plastic design of such structures. VG are essentially horizontal moment frames that are ideally 

suited for plastic design treatment [6, 7]. They are frequently used as components of staggered 
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truss moment frames [8, 9], column free transfer podiums [10, 11] and similar frameworks. 

The developments introduced herein are facilitated greatly by presenting the plastic design of 

steel VG for two distinct categories of regular structural systems, VG of uniform cross section 

(UX) and VG of uniform strength (US). In regular VG the chords are identical and the bay 

lengths are the same. Two practical loading scenarios, an arbitrarily placed single normal 

nodal force and a uniform distribution of normal nodal forces have been considered for all 

categories of VG discussed in this article.  In VG of UX, the chords and the verticals are 

composed either of identical or two different prismatic sections. The plastic moments of 

resistance of the chords and the verticals are symbolized as PM and PM respectively.  is 

defined as the relative-strength factor of the vertical elements. It is shown that the introduction 

and proper selection of can lead to substantial material savings for the class of VG 

considered in this category. In plastic design of VG of UX, member strengths are utilized to 

the upmost rather than curtailing the sections down to create a state of maximum allowable 

working stress throughout the structure. Failure modes are sensitive to changes in . 

Therefore, each mode has been studied separately for 12    and 01   under each type of 

loading. In VG of US the relative strength factor of each vertical i is unique and depends upon 

the location of the member and the proportion of the racking moment imposed upon it. The 

analytic solutions of structures of US, such as laterally loaded moment frames [12-15] and 

regular VG provide minimum weight, perfect design envelopes for several member sizing 

strategies. In structures of US the limit state demand /capacity ratio is unity for all members of 

the framework, therefore no upgrading of members or groups of members can reduce the 

ultimate carrying capacity of the system. The knowledge that in structures of US all members 

tend to fail simultaneously [16, 17] provides an opportunity to control the sequences of 

formations of the plastic hinges as well as the total weight of the framing. Closed form 

generalized exact solutions have been worked out for both categories of VG introduced above. 

Despite their increased use as parts of buildings and bridges [1, 2], the plastic design of VG 

has remained a scant subject in the literature [3-5] since the early1960s.This may be attributed 

to the abundance of elastic design software as well as technical difficulties associated with the 

plastic design of such structures. VG are essentially horizontal moment frames that are ideally 

suited for plastic design treatment [6, 7]. They are frequently used as components of staggered 

truss moment frames [8, 9], column free transfer podiums [10, 11] and similar frameworks. 

 

1.1 Basic design assumptions 

The methodologies expounded in this presentation are based on the following assumptions, 

that; 

 All members are capable of developing their full plastic moments of resistance, i.e., 

all sections are selected and detailed in accordance with the pertinent code requirements. 

 Axial, shear and panel zone deformations do not effect the formation and rotation 

capacities of flexural plastic hinges. However, the need for doubler plates, stiffeners, etc, 

should be checked. 

 The possible benefits of strain hardening and yield over-strength can be ignored. 

 All design loads are applied at the joints and act monotonically throughout the history 

of loading of the structure.  
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 All joints are rigidly connected. Premature connection failure is prevented under all 

loading conditions.  

 Axial, and shear forces have little to no effect on the kinematics or failure modes of 

the types of VG under consideration. However the effects of axial loads on the ultimate 

carrying capacities of all members should be taken into consideration before a final 

selection is made. 

 The girders are externally determinate structures with no restraints against the free 

expansion of the chords in their own direction. This assumption is the key for developing 

the plausible failure mechanisms presented throughout this work. 

 It has been assumed that the constituent beams of the girder are either weightless or 

their tributary weights can be included as part of the external nodal loading. 

 

1.2 Basic design propositions 

The essence of the current study is based on the following findings and their applications for 

practical design purposes. 

 The categorization and introduction of two new classes of VG, their applications and 

relative merits. The current methods of computer aided elastic designs usually lead to either 

VG of nearly UX or curtailed down VG of US. The proposed methodologies may best be 

described as manual methods of approach that lead to similar systems with substantial 

material savings.  

 The introduction and implementation of the relative strength factor 
P
chord

P
vertical MM / , with a view to reducing total material consumption, G. The use of the 

relative strength factor for the vertical elements not only facilitates the design and 

optimization of any such VG, but also provides much needed insight into the performance of 

the framework at incipient collapse. 

 The use of joint enhancement devices such as haunches, cover plates, etc. and the 

consideration of the physical plastic hinge offsets and  as part of the design strategy in 

order to enhance the performance of the structure and to reduce material consumption. A 

small effort devoted to the detailing of the joints can lead to significant savings in total 

materials consumption. 

 The use of the kinematically plausible failure mechanisms as affected by the geometry 

and boundary support conditions of the VG, the loading, the relative strength factors as well 

as the hinge offsets. (The complete, correct collapse mechanism depicted in Figure2 has not 

appeared in the literature before.) 

 The use of the racking moments as a quick and reliable means of verification of the 

postulated results. The use of the racking moments as the product of bay shear and bay 

length alleviates the need to conduct elaborate sectional equilibrium analysis. 

 The use of the US theory has been extended to the plastic design of regular steel VG. 

Here, the author proposes a rather simple solution to a classically complicated problem.   

 The presentation of generalized, exact, closed form ultimate load formulae for 

practical design purposes. The proposed formulae can be readily used to determine the 

plastic moments of resistance of regular VG under practical loading conditions. 
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1.3 Effects of hinge offsets  

Plastic hinge offset is referred to the short distance between the point of intersection of 

structural members and the physical location of the centre of the plastic hinge along the neutral 

axis of the member under consideration. A depiction and practical classification of such offsets 

is presented in Figure 1where h and L stand for typical bay height and length respectively. 

While the physical effects of joint offsets are commonly ignored in practical design 

considerations, their inclusion as part of the design strategy can significantly improve both the 

load carrying capacities as well as the displacement development characteristics of moment 

frames in general [18,19] and VG in particular. As depicted in Figures 1 and 2, the reduced 

values of the hinge spans in the verticals, force the plastic hinges to form a small distance 

2/)( hhb   away from the center-lines of the adjoining beams. As a result, the plastic 

column rotation )](1)/[(   hh  becomes larger than the original rotation )(   of the 

selected failure mechanism. By the same token the plastic hinges a distance 2/)( LLa   

away from the center-lines of the columns rotate through an increased 

angle ).2/( asLsL  The ratios )/( hh  and )/( LL  are always larger than unity and are referred 

to as the moment control factors. A comparison of the plastic moments of resistance of the 

three joint models of Figure1 reveals that the inclusion of the physical plastic hinge offsets as 

part of the design computations increases the beam and post capacities by as much as 

)21/()1(   c and )21/()1(   b respectively,where ,/ La ,/ hb Ldcc /

and ./ hdbb  For all practical intents and purpose a and b range 

between ,2)( maxmin dbad   where mind is the lesser of the actual depths of the horizontal 

and vertical members of the joint, although any other combination may also be envisaged. The 

local over-strength factors of the end sections of the beams, and columns ,  needed to force 

the formation of the plastic hinges at the desired offset location may be specified as; 
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Figure 1. Effects of plastic hinge offsets on ultimate carrying capacities of moment connections, 

(a) Idealized plastic hinge with no offsets, (b) Simple rigid connection, (c) Simple connection 

with added haunches. 
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weight of each pair of haunches may be considered as equivalent to the weight of unit length 

of the heavier of the two members forming the structure. The total weight of each pair of 

haunches may therefore be estimated as hM c
P  and  hM c

P  for 1  and 1  

respectively, where  is a constant of proportionality [20]. For ,1 1 and 1  the total 

weight of the VG including the added haunches can be estimated as; 

 

 ])1(2)1)(1(2[ hnhnnLMG cc
P    (2) 

 

 

2. VIRENDEEL GIRDERS OF UNIFORM SECTION 
 

Unlike the familiar collapse mechanisms of symmetrically loaded VG, Figures 3 and 4, where 

the plastic hinges form symmetric failure patterns, the un-symmetrically loaded girders tend to 

fail through one sided local mechanisms as depicted in Figures  2b and 2c. What is uncommon 

about these collapse patterns is that all plastic hinges form on the side of the load that is closer 

to a support with all affected beam and column hinges rotating through the same total angles 

)(    and  respectively. This phenomenon is directly associated with larger racking 

moments caused by the larger reaction closer to the point load and the fact that the elements of 

the intact segment can not absorb the same rotations internally. Rotation   is a magnification 

of )(   due to plastic hinge offsets b, measured from idealized joint locations of the 

intersecting posts and chords. It is instructive to note that rotations  and are associated with 

two interrelated rigid body displacements hhoriz  . and .)(.  Lsnvert   The point of 

application of the applied load sinks a vertical distance ,)( Lsn  which is shorter than 

.vert by the small amount .L  It may be noted  that the inclusion of the offsets as part of the 

design strategy, reduces the external work of the point load W, and hand increases the internal 

work of the plastic hinges. While .horiz  does not appear in the virtual work equation of the 

current problem, it indicates that a restraint at the upper chord level could drastically alter the 

envisaged failure mechanism and the corresponding collapse load. 

 

2.1 Regular parallel chord VG of UX under arbitrarily placed point load 1   

The failure mechanism corresponding to 12    is presented in Figure 2b, where the pair of 

plastic hinges at i=0 occur  at the left hand ends of the chords of the first bay instead of 

forming at the ends of the first vertical from the left for 1  as depicted in Figure 2c. 

However, the generalized virtual work equation for the particular loading and haunch 

enhanced VG of UX of Figure 2b can be summarized as; 

 

  PP MsMLsnW )1(2)(4)(   (3) 
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it yields the exact and unique [21-23] solution for 12   as; 
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Figure 2. (a)Regular parallel chord vierendeel girder of UX under arbitrarily placed point 

load,(b) Unique failure mechanism with both vertical and horizontal displacement components 

for 1 , (c) Unique failure mechanism with both vertical and horizontal displacement 

components for 1  

 

 Note that the inclusion of the vertical offset b in the work Eq. (3) makes the load carrying 

capacity of the girder dependant on h, whereas Eq.(5) indicates that the classical condition 

a=b=0 is totally independent of the geometric influence of h on W. 
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 The total weight of the same VG without due consideration to hinge offsets, i.e. for 

0   and 1 , can also be estimated as; 
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efficiencies of the subject VG with and without added haunches. 
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Solution: From Eq. (1) ,50.1)21/()1(   b  from Eq. (4) .1035.0 WLM P
haunch  Eq. 

(2) gives; .9808.21035.08.288.28 22 WLWLLMG P
haunchhaunch    Similarly Eqs. (5) and 

(8) give WLM P 1666.0  and 22 0999.41666.06.24 WLWLG   respectively. The last 

term of Eq. (2) describes the total weight of the added haunches as .4347.0 2WL  This 

implies that the inclusion of the offsets can increase the theoretical carrying capacity of the 

girder by as much as 40%. Conversely the total weight of the girder may be reduced by 

more than 25%. 

 

2.1.2 Example 2 

Verify the validity of Eq. (5) for 2 and all values of s and n. 

 Solution: For 2  Eq. (5) reduces to the simple formula; nWLsnM P 4/)(  . The 

support shear may be worked out as nWsnV /)(1   and the corresponding racking moment 

of the first bay as, nWLsnLV /)(1  . Racking equilibrium of the first bay (measured from the 

left hand support) requires that; .2]2/)[(1
PPPPP MMMMMnWLsnM  Therefore, 

the solution is satisfactory. The yield criterion is intact, equilibrium has been satisfied and the 

failure mechanism is kinematically correct, and, as such the solution is unique and can not be 

far from a minimum weight design [24-26]. 

 

2.2. Centrally loaded regular parallel chord VG of UX, 12    

The ultimate carrying capacity of the practically interesting case of a centrally loaded, 

idealized regular parallel chord VG of UX with zero offsets and 1 may be directly obtained 

from Eq.(5) by substituting for s=n/2, i.e., 
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2.3 Regular parallel chord VG of UX under arbitrarily placed point load 1  

The virtual work equation for the specific loading and VG of Figure 2c can be summarized as; 
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 Substituting for ,
)(

)(











sn

s

))(21( 







sn

n
 and  

)(
)(









sn

n
 in Eq. 

(8), it yields the exact solution for 1 as; 
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The solution for the idealized VG of UX with zero offsets may be extracted from Eq.(9) as; 
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2.3.1 Verification 

It might interest the reader to note that for 1 , solutions (5) and (10) coincide. A quick and 

reliable means of verifying the validity of the virtual work solution (10) is to check the 

equilibrium and the status of the yield criterion of any bay of the framework that contains at 

least two plastic hinges. This may be achieved by considering the fact that the racking moment 

ii
R
i LVM  of any bay i is a statically determinate quantity that is equal to the sum of end 

moments of the chords of that bay. The first and the last bays of VG often carry the largest 

shear and the racking moments along the length of their chords and are ideally suited for static 

computations. Therefore, if the left hand side support reaction , the racking moment and the 

right end chord moments of the first bay of the subject girder are designated as ,LR RM1 and 

1M respectively, then it may be shown that nsnWRL /)(   and ./)(1 nsnWLM R    The 

static equilibrium of this particular bay at incipient collapse requires that; 

 

 11 22
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WLsn
M PR 


   (11) 

 

Substituting for 
PM from (10) into (11) gives, after some rearrangement; 
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Eq. (12) indicates that static equilibrium has been satisfied and that the yield criterion has not 

been violated. Therefore the proposed solution is unique, exact and valid. While there is no 

need to repeat the verification process, it might add insight to estimate the remaining unknown 

moments for all other bays containing plastic hinges. 

 

2.3.2 Centrally loaded regular parallel chord VG of UX, 1  

The ultimate carrying capacity of a centrally loaded regular parallel chord VG of UX 

for 1 may be directly obtained from Eq. (10) by substituting for s=n/2, thus; 
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 As anticipated, Eqs. (7) and (13) yield the same results for VG of UX with .1  



A NEW APPROACH TO PLASTIC DESIGN AND OPTIMIZATION OF... 

 

379 

2.4 Regular parallel chord VG of UX under uniformly distributed normal nodal loading  

As practical cases of interest, the plastic limit state analysis of regular, parallel chord, haunch 

enhanced VG of UX under uniformly distributed normal nodal forces for both shear as well as 

flexural type collapse modes, is presented in this section. The shear modes, as depicted in 

Figure 3, are those in which the plastic hinges of the chords form one or more bays away from 

the center line of the structure. 

 

 
Figure 3. Shear type failure mechanisms for regular, parallel chord vierendeel girder under 

uniform loading, (a) Support region hinges forming within end chords, (b) Support region 

hinges forming within end posts 

 

2.4.1 The Shear mode 12   and 3n  

The location of formation of the interior chord hinges is denoted by the integer s for both 

cases. The generalized virtual work equation pertaining to the shear type mechanism of Figure 

3a for a VG of UX under a uniform distribution of normal nodal forces can be expressed as; 
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 Substituting for )21/(   in Eq. (14) gives after simplifications; 
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 The correct value of the integer, s corresponds to the maximum PM and may be computed 

from 0




s

M P

, thus; 
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which, in turn gives s as the nearest whole number to; 

 

 ,/]}2)2)]()21(2{[]21(2[])21(2[ 2  nns   (17) 

 

 The solution for the idealized VG of UX with zero offsets may be obtained from Eq. (15) 
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as; 
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and  /])2()2()2([ 2 ns   (19) 

 

2.4.2 The Shear mode, 01   and 3n  

The generalized virtual work equation for the shear type mechanism of Figure 3b, where the 

support region plastic hinges form at the ends of the first vertical can be expressed as; 
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 Substituting for )21/(   in Eq. (20) gives, after eliminating   
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 Once again, the correct value of s corresponding to the maximum PM and may be 

computed from 0




s

M P

, thus; 

 

 0]2)21)(2[()21(22  nnss   (22) 

 

which in turn gives s as the nearest whole number to 

 

 ,/]]2)21)(2[()21()21(2 2  nns   (23) 

 

 The corresponding of the idealized VG with zero offsets may be deducted from Eq. (21) as; 
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
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



 (24) 

 

this in turn gives s as the nearest integer to 

 

  /]11[ ns   (25) 

 

As expected, solutions (18) and (24) coincide at .1  It is insightful to note that nearest 
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integer to s reduces towards unity with increasing and points towards the formation of a 

shear type failure, whereas, the same integer increases towards n/2 with diminishing  and 

hints at the possibility of formation of a flexural failure mechanism. The flexural type failure 

can also be regarded as a special case of the generalized shear type collapse. 

 

2.4.2.1 Example 3 

Demonstrate the use of Eqs. (24) and (25) for the practical range of variation of 202  n . 

 Solution: The solution of Eq. (24) for normal ranges of applications of n and 1  is 

presented in Table 1. The corresponding total weight function for the VG of regular formation 

based on zero offsets and shear type modes of failure may be computed as; 
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 (27) 

 

where Lhk / and are the aspect ratio and a constant relating weight per unit length to 

plastic moment of resistance respectively. For practical ranges of application, i.e. 3<n<20, the 

post relative strength factor for minimum weight ranges from 1 to .5.1  

 

Table 1:Variations of s and 
PM with respect to n for 1  

 
 

2.4.2.2 Example 4 

Verify the validity of Eqs. (18) and (24) for 1 and n=6. 

 Solution: From Table 1; s=2 and 3/2WLM P  . The left hand support shear may be 

calculated as 2/51 WV   and the corresponding racking moments as, 2/51 WLLV  . Racking 

equilibrium requires that; PPPPPP MMMMM
WL

M
WLn

M 



8

7

2

3

4

5

4

5

4

)1(
1 . 

Therefore the solution is satisfactory. 

 

2.4.2.3 Example 5 

The purpose if this example is to demonstrate how the total weight of a VG of UX can be 

optimized under practical loading conditions. Given; n=6 and h=L find the value of  for 

which the total weight of the VG under study is a minimum. 
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 Solution: As a point of reference, Table1, or Eqs.(18) or (24)give for 1 ; 

s=2 .3/2WLM P   A plot of G against ,02   as shown in Figure 5, indicates that for this 

particular example the total weight is a minimum at 0.1 , whereas the 

minimum PM corresponds to 2.1 . Obviously similar plots may be drawn for all practical 

combination of ,k  n and .  

 

2.5 The flexural mode VG of UX  

Flexural type failures such as those depicted in Figure 4 can also be regarded as special cases 

of the generalized shear type collapse, and as such it becomes instructive to find at what value 

of   the two modes coincide? This may be achieved by comparing the virtual work equations 

of the two modes or by putting 2/)1(  ns in Eq. (25) and solving for . 

 

 
Figure 4. Flexural type failure mechanisms for regular, parallel chord vierendeel girder under 

uniform loading, (a) Support region hinges forming within end struts, (b) Support region hinges 

forming within end chords 

 

2.5.1 The flexural mode, 10    

The virtual work equation for failure mode (4a) where the support region plastic hinges form 

at the ends of the verticals rather than the ends of the chords may be expressed as; 
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 Substituting for )21/(   in Eq.(28), it gives after eliminating  and rearranging for 

;PM  
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where, 2/]1)1[(1  nn has been introduced to account for both even and odd numbers of 

bays ( 01 n for n=even and 11 n for n=odd). The classical solution of Eq. (28), for 

0   can be derived directly from Eq. (29) as; 
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
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 Next, putting 0  and 2/)1(  ns in Eq. (25) and solving for  , it 

gives 2)1/(4  n , which implies that the condition 10    can be satisfied only 

when 3n . 

 

2.5.1.1 Example 6 

Compare the economics of the shear and flexural failure modes for the VG of example 2. 

 Solution: From Eq. (25) flexural type failure can occur only when ].16.0)16/(4[ 2  

 

 
Figure 5. Variations of G and PM for examples 1 and 2 

 

 The weight curve of Figure 5 indicates that the flexural type failure offers the least 

economical option compared with all values of  associated with shear type collapse. 

 

 

3. VIERENDEEL GIRDERS OF UNIFORM STRENGTH 
 

In VG of UX the relative strength of the vertical members with respect to those of the chords is 

signified by a single variable 02   . It was shown that  could be selected in such a way as 

to engage as many members with plastic hinges at both ends of as possible, thereby reducing 

the total material weight to a practical minimum. The question that arises is, if it is possible to 

define a i for any bay i, such that all members of the structure would fail in a state of over 

complete collapse, with plastic hinges forming simultaneously at both ends of all members? If 

this can be achieved then the system would be one of US and by default one of absolute 

minimum weight. While this sounds as a complicated proposition, its solution is simple and 

the comprehension easy to follow.  
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Figure 6. Parallel chord vierendeel girder of uniform strength under nodal loading 

 

3.1 Theoretical development  

Consider the collapse mechanism of Figure 6, where due to the development of 4(n-1) inactive 

plastic hinges along the chords of the structure the girder tends to fail through a state of over 

complete collapse with only two sets of active plastic hinges along the chords of the structure. 

The inactive hinges are shown as black solid circles. For the sake of simplicity the effects of 

joint offsets  and    have been omitted from the forthcoming discussions. 

 

 
Figure 7. Free-body diagram of members of bays i and i+1 (axial forces not shown for clarity) 

 

 An examination of the forces acting on the free body diagrams of bays i and i+1 at incipient 

collapse, Figure 7, reveals that the sum of the plastic end moments of resistance of the 
thi chord may be expressed as; 
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and that the end moments of the thi vertical may be computed as ,/)( 1
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3.2 Regular, uniform strength parallel chord VG of US under single Point load 

A comparison of the collapse modes of VG of UX, Figure 2 and US, Figure 6 shows that two 

systems respond entirely differently under the same type of loading. In VG of UX analysis 

leads to the determination of the ultimate moments of resistance, whereas in VG of US the 

pre-assigned distribution of the moments of resistance controls the performance of the system 

at incipient collapse. More over, since the entire static solution of the VG of US is contained in 

Eqs. (31) and (32), the computational effort becomes independent of elaborate virtual work 
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analysis. In other words, the problem essentially becomes that of solving a structurally 

determinate system. Therefore, considering the postulated collapse mode of the girder under 

consideration as presented in Figure 8, the distribution of the plastic moments of resistance of  

 

 
Figure 8. Regular uniform strength parallel chord vierendeel girder under point load 

 

the members of the chords may be expressed directly as; 
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where, the step function ,00 si  for si  , and 10 si  for i >s. Since 10  n  

then the distribution of plastic end moments of the vertical members may be summarized as 

the absolute value; 
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3.2.1 Example 7 

The purpose of this example is to demonstrate how to generate a VG of US using Eqs. (31) 

and (32).  Given; n=6, L=h, s=2, 0  . Determine i such that the subject VG acts as a 

structure of US. 

 Solution: From Eq. (33), 6/1 WLM P  and .12/32 WLMM PP  We know that; 160   . 

Eq. (34) gives upon substitution ,21  ,2/12   and .2543   This implies that the 

strength of all members of the VG can be expressed in terms of a single 

variable ,6/WLM P  i.e., ,21
PPP MMM    .2/6543

PPPPP MMMMM   Similarly the 

required strengths of the vertical elements may be expressed as   ,0
PP MN   ,21

PP MN    

,2/2
PP MN  PPPP MNNN  543 and .2/6

PP MN   

 

3.2.2 Example 8 

Verify the validity of Eqs.(33) and (34). 

 Solution: Since )/(( sns    and that the moments of resistance of the bays of the girder 

can be summarized as nLsnWM P
i 4/)(    for si 1  and nWsLM P

i 4/  for nis 1 ;  

then the generalized virtual work equation for the particular loading and failure mode, Figure8 

may be expressed as; 

is n

 W 
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 Since all conditions of the uniqueness theorem are satisfied the solution is valid and exact. 

 

3.2.3 Example 9 

Compare the weight efficiencies of the VG of Examples 1 and 7. 

 Solution: Using a weight equation similar to (6) gives; 
2

, 3833.2)]5.0135.021)(1.01()5.042(2[ WLLMG P
USideal    as compared with 

29808.2, WLUXGhauinch  and 2
, 0999.4 WLG UXideal  for the idealized haunch enhanced and 

regular VG of US. 

 

3.3 Regular, uniform strength parallel chord VG of US under uniform loading 

Figures  9a  and  9b  depict two admissible collapse mechanisms for the subject VG with even 

and odd numbers of bays respectively. However, because of symmetry only the solution for the 

left half of the girder is presented. 

 

 
Figure 9. Regular Uniform strength parallel chord vierendeel girder under uniform loading, (a) 

Admissible failure  mechanism for even number of bays, (b) Admissible failure mechanism for 

odd number of bays. 

 

 Following the general guidelines of the preceding section, the distribution of the plastic 

moments of resistance of the members of the VG of US may be expressed directly as; 
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3.3.1 Example 10 

Redesign the VG of UX of Example 5 as a VG of US, and compare the material consumption 

of the two solutions. Given; n=6, L=h, 0   and L
bc 1.0 . 

 Solution: From Eq. (36), 8/561 WLMM PP  , 8/352 WLMM PP  and .8/43 WLMM PP   
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We know that; 160   . Eq. (37) gives upon substitution; ,5/851   ,3/442    

and .03   In other words, the strengths of all members of the VG can be expressed in terms 

of the single variable ,8/5WlM P  i.e., ,61
PPP MMM   5/352

PPP MMM   and 

.5/43
PPP MMM   Similarly the required strengths of the vertical elements may be expressed 

as; ,60
PPP MNN   ,5/851

PPP MNN  3/442
PPP MNN  and .03 PN  Next, using a 

weight equation similar to (27) gives; )1.01()2.06.01[(2,  LMG P

USideal   

2675.6)]033.16.11( WL  as compared with 2
, 66.12 WLG UXideal  for the comparable 

VG of UX. 

 

4. CONCLUSIONS 
 

The formulization of generalized, exact plastic analysis has remained one of the most 

challenging aspects of efficient VG design for several years. The essence of the paper is based 

on the novel failure mechanisms presented for the first time in this article. 

An attempt has been made in the current article to revitalize the plastic design of VG by 

presenting them as two less generalized but practical categories of structural systems.  

It was shown that for any VG of UX a relative strength factor could be found for which the 

total weight of the structure is a minimum. It was also demonstrated that VG of US are by 

default frameworks of absolute minimum weight.  

 It has been observed that racking moments can be utilized to conduct spot checks on final 

solutions. Further, it was shown that a small effort devoted to the detailing of the joints can 

lead to significant savings in total materials consumption. 

 Several generic examples were provided to demonstrate the validity and applications of the 

proposed formulations. The proposed formulae are theoretically exact and are best suited for 

preliminary, manual as well as spreadsheet computations. 
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