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ABSTRACT 
 

The present study attempts to apply an efficient yet simple optimization (SOPT) algorithm 

to optimum design of truss structures under stress and displacement constraints. The 

computational efficiency of the technique is improved through avoiding unnecessary 

analyses during the course of optimization using the so-called upper bound strategy (UBS). 

The efficiency of the UBS integrated SOPT algorithm is evaluated through benchmark 

sizing optimization problems of truss structures and the numerical results are reported. A 

comparison of the numerical results attained using the SOPT algorithm with those of 

modern metaheuristic techniques demonstrates that the employed algorithm is capable of 

locating promising designs with considerably less computational effort. 
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1. INTRODUCTION 
 

Truss structures are distinguished as one of the most frequently used structural systems in 

practical applications. Wide industrial applications of trusses arise the need for optimum 

design of such structural systems using efficient structural optimization techniques. In 

general, optimum design of truss structures can be divided into three main categories as 

sizing, geometry, and topology optimization. In sizing optimization the cross-sectional areas 
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of structural members are considered as design variables. In geometry (or shape) 

optimization, the best positions of a selected group of joints in a structure are determined. In 

both the aforementioned optimization categories topology of a structure is assumed to be 

fixed. However, it is sometimes more expedient to search for the optimum topology of a 

structure, which entails considering the presence or absence of structural components, such 

as elements and nodes. The present study covers sizing optimization problems of truss 

structures under stress and displacement design constraints.  

During the past decades, stochastic search techniques or metaheuristics, such as genetic 

algorithms [1], simulated annealing [2], particle swarm optimization [3], ant colony 

optimization [4, 5], harmony search method [6], etc., have received increasing attention and 

found plenty of applications in structural optimization field. The rising popularity of these 

techniques arises from (i) the lack of dependency on gradient information; (ii) inherent 

capability to deal with both discrete and continuous design variables; and (iii) automated 

global search features to produce reasonable solutions for complicated problems. These 

advantageous features of metaheuristics make it possible to avoid cumbersome formulations 

frequently encountered with traditional optimization techniques, such as mathematical 

programming [7] and optimality criteria [8, 9] approaches. The state-of-the-art reviews of 

metaheuristics are outlined in Refs. [10, 11] considering their applications in the structural 

design optimization. 

In spite of many advantageous characteristics of the metaheuristic algorithms, the slow 

rate of convergence towards the optimum and the need for a high number of structural 

analyses are conceived as the downside of the search features of these techniques in 

structural optimization applications. It is generally known that response computations of 

designs sampled during a search process usually occupies 85-95% workload of a 

metaheuristic technique [12], and thus large number of structural analyses substantially 

increases the total computing time. Here, one solution to this is to reduce the total 

computational time by taking advantage of high performance computing methods, such as 

parallel or distributed computing techniques. The idea in this approach is to distribute the 

total workload of the optimization algorithm amongst multiprocessors of a single computer 

or within a cluster of computers connected to each other via local area network. In 

Hasançebi et al. [12] it is demonstrated that a maximum speedup ratio between 12.2 and 

16.8 can be achieved for three design optimization instances solved using a cluster 

computing system consisting of 32 processors. Another approach, which is more 

straightforward and easier to apply, is to develop efficient strategies for diminishing the 

number of structural analyses required in the optimization process. The latter, can be 

performed through developing efficient optimization techniques capable of locating 

reasonable solutions using less computational effort. Recently, an upper bound strategy 

(UBS) is proposed in Kazemzadeh Azad et al. [13], where unnecessary structural analyses 

are avoided during the course of optimization through a simple and efficient mechanism. 

The key issue in the UBS is to identify those candidate solutions which have no chance to 

improve the search during the iterations of the optimum design process. After identifying 

those non-improving solutions, they are directly excluded from the design population 

without any structural analysis performed, resulting in a significant saving in computational 

effort. 
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Besides the wide development of modern metaheuristic algorithms for structural 

optimization purposes, still there exists a great demand for easily understandable yet 

efficient optimization algorithms for practical applications. This is due to the fact that, in 

general, design engineers may not be very familiar with theoretical aspects of the available 

advanced metaheuristic algorithms in detail. Hence, simple optimization algorithms that are 

capable of locating solutions in an acceptable level of conformity with those of modern 

metaheuristics are beneficial for facilitating the wide use of optimization tools in real world 

structural design applications. In this regard, recently, an efficient yet simple optimization 

(SOPT) algorithm with two main steps, namely exploration and exploitation, is developed 

by the authors for engineering design optimization applications [14]. Besides the reasonable 

convergence speed of the algorithm, ease of understanding/implementation and less number 

of parameters required to execute the algorithm are among advantageous characteristics of 

the SOPT algorithm. In Ref. [14] efficiency of the SOPT algorithm is shown using two well-

known benchmark engineering optimization instances; namely optimum design of a welded 

beam and a pressure vessel.  

The present study attempts to apply the SOPT algorithm to optimum design of truss 

structures under stress and displacement design constraints. Furthermore, the computational 

efficiency of the technique is improved through avoiding unnecessary analyses during the 

course of optimization based on the recently proposed UBS. The efficiency of the UBS 

integrated SOPT algorithm is evaluated through several benchmark sizing optimization 

problems of truss structures and the numerical results are reported. A comparison of 

numerical results with those of modern metaheuristic techniques demonstrates that the 

SOPT algorithm is capable of locating promising designs with considerably less 

computational effort. 

The remaining sections of the paper are organized as follows. The second section 

provides the formulation of the design optimization problem. In the third section the SOPT 

algorithm is described in detail. The fourth section describes integration of the UBS with 

SOPT for reducing the computational effort in the design optimization process. The 

efficiency of the algorithm is investigated in the fifth section using some benchmark 

optimization examples of planar truss structures. A brief conclusion of the study is presented 

in the last section. 

 

 

2. STATEMENT OF THE SIZING OPTIMIZATION PROBLEM 
 

The sizing optimization problems of steel trusses can be formulated as follows [15]: 
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In Eq. 1, X is a candidate design, νmin,n  and νmax,n are the lower and upper bounds of the 

n-th design variable νn and D is the total number of design variables. In Eq. 2, f(X) is the 

objective function (penalized weight of the structure), W(X) is the net weight of the 

structure, which is simply calculated by multiplying the volume of a structure by the density 

of constructional material, and Φ(X) is the penalty function employed for handling the 

constraints. In Eqs. 3 and (4), gi(X) and dj(X) are the stress and displacement constraints 

respectively, σi and σai are the computed axial stress in the i-th member and its allowable 

value, respectively, djand daj are the computed displacement in the direction of the j-th 

degree of freedom and its allowable value, respectively, NM is the total number of truss 

members and ND is the total number of active degrees of freedom. 

 

2.1. Penalty function 

An appropriate constraint handling technique should be employed to satisfy the feasibility 

criteria of the designs generated in the course of optimization. In this regard, penalty 

functions are popular tools widely used for handling constraints. In the study the following 

penalty function proposed by Rajeev and Krishnamoorthy [16] is used: 
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where K is a penalty constant used to adjust the intensity of penalization and C is the total 

amount of constraint violation for each candidate solution. 

 

 

3. THE SOPT METAHEURISTIC ALGORITHM 
 

The steps in the implementation of the SOPT algorithm are outlined as follows. 

Step1. Initial population: Form an initial population by randomly spreading individuals 

(solutions) over all the search space in a uniform manner. This step is applied once. 

Step 2. Evaluation: The initial population is evaluated, where structural analyses of all 

individuals are performed with the selected cross sectional area value for design variables, 

and force and deformation responses are obtained under the applied loads. The objective 

function values of individuals are simply calculated from Eq. 2. 

Step 3. Saving the best solution: Keep the best individual found so far in a separate place 

or as a member of the population.  

Step 4. Standard deviation calculation: Compute the standard deviation of each design 

variable. The computed standard deviations can be considered as a measure of convergence 
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for each design variable in the course of optimization.  

Step 5. Exploitation/exploration phase: The SOPT algorithm is composed of two main 

phases namely exploration and exploitation. In this algorithm the exploration and 

exploitation phases are performed one after another as follows. In each phase, generate new 

individuals around the best found solution using Eq. 7. Here, the i-th parameter of a new 

individual Xnew is generated as: 

 

 )()exp/(exp)()( iloreloitibestinew RandXX  

 

(7) 

 

where Xbest is the best individual found so far, Rand(i) is a normally distributed random 

number with a mean of zero and a standard deviation of σ(i) which is equal to the standard 

deviation of the i-th design variables of all the members of the population (see Step 4) [17]. 

The balancing parameter λ is as a positive value controlling the balance between the 

exploration and exploitation characteristics of the SOPT algorithm. Typically for 

exploration and exploitation phases λ takes two different values, i.e. λexploit and λexplore, where 

λexploit can be selected equal to 0.5λexplore by which, in comparison to the exploration phase, 

the generation of new candidate solutions is more probable in the vicinity of the best 

solution. It is worth mentioning that the described exploration and exploitation formulations 

are considered based on a relative comparison between the aforementioned two phases in 

terms of the generated candidate solutions and do not imply a general definition for these 

two concepts. 

Step 6. Elitism: After each exploration/exploitation phase, replace the worst members of 

the population with the generated better new ones. A similar evolutionary scheme can be 

found in evolution strategies [18]. 

Step 7. Termination: Go to Step 2 until a termination criterion is met, which can be 

imposed as a maximum number of iterations or no improvement of the best design over a 

certain number of iterations. 

 

 

4. IMPROVING COMPUTATIONAL EFFICIENCY OF SOPT 
 

The necessity for a large number of structural analyses involved in the optimization task can 

be addressed as a major drawback for almost all metaheuristic based structural design 

optimization algorithms. To this end, the computational efficiency of the SOPT algorithm is 

accelerated here by using the recently developed UBS method [13]. In the UBS, 

unnecessary structural analyses are avoided during the course of optimization through a 

simple, yet, efficient mechanism. The key issue in the UBS is to identify those candidate 

solutions which have no chance to improve the search during the optimum design process. 

After identifying those non-improving solutions, they are directly excluded from the 

structural analysis stage, reducing the total computational effort. 

In this strategy, after generation of a candidate solution X from the current best design in 

a usual manner, i.e. through application of Eq. 7. Then, in the first step the net weight W(X) 

of each candidate solution is calculated only; not the penalized weight. This computation is 

straightforward and can be done with a trivial computational effort. If a candidate solution 
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has a net weight W(X) smaller than or equal to the penalized weight of the worst design of 

population f(Xworst), the structural analysis of the candidate solution is processed and its 

penalized weight is computed. In the opposite case, i.e. W(X)> f(Xworst), however, the upper 

bound rule is activated and the candidate solution is automatically removed from the 

population without undergoing structural analysis phase for response computations, since 

such a candidate solution is unlikely to replace any individual of the population in Step 6 of 

the SOPT algorithm. 

Apparently, the key factor in this approach is to define the penalized weight of the 

current worst solution of the population as an upper bound for the net weight of the newly 

generated candidate solutions. Thus, any new candidate solution with a net weight greater 

than this upper bound will not be analyzed and this will lessen the computational burden of 

the optimization algorithm. The main question here is the amount of saving in structural 

analyses through the proposed strategy. This is answered in the next section through 

benchmark examples of truss optimization. 

 

 

5. NUMERICAL EXAMPLES 
 

In the present section the performance of the UBS integrated SOPT algorithm is 

investigated through well-known benchmark design optimization examples of trusses; 

namely a 10-bar truss, a 17-bar truss, and a 45-bar truss bridge. Since the first example is 

studied in two different cases, totally four different test cases are involved in this study. The 

population size in the SOPT algorithm is set to 50 and the value of balancing parameter   in 

Equation (7) is set to 1.5 and 0.75 for exploration and exploitation phases, respectively. The 

value of penalty constant, K, for all the examples is taken as 1.5. Due to the stochastic 

nature of the technique, each design example is independently solved ten times using the 

SOPT algorithm and the best solution obtained is adopted for the sake of comparison. Here, 

the maximum number of iterations is considered as the termination condition, which is set 

to 100, 200, and 300 iterations for the first, second, third examples, respectively. 

 

 
Figure 1. 10-bar truss structure, a = 360 in (914.4cm) 

 

5.1. Example 1: 10-bar truss structure 

The sizing optimization of the 10-bar truss (Figure 1) is considered as the first design 

example. A total of 10 design variables are used corresponding to cross-sectional areas of 
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the truss members. The members are subjected to the stress limits of  25 ksi (172.369 

MPa) and the displacements of all nodes in both the lateral and vertical directions are 

limited to  2.0 in (5.08 cm). For the design purpose, two different load cases are 

considered (Figure 1) in two different test cases: case-1: P1 = 100 kips (444.82 kN) and P2 = 

0, and case-2: P1 =150 kips (667.23 kN) and P2=50 kips (222.41 kN).The minimum 

allowable cross-sectional area of each member is limited to 0.1 in
2 

(0.6452 cm
2
).The density 

of the material is 0.1 lb/in
3 

(2767.99 kg/m
3
) and the modulus of elasticity is 10,000 ksi 

(68,947.6 MPa). 

The optimum designs found by the SOPT algorithm are presented in Tables 1 and 2 in 

comparison to the formerly reported results in the literature. In Table 1 the feasible best 

(optimum) design located by the SOPT algorithm in case-1 is compared with the available 

results based on an adaptive real-coded genetic algorithm (ARCGA) [17], an artificial bee 

colony algorithm (ABC) [19], and a modified artificial bee colony algorithm (MABC) [19]. 

According to these results, the SOPT algorithm locates an optimum design weight of 5061.47 

lb, which is very close to the minimum weight obtained by ARCGA. However, the number of 

structural analyses performed using the SOPT algorithm is only 3405, which is significantly 

less than those of the ARCGA (i.e. 10000), ABC (i.e. 20000), and MABC (i.e. 20000) 

algorithms. It should be noted that a total of 5000 structural analyses required by the SOPT 

algorithm in 100 iterations (when UBS is not employed) is reduced to 3405 analyses as a result 

of integrating the UBS with the SOPT algorithm.  

 
Table 1: Optimization results for the 10-bar truss structure (case-1) 

Design 

variables 

ARCGA 

[17] 
ABC [19] 

MABC 

[19] 
SOPT 

A1 30.5984 34.3057 30.6573 30.5156 

A2 0.1002 0.1 0.1 0.1011 

A3 23.1714 20.6728 23.0429 22.9003 

A4 15.1958 14.5074 15.2821 15.224 

A5 0.1 0.1 0.1 0.1007 

A6 0.5409 0.6609 0.5626 0.5473 

A7 7.4625 7.8696 7.4721 7.4854 

A8 21.0346 20.3461 21.0084 21.0724 

A9 21.5182 22.0232 21.5094 21.6934 

A10 0.1 0.1 0.1 0.1 

Weight (lb) 5060.9 5095.33 5060.97 5061.47 

Analyses 10000 20000 20000 3405 

 
As presented in Table 2, in case-2, the SOPT algorithm locates an optimum design weight 

of 4678.33 lb, which is very close to the minimum weight obtained by MABC. However, the 

number of structural analyses performed using the SOPT algorithm is only 3733, which is 

significantly less than those of the ARCGA (i.e. 10000), ABC (i.e. 20000), and MABC (i.e. 

20000) algorithms. It should be noted that, a total of 5000 structural analyses required by the 

SOPT algorithm in 100 iterations (when UBS is not employed) is reduced to 3733 analyses as 

a result of integrating the UBS with the SOPT algorithm. 
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Table 2: Optimization results for the 10-bar truss structure (case-2) 

Design variables 
ARCGA 

[17] 
ABC [19] MABC [19] SOPT 

A1 23.5986 24.8143 23.6383 23.5986 

A2 0.1009 0.1 0.1 0.105 

A3 25.1175 26.0480 25.3237 25.0415 

A4 14.5383 14.8772 14.4108 14.2109 

A5 0.1001 0.1 0.1001 0.1001 

A6 1.9713 2.0055 1.9707 1.9852 

A7 12.3923 12.4467 12.3781 12.4958 

A8 12.7439 12.6835 12.7739 13.0064 

A9 20.3697 18.8669 20.2678 20.2979 

A10 0.1 0.1 0.1 0.1 

Weight (lb) 4677.24 4691.07 4677.06 4678.33 

Analyses 10000 20000 20000 3733 

 

 
Figure 2. Optimization history of the 10-bar truss example (case-1) 

 

 
Figure 3. Optimization history of the 10-bar truss example (case-2) 

 

The optimization histories showing the variation of the best penalized weight during the 
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iterations of the SOPT algorithm is shown in Figures 2 and 3. 

 

5.2. Example 2: 17-bar truss structure 

The 17-bar truss structure, shown in Figure 4, is chosen as the second sizing optimization 

example. As depicted in Figure 4, a single vertical load of 100 kips (444.82 kN) is applied at 

node 9. Here, the cross sectional areas of elements are considered as 17 sizing design 

variables, for which the minimum allowable value of each variable is 0.1 in 2 (0.6452 cm 2 ). 

The density of the utilized material is 0.268 lb/in 3 (7418.214 kg/m 3 ) and the modulus of 

elasticity is 30,000 ksi (20,6842.8 MPa). The members are subjected to the stress limits of 

 50 ksi (344.738 MPa) and displacement of all nodes in both horizontal and vertical 

directions is limited to  2.0 in (5.08 cm). 

 

 
Figure 4. 17-bar truss structure, a = 100 in (254 cm) 

 

 

Figure 5. Optimization history of the 17-bar truss example 

  

The optimization history showing the variation of the best penalized weight during the 

iterations of the SOPT algorithm is depicted in Figure 5. In Table 3 the best design located 

by the SOPT algorithm is compared with the available results in the literature. According to 
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these results, the SOPT algorithm locates an optimum design weight of 2582.09 lb, which is 

very close to the minimum weight obtained by ARCGA. However, the number of structural 

analyses performed using the SOPT algorithm is only 6617, which is significantly less than 

those of the ARCGA (i.e. 10000), ABC (i.e. 20000), and MABC (i.e. 20000) algorithms. It 

should be noted that, a total of 10000 structural analyses required by the SOPT algorithm in 

200 iterations (when UBS is not employed) is reduced to 6617 analyses as a result of 

integrating the UBS with the SOPT algorithm.  

 
Table 3: Optimal cross sectional areas (in

2
) for the 17-bar truss 

Design 

variables 
ARCGA [17] ABC [19] MABC [19] SOPT 

A1 15.891 12.9587 15.6762 15.7803 

A2 0.105 0.1 0.1 0.1 

A3 12.101 11.5965 12.0491 12.0897 

A4 0.1 0.1 0.1 0.1 

A5 8.075 6.3320 8.1312 8.0825 

A6 5.541 6.5356 5.62020 5.6171 

A7 11.97 12.4792 11.8822 11.9724 

A8 0.1 0.1 0.1 0.1004 

A9 7.955 9.0901 8.0517 7.9277 

A10 0.1 0.1 0.1 0.1013 

A11 4.07 5.1578 4.0912 4.0259 

A12 0.1 0.1 0.1 0.1023 

A13 5.705 6.4197 5.6746 5.6875 

A14 3.975 4.0553 3.9864 3.9905 

A15 5.516 5.7984 5.6729 5.5159 

A16 0.1 0.1 0.1 0.1 

A17 5.563 6.8470 5.4907 5.6292 

Weight (lb) 2581.95 2642.45 2582.27 2582.09 

Analyses 10000 20000 20000 6617 

 

5.3. Example 3: 45-bar truss bridge 

For the third example, sizing optimization of the 45-bar truss bridge shown in Figure 6 is 

carried out. Here, nine vertical loads of 10 kips (44.48 kN) are applied at nodes 3, 5, 7, 9, 

11, 13, 15, 17 and 19. The stress limit is 30 ksi (206.843 MPa) in both tension and 

compression for all the members of the structure. The displacements of all nodes in both 

lateral and vertical directions are limited to  2.0 in (5.08 cm). The material density is 0.283 

lb/in
3 

(7833.41 kg/m
3
) and the modulus of elasticity is 30,000 ksi (206,842.8 MPa). For 

design purpose, the members of the structure are linked into 23 groups (sizing design 

variables) taking into account the symmetry of the structure. The lower bound of all sizing 

variables is 0.1 in
2 
(0.6452 cm

2
).  
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Figure 6. 45-bar truss bridge, a = 200 in (508 cm) 

 

Table 4: Optimal cross sectional areas (in
2
) for the 45-bar truss bridge 

Design 

variables 
Members ABC [19] 

MABC 

[19] 
SOPT 

G1 1, 44 5.4746 4.5996 4.6279 

G2 2, 45 4.5989 3.7966 3.6981 

G3 3, 43 4.1703 3.0497 3.202 

G4 4, 39 3.7872 3.2841 3.3323 

G5 5, 41 0.1 0.1069 0.1003 

G6 6, 40 4.1735 3.9279 3.9324 

G7 7, 42 0.9497 0.9649 0.9287 

G8 8, 38 1.5902 1.2133 1.2041 

G9 9, 34 6.2656 7.6553 7.6821 

G10 10,36 2.2039 2.1993 2.24167 

G11 11, 35 1.3925 1.1929 1.193 

G12 12, 37 0.1 0.1001 0.1004 

G13 13, 33 0.1 0.1008 0.1 

G14 14, 29 9.0689 9.5360 9.36 

G15 15, 31 1.5310 1.2173 1.2055 

G16 16, 30 1.6245 1.4190 1.3068 

G17 17, 32 2.9146 2.5513 2.5968 

G18 18, 28 0.1 0.1 0.1001 

G19 19, 24 9.0685 11.5439 11.7376 

G20 20, 26 1.6352 1.2807 1.2362 

G21 21, 25 0.1 0.101 0.1 

G22 22, 27 4.4798 3.7598 3.7531 

G23 23 0.1 0.1017 0.102 

Weight (lb) 8267.21 7968.95 7968.59 

Analyses  40000 40000 9930 

 

The optimization history showing the variation of the best penalized weight during the 

iterations of the SOPT algorithm is depicted in Figure 7. In Table 4 the optimum design 

located by the SOPT algorithm is compared with the available results in the literature. 

According to these results, the SOPT algorithm locates an optimum design weight of 

7968.59 lb, which is slightly better than the minimum weight obtained by the MABC 

algorithm. However, the number of structural analyses performed using the SOPT algorithm 

is only 9930, which is significantly less than 40000 analyses carried out by the ABC and 

MABC algorithms. It should be noted that, a total of 15000 structural analyses required by 
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the SOPT algorithm in 300 iterations (when UBS is not employed) is reduced to 9930 

analyses as a result of integrating the UBS with the SOPT algorithm. 

 

 
Figure 7. Optimization history of the 45-bar truss example 

 

 

7. CONCLUSION 
 

In the present study, a recently developed metaheuristic technique so called SOPT algorithm 

is applied to sizing optimization of truss structures. The computational efficiency of the 

technique is enhanced through avoiding unnecessary analyses during the course of 

optimization using the UBS. The performance evaluation of the SOPT algorithm through 

benchmark sizing optimization examples reveals that the employed algorithm is capable of 

locating promising designs with considerably less computational effort. Besides the 

efficiency of the SOPT algorithm, ease of understanding/implementation and less number of 

parameters required to execute the algorithm are some advantageous characteristics of the 

SOPT algorithm. 
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