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ABSTRACT 
 

Different methods are available for simultaneous optimization of cross-section, topology 

and geometry of truss structures. Since the search space for this problem is very large, 

the probability of falling in local optimum is considerably high. On the other hand, 

different types of design variables (continuous and discrete) lead to some difficulties in 

the process of optimization. In this article, simultaneous optimization of cross-section, 

topology and geometry of truss structures is performed by utilizing the Multi Heuristic 

based Search Method (MHSM) that overcome the above mentioned problem and obtains 

good results. The presented method performs the optimization by dividing the searching 

space into five subsections in which an MHSM is employed. These subsections are 

named procedure islands. Some examples are then presented to scrutinize the method 

more carefully. Results show the capabilities of the present algorithm for optimal design 

of truss structures. 
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Systems in structural engineering usually endure the burden and transfer the forces to 

supports. In addition to be safe and applicable, these systems should be designed with 

less cost and material. Therefore, optimal design of skeletal structures like trusses will be 

categorized to four main divisions: sizing optimization, topology optimization, shape or 

geometry optimization and configuration optimization. 

In the case of sizing, optimization will be carried out for appropriate amounts of 

cross-sectional areas with fixed nodal coordinates (fixed geometry) and fixed 

connectivity of members (fixed topology). In application of engineering, standard 

sections which are available are usually used. In this regard, optimization of separated 

sections is developed by selecting the members from the available profiles [1-12]. 

Concerning the shape or geometry, nodal coordinates of truss are adjusted for 

optimal design. This issue is often considered conjugated with cross-sections in related 

articles. That is, the main goal in these type of optimization is to find the cross-sections 

and nodal coordinates [13-17]. 

In topology optimization, best connectivity of the members is determined. This 

optimization is often performed by simultaneous optimization of cross-section assuming 

the geometry of the structure to be fixed [18-25]. 

For configuration optimization of structures the best cross-section of members in the 

best configuration and positioning of nodes are determined. In this method, all three 

variables are included in variables vector of the design. This type of optimization leads 

corresponds to a large design space and increases the probability of getting trapped in 

local optimum. To avoid this problem, some researchers assume the design variables 

(geometry and topology) to be constant and then manage the optimization process. They 

then select the resulted optimized design as an initial design for total optimization and 

repeat the process again [24-26]. According to methods which are proposed by some 

other researchers, meta-heuristic based algorithms were employed to the simultaneous 

optimization of Sizing, topology and geometry (configuration) of truss structures [27-

32]. Lack of cognition of constants and relations in such algorithms and also largeness of 

searching space, in some cases, result in local optimum. 
Parallel global optimisation meta-heuristics using an asynchronous island-model is 

proposed by Izzo et al for parallel computing in optimization [33]. In this method, initial 

population is divided to smaller subsections which are called islands. Then, meta-heuristic 

based methods are assigned to each island and optimization is performed. Subsequently, 

after some specific repetitions, during migration process best design of each island is 

substituted to low quality design in other islands. This process is continued until completion 

of all repetitions based on determined amount for migration interval. Therefore, in each 

meta-heuristic based method, dependence of results on relations and parameters is 

decreased remarkably. On the other hand, using the parallel processing systems is accessible 

as a result of parallel search technique in design space. This ability result in an increase of 

the speed of optimization operation and more suitable results are obtained. 

In order to select current methods in each island, meta-heuristic based algorithms are 

separately studied, their features are specified and the best ones are selected based on the 

quality of results and the speed of optimization operation. Then, the performance of the 
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selected algorithms is improved by some additional alterations. Accordingly, the Multi 

Heuristic based Search Method (MHSM) is designed for optimizing the configuration of 

truss structures. 
 

 

2. FORMULATION OF TRUSSES CONFIGURATION PROBLEM 

Formulation of trusses configuration problem is defined as the following: 

Minimize 

    



Ne

i

iii aAF
1

,    (1) 

 

Subject to 

 

C1 : Truss is acceptable to the user (2) 

C2 : Truss is kinematically stable (3) 

C3 : σj ≤ σ all (Ten) , σj ≤ σ all (Com)  j=1,2,…,Ne (4) 

C4 : ∆k ≤ ∆k
max

               k=1,2,…,Ndof (5) 

 

In equation (1), design variables are the cross-sectional areas of the members [A], 

and design variables of geometry [ξ] are defined as following: 

 

[A]=[a1,a2,…,aNos]    ;     aiS    ;    i=1,…,Nos (6) 

ξ m
min

 ≤ ξ m (Xm ,Ym ,Zm) ≤ ξ m
max

   ,   m=1,…,Nn (7) 

 

In equations (1) to (7) 

ρi: Materials density of member i. 

li(ξ): Length of the ith member of truss which depends on geometric variables ξ. 

ai: Cross-section area of the member i. 

Ne: The number of members of the optimal truss. 

S: List of the available profiles whose sizing variables are selected. 

Nos: Number of cross-section areas in each design. 

Nn: Number of all the geometric variables in optimization problem. 

σj: Stress in the jth element of structure. 

σall: Allowable tensile and compressive stress. 

k: Nodal displacement of kth degree of freedom. 

k
max

: Allowable displacement of kth degree of freedom. 

ξ m
max

: Upper bounds of the design variable ξm. 

ξ m
min

: Lower bounds of the design variable ξm. 

 

Constraint C1. Some nodes like supports and points of applied load are remarkably 

important in optimization of trusses. In other words, in some cases it is required to find 

the optimal configuration as fixing some nodes. Therefore, design optimization should 
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include free nodes and also nodes with fixed positions. On the other hand, to achieve a 

practical design is an important issue in truss optimization, and some time it is preferred 

to have symmetric nodal coordinates even if the design is not quite optimal. Star Graph 

is used as ground structure in this article [19-21]. This ground structure avoids producing 

long members by contacting each node to its neighbor nodes using additional members. 

 

Constraint C2. Different designs with various configurations are created in optimization 

based on meta-heuristic methods, and some of them may be unstable. In this article, 

unstableness of each design is investigated before it is analyzed. If the design is unstable, 

it is fined. In this regard, firstly the static formulaes are utilized in order to control the 

geometric stability, and then if necessary, the stiffness matrix of structure is employed 

[21]. Kinematically stable structures have symmetric and positive define stiffness 

matrices [34]. Thus, a structure will be stable if all entries of main diagonal in the 

decomposed stiffness matrix (in the process of Cholesky method) are positive and non-

zero. 

 

Constraint C3. The stress, which is due to composition of loading, should be in allowed 

region for all the members of the truss with optimal configuration. This allowed amount 

is determined by code. Therefore, in optimization process, after controlling the stability 

of structure, stress of each member of truss will be calculated. The amount of stress 

constraint violation is determined by Eq. (8). 

 


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(8) 

 

In this equation, the quantity of the constraint violation of the members will be summed 

together when the number of loading combinations is nlc [26]. 

 

Constraint C4. After analyzing the stable truss and computing the amounts of stress, the 

displacement of active nodes in each design will be calculated. If the displacement of the 

ith degree of freedom locates in the allowed range, the design will not be fined. 

Otherwise, the quantity of the constraint violation of displacement is obtained based on 

Eq. (9). 
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In these equations, the quantity of the constraint violation of nodal displacements will be 

summed together when the number of loading combinations is nlc. 

3. PROPOSED OPTIMIZATION METHODS 

 

Meta-heuristic or heuristic algorithms are intelligent random search methods which 

search the design space by different points (different design). The logic of these 

algorithms is in a way that they need to produce various enhanced designs during the 

optimization. Even though, various parameters in meta-heuristic methods and also the 

lack of information about the quantity of these parameters in each optimization problem 

results in local optimum in some cases. That is, finding correct amount of parameters 

and equations in each meta-heuristic method is a difficulty of optimization based on 

these algorithms. Various researchers tried to improve each method by offering different 

solutions and also strove to decrease the impact of parameters of related algorithms [36-

40]. 

In this article, the optimization of configuration for the truss structures is performed 

by Multi meta-Heuristic based Search Method (MHSM). Reducing the effect of 

parameters of meta-heuristic algorithms and increasing the domain of searching of the 

design space is the special feature of this method. According to this method, initial 

population is divided to several islands. Each island has optimization method with 

distinctive structure based on a meta-heuristic algorithm. This arrangement of action 

leads to variation in answers. The proposed MHSM method is performed in two variants 

of MHSM.1 and MHSM.2 [21 and 41]. 

 

  
(a) MHSM.1 (b) MHSM.2 

Figure 1 Two MHSMs of the Multi Heuristic based Search Method 

 

In MHSM.1, based on the migration rate, the best members of each island after 

several specific generations are alternatively transferred to other islands based on 

migration interval. Each subpopulation, in migration process, has a random destination 

which be identified in each period of migration. Migration operator, transfer a specific 

percent of subpopulation to another island and substitute a low quality member. Each 

existed meta-heuristic method, after migration process, combines migrated and residual 
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members in order to obtain a population of higher quality. Due to the presence of 

migration mechanism in MHSM.1, answers have remarkable diversity during search 

process. Hence, each optimization problem is investigated by several methods and the 

design space is immediately searched. Then, the best results are shared among other 

islands and new members are allocated to each island. Figure 1 shows the optimization 

process based on MHSM.1. 

 

 
Figure 1. First variant of Multi Heuristic Searching Method (MHSM.1) 

 

In MHSM.2 during the migration interval, most appropriate island is recognized in 

attaining to minimum. Then, the algorithm on the best island overcomes in the entire 

system. In other word, best results which are obtained in different islands, gather in the 

selected island and optimization process will be continued based on the algorithm of 

selected island. This feature results in increasing the speed of the optimization process. 

Distributing population among islands 
 

Investigating migration interval 
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Creating initial population 
 

Investigating convergence and controlling number generation 

steps 

Satisfying migration interval condition 

Not satisfying migration 

interval condition 

Forming population in island (i) ; i=1, 2, …, 5 
 

Perforing optimization process of island (i) based on one of GA, 

HS, CSS, ACO and PSO methods using Figure 3 structures 
 

Creating new population in island (i) 
 

Separation of bests in each island based on migration rate 
 

Selecting destination of migration for each island, randomly 
 

Migration the best of each island to destination 
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Determining and introducing best structure as optimum design 
 

Not satisfying  

finishing condition 

Satisfying finishing condition 

End 
 



CONFIGURATION OPTIMIZATION OF TRUSSES…  

 

157 

Migration interval in this method is more than MHSM.1. Figure 2 illustrates the 

optimization process based on this method. 

 

 
Figure 2. Second variant of the Multi Heuristic Searching Method (MHSM.2) 

 

In issues such as optimization of sizing, topology and geometry that as a result of 

numerous design variables, searching space become large and the effect of parameters of 

each meta-heuristic method play important role in the optimization process, design space 

will be effectively investigated taking the advantages of the MHSM methods and parallel 

computers, and finally suitable answers will be obtained. Constant and stable state of 

MHSM methods results in the tendency of the optimization algorithm to global optimum 

answer. Flowchart of the structural section of the optimization process for truss structure 

configurations is presented in Figure 3. 
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Not satisfying migration 
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and creating new population in the selected island 

Performing optimization process according to selected island method 
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finishing condition 
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Figure 3. Part of the optimization process of truss configuration  

 

3.1. Island (1) 

In this article, optimization of island 1 is performed based on the Genetic Algorithm 

(GA) [42]. In this regard, optimization process is performed as the following [1, 13]: 

Firstly, an initial population is randomly formed with binary characters. Then, the 

value of the object function and the constraint violations are determined. In this article, 

the proposed penalty function with dynamic features is used which has a good 

compatibility with the algorithms of the MHSM. 

 

gpenalty CKAFf .).,(   

  



nlc

q

iqg AgC
4

1

,,0max   

  nkjjLnkK j ,...1   ;   1 
 

(10) 

 

In this equation giq(A,) is the characteristic of the constraint violation, and Cg is the 

representative of the sum of all violations that has occurred by the structure in order to 

resist all the load combinations of the nlc. K is the constant of dynamic penalty, kj is a 

constant quantity of each migration range for total number of nk, and j is the counter of 

each migration interval. Afterwards, the merit of each design is computed based on the 

object function and the proposed penalty function. 

Then, the bests are tried to be selected using a replication process that is inspired by 

natural development rules. In this island, tournament method [43] is used for the 

selection process. Once the selection process is completed, the crossover operator is 

applied in order to produce a population of offsprings. For this purpose, uniform 

crossover is used with small changes [44]. Therefore, parent’s strings are selected based 

on the crossover rate. Then, a string which is called Mask, is randomly produced. This 

string consists of binary bits as length of each string. In the next step, a uniform random 

number is produced for each bit and is compared to the amounts resulted from Eq. (11). 

Offspring’s bits is selected based on the Mask pattern if the random number become 
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more than the amount obtained by Eq. (11). That is, if the amount of the bit in the Mask 

is equal to one, the bit of the first offspring will be from the first parent, otherwise, it is 

selected from the second parent. Although, while the randomly produced number is less 

than the amount obtained from Eq. (11), the bit of the offspring’s strings are selected 

from more meritorious parent. 

 

 
T

t
PPPP Min

C
Max

C
Min

CC 2222 
 

(11) 

 

where PC2 is the secondary rate of crossover in each generation for each bit, Max
CP 2 and Min

CP 2  
are, respectively, maximum and minimum rate of the secondary crossover in the 

optimization process (based on the input of user), t is the number of current generation, 

and T is the total number of generations. In this article, a method is proposed which is 

used dynamically to apply the mutation operator. Thus, firstly, the total number of 

making generations is divided to the number of bits of each substring in design variable 

of sizing and several intervals are formed. Then, the common operator of the mutation is 

applied on all the bits in each substring of the cross-section area. After performing this 

process in the first interval, the first bit at the left-side of each substring of the cross-

section area becomes stabilized, and the rate of the mutation probability for it will be 

equal to zero, and the optimization process will be also continued till the end of the 

second interval of the total number of making generations. Afterwards, the mutation rate 

of the two bits at the left-side becomes zero and this process is continued till the last bit 

in the substring of the cross-section area. It should be mentioned that the rate of the 

mutation probability for the residual bits in each interval is performed utilizing the 

following equation: 

 

 
T

t
PPPP Min

m
Max

m
Max

mm 
 

(12) 

 

In which above equation, Pm is the mutation rate in each interval, Max
mP and Min

mP are, 

respectively, the maximum and minimum amount of mutation rate in optimization 

process (based on input of the user), t is the number of present interval and T is the 

number of all intervals. 

It should be noted that bits of geometric planning variable is changed like mutation 

process of substring of cross-section, based on the numbers of bits in geometric 

substring. However, bit of topological design variable is changed during the entire 

process of optimization with equal probability. 

Allocation of different mutation and crossover rate for each design variable are some 

other preparations in this article for island (1). Therefore, variables of geometry, sizing 

and topology are not merged with equal probability. This has considerable effect in 

escaping from the local optimum. 
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3.2. Island (2)  

In island (2), the Harmony Search (HS) algorithm is used [45]. According to this 

algorithm in the process of optimization, each musician substitute with design variable 

and collection of musician make the vector of design variable. Quality of music is 

substituted by the value of the object function. Optimization process for this algorithm is 

performed as follows [4]: 

First, HS parameters such as HMCR, PAR, HMS, etc. are initialized. Then, the initial 

population (HM) based on HMS (number of population members in island (2)) is 

randomly formed as a matrix. 

Dimension of this matrix is determined by design variables (sizing, topology and 

geometry). 

 

NHMS
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N

N

xxx

xxx

xxx

HM







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













21

22
2

2
1

11
2

1
1

 

(13) 

 

In the above matrix Xi refers to sizing, topology and geometry variables. In MHSM for 

the current island in spite of general process of HS, initial population without constraint 

violation is not required and fitness of each design is specified on the basis of constraint 

violation and objective function. In order to compute the amount of fitness for each 

design, proposed penalty function is used according to Eq. (10). 

Optimization process is continued for HM by producing a new member based on the 

HS rules. Vectors of the new design variables X = [x1, x2, …, xN] are made by three 

possible variants of HS rules and HMCR and PAR parameters. Accordingly, each 

amount of x1 proportionate to the type of design variable, can be randomly produced, 

again, or can be determined by the existed corresponding amounts in HM. This step is 

performed by producing a uniform random number between zero and one, and 

comparing it with the amount of HMCR. If the random number is more than HMCR, xi 

is determined randomly and based on the type and variable range; otherwise, the amount 

of xi is settled by HM. Determination of xi in HM is by PAR parameter. Therefore, a 

uniform random number between zero and one is produced and by comparing it with the 

value of the PAR, xi is defined. If the random number is less than PAR, xi will be 

selected from the existing corresponding value of the HM. Otherwise, xi is determined 

based on the value of the bw and from neighborhood of corresponding values with xi at 

HM. Finally, if the vector of design variable is better than the worst vector in HM, then 

the new vector will replace the worst vector. Otherwise, HM remains without change. 

This article suggest that PAR and bw parameters should change based on the amount 

of migration the interval as follow: 
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nkjj
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PARPAR
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 
nkjj

nk

bwbw
bwbw ,...1

ln
exp maxmin

max 







  (15) 

 

where, the indices max and min refer to the maximum and minimum values of the 

related parameter. j and nk are the number of migration interval and total number of 

migration interval in the optimization process, respectively. Migration interval, based on 

amount of PAR and bw parameters, has different values that ascends for PAR and 

exponentially descends for bw during entire process of the optimization. Varying these 

parameters has valuable influence on the optimization process [46]. 

Allocating different rates of HMCR, PAR and bw for each design variables 

(geometry, sizing and topology) is another feature of the island (2) which is proposed in 

this article. 

 

3.3. Island (3)  

The Charged System Search (CSS) method is used to perform optimization process [47]. 

In the CSS method, optimization process is performed based on the charged particles 

laws and Newton laws of motion. Thus, each vector of design variables is considered as 

a charged particle which possesses electric field as a result of electric charge. Each 

particle is affected by electric field of other particles and proportional to the amount of 

electric force of other particles and Newton laws of motion, the particle move in design 

space and results in new position. The optimization process is performed as follows [12, 

17 and 48]: 

Firstly, like other heuristic methods, initial population is randomly produced and 

other parameters of the CSS method such as the number of particles, number of selected 

particles of CMS and so on are initialized. Then, the fitness of each particle is computed 

according to value of the object function and the proposed penalty function in Eq. (10). 

The magnitude of the charge of each particle (qs) and motion probability of particle of s 

affected by the force of the particle r, Prs, is obtained by the following equation: 

 

eSizeChs
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fitfit
q
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worsts
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(16) 
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    1
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fitbest and fitworst are, the fitness of best and worst existed design in current population, 

respectively. A small population which consists of the bests of the existed population is 

called CMS is produced after computing the prs and qs. Then, the resultant electrical 

force acting on a particle is computed based on following equation: 
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a

q
qF rssrrs
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  arifXXP
r

q
qF rssrrs

srr rs

r
ss  

,
2

 (19) 

 

where a is the diameter of each particle, rrs is the distance between two particles r and s 

that is defined according to position of the particles Xr and Xs. New position of each 

particle in the design space is determined by the following equation: 

 

oldsvsaoldsnews vkrFkrXX ,21,,   (20) 

oldsnewsnews XXv ,,,   (21) 

 

r1 and r2 are uniform random number between zero and one. vs is also the velocity of the 

particle s, ka and kv are, respectively, velocity and acceleration coefficient which are 

computed to correspond with MHSM as: 

 
  nkjnkjka ,...115.0   (22) 

  nkjnkjkv ,...115.0   (23) 

 

New position of each particle is evaluated during the optimization process, providing the 

amount of exiting from the allowed range. Design variables will then modified based on 

the HS method and CMS population. 

 

3.4. Island (4)  

Ant Colony Optimization (ACO) is used in island 4 [49], that is performed by the 

following steps [25, 50, 51]: 

Firstly, the amount of initial pheromone is specified based on the number of design 

variables and possible states of each variable. In order to calculate fit0, the first cross-

section area in the profile list is initialized for sizing variables. Additionally, topology 

and geometric variables are also calculated based on the ground structure, and then the 

initial pheromone is determined according to following equation: 

 

0

0

1
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Then, the probability of selection for each type of design variables is evaluated based 

on the following equation [6]: 
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where, ij is the amount of existed pheromone in the ith path (state number i for the 

considered design variable) for the design variable number j and N is the number of 

possible states for the considered design variable. vi is zero for the geometric and 

topological variables, and it is also calculated by Eq. (26) for sizing design variable. 

 

i

i
A

1
  (26) 

 

Ai refers to the selected cross-section area of the ith path. Afterwards, the amount of the 

variable number i is determined by pij by the roulette wheel method in GA. After 

determining the amount of all design variables, the amount of the pheromone in the 

selected path is diminished as follows: 

 
old

ij

new

ij  .  (27) 

 

where ρ is the local update parameter assigned to a suitable value between zero and one. 

Then, the amount of fitness is calculated and existed population designs are sorted. 

Pheromone evaporation process for all the possible paths is done based on the following 

equation: 

 

  old

ijr

new

ij e  .1  (28) 

 

In Eq. (28), er is a constant referred to as the evaporation rate. After evaporating of 

pheromone, the process of depositing pheromone in the selected paths is executed as 

follow: 

 

     







 



r

k
kijrijrijij TkTe




1

.  
(29) 

 

In the above equation, λr is number of the best existed population and k is the number 

of considered design in small population of the bests.  
kij  in Eq. (29), is calculated for 

ant number k by the following equation: 

 

 
k

kij
fit

1
  

(30) 

 

Finally, criterion of local search is investigated. In this article, if no variation is 

created in several continual populations for fitness of the best design, the local search 

process will be performed, based on the HS method, in the neighbourhood of the best 

design. Allocating evaporation rate and different local search parameters to each type of 

design variables (geometry, sizing and topology) are other facilities in this article. 
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3.5. Island (5)  

In island (5), Particle Swarm Optimization (PSO) [52] proportional to type of design 

variable is used in two standard states according to references [53, 54] and binary state 

according to reference [24]. This algorithm is influenced by the social behaviour of the 

birds in searching food. The PSO algorithm begins by producing an initial random 

population. Particle number i (design) which introduces bird number i in the group of 

birds is defined by two variables Xi = [xi1, xi2, ..., xiN] and Vi=[vi1, vi2, ..., viN]. Xi is the 

position and Vi is velocity of the particle number i in the search space. In each step of 

group movement (repeat), particle position is changed by two amounts of Pbest,i and Rbest. 

In order to this, position of each particle (design) is determined in the search space 

utilizing the following equations: 
 

11   k
i

k
i

k
i VXX  (31) 

   k

i

k

best

k

i

k

ibest

k

i

k

i XRrcXprcVV 

22,11

1   (32) 

 

In the above equation, Xi
k
 is the position of the ith particle in the iteration number k, 

Vi
k
 is velocity of the ith particle in the iteration number k, ω is the inertia weight in the 

previous step, r1 and r2 are the uniform random numbers between zero and one, C1 and 

C2 are the acceleration constants. P
k
best,i is the best position of the particle i from first to 

iteration number k, R
k
best is the best position of a particle from the first to iteration 

number k among all the particles. 

In this article, the amount of variable velocity of the particles is controlled by 

defining minimum and maximum velocity (vmin , vmax). In this regard, vmin and vmax, based 

on the coefficient of maximum and minimum amount of x is defined, proportional to the 

type of design variable [55]. 

In order to be compatible with the MHSM, the parameter ω is changed based on the 

number of migration interval as: 
 

 
nkjj

nk
,...1minmax

max 





  (33) 

 

ωmax and ωmin are the maximum and minimum values of ω, respectively. j and nk are the 

number and total number of migration interval in the optimization process, respectively. 

Therefore, the value of ω is linearly altered in each migration, with initial amount of 

ωmax and final amount of ωmin. This method in altering the ω resulting in a balance of the 

local and global search in the PSO algorithm [53]. 

In this article, acceleration constants (C1 and C2) and ω for each type of design 

variables (geometry, Sizing and topology) are different. 
 

 

4. NUMERICAL EXAMPLES 
 

Some common instances in optimization of truss structures configuration are 

subsequently evaluated in order to investigate the ability of the MHSM algorithm, and 
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their results are compared to those of some reliable references. Results show that MHSM 

searches the space more accurately compared to other methods and leads to better 

results. 

 

4.1. A ten-bars planar truss structure 

A ten-bar planar truss is investigated as the first example. Figure 4 and Table 1 illustrate 

the necessary information for the considered truss. 

 

 
Figure 4. Initial configuration of a ten-bar planar truss 

 

Table 1. Data for design of the ten-bar planar truss 

Design variables 

Size variables: Ai ; i = 1, 2, …, 10 ; Geometry variables: Y1, Y3, Y5 

Constraint data 

σ all (Ten) = σ all (Com) = ±17240 N/cm
2
 = ±25 Ksi ; ∆ y

all = 5.04 cm = 2 in 

180 in (457.2 cm) < Y1 < 1000 in (2540 cm) ; 180 in (457.2 cm) < Y3 < 1000 in (2540 

cm)  

180 in (457.2 cm) < Y5 < 1000 in (2540 cm)  

 = 10 in (25.4 cm) 

List of available profiles 

ai  S = {1.62, 1.8, 2.38, 2.62, 2.88, 3.09, 3.13, 3.38, 3.63, 3.84, 3.87, 4.18, 4.49, 4.80, 

4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 18.8, 19.9, 22.0, 22.9, 

26.5, 30.0, 33.5} (in
2
) 

ai  S = {10.45, 11.61, 15.35, 16.90, 18.58, 19.94, 20.19, 21.81, 23.42, 24.77, 24.97, 

26.97, 28.97, 30.97, 32.06, 33.03, 37.03, 46.58, 51.42, 74.19, 87.1, 89.68,91.61, 100.0, 

103.23, 121.29, 128.39, 141.94, 147.74, 170.97, 193.55, 216.13} (cm
2
) 

Loading data 

P2Y = P4Y = 445.4 kN = 100 Kips 

Material properties 

E = 6895000 N/cm
2
 =10

4
 ksi ; ρ = 0.0271264 N/cm

3
 =0.1 lb/in

3
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Figure 5 is resulted as plan of an optimum six-node planar truss after executing the 

optimization process based on the MHSM. 
 

 
Figure 5. Optimal geometry and topology for the ten-bar truss, based on the MHSM 

 

Results of the optimum design are compared to the related references in Table 2. This 

shows that the MHSM leads to more enhanced results than other references. 
 

Table 2. Final design of sizing, shape and topology for the ten-bars truss 

Design 

Variables 
Rajan [26] Tang [29] Rahami [30] MHSM 

A1 - in
2
 (cm

2
) 9.9 (63.871) 13.5 (87.1) 11.5 (74.19) 13.5 (87.1) 

A2 - in
2
 (cm

2
) 9.4 (60.645) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

A3 - in
2
 (cm

2
) 11.5 (74.19) 7.97 (51.42) 11.5 (74.19) 11.5 (74.19) 

A4 - in
2
 (cm

2
) 1.5 (9.677) 7.22 (46.58) 5.74 (37.03) 7.22 (46.58) 

A5 - in
2
 (cm

2
) 0.0 (0.0) 1.62 (10.45) 0.0 (0.0) 0.0 (0.0) 

A6 - in
2
 (cm

2
) 12.0 (77.42) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

A7 - in
2
 (cm

2
) 11.5 (74.19) 4.49 (28.97) 5.74 (37.03) 5.74 (37.03) 

A8 - in
2
 (cm

2
) 3.6 (23.226) 3.13 (20.19) 3.84 (24.77) 3.38 (21.81) 

A9 - in
2
 (cm

2
) 0.0 (0.0) 13.5 (87.1) 13.5 (87.1) 11.5 (74.19) 

A10 - in
2
 (cm

2
) 10.4 (67.097) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

Y1 - in (cm) 186.5 (473.71) -- -- -- 

Y3 - in (cm) 554.5 (1408.43) 527.9 (1340.866) 506.4203 (1286.308) 496.3779 (1260.8) 

Y5 - in (cm) 786.9 (1998.726) 888.8 (2257.552) 789.7306 (2005.916) 793.3558 (2015.124) 

Weight lb (kN) 3254.0 (14.474) 2813.8 (12.516) 2723.05 (12.113) 2716.5 (12.083) 

σmax ksi (N/cm
2
) 15.6 (10756) 18.5 (12755.3) 19.1463 (13201) 19.131 (13190.36) 

∆max in (cm) 1.99 (5.0546) 
1.9998 

(5.079492) 

1.999996 

(5.07998984) 

1.997852 

(5.07454408) 
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4.2. A 15-bar planar truss 

In this example, a fifteen-bar planar truss is studied. The considered truss is shown in 

Figure 6 and the required information for the optimization process are accessible in 

Table 3. 

 

 
Figure 6. The primary geometry of the 15-bar truss 

 

Table 3. Data for design of the 15-bar planar truss 

Design variables 

Size variables: Ai ; i = 1, 2, …, 15 ; Geometry variables: Y2, Y3, Y4, Y6, Y7, Y8, X2=X6, 

X3=X7 

Constraint data 

σ all (Ten) = σ all (Com) = ±17240 N/cm
2
 = ±25 Ksi 

100 in (254 cm) < X2 < 140 in (355.6 cm); 220 in (558.8 cm) < X3 < 260 in (660.4 cm) 

100 in (254 cm) < Y2 < 140 in (355.6 cm); 100 in (254 cm) < Y3 < 140 in (355.6 cm) 

50 in (127 cm) < Y4 < 90 in (228.6 cm); 20 in (50.8 cm) < Y6 < 20 in (50.8 cm) 

20 in (50.8 cm) < Y7 < 20 in (50.8 cm); 20 in (50.8 cm) < Y8 < 60 in (152.4 cm) 

 = 0.01 in (0.0254 cm) 

List of available profiles 

ai  S = {0.111, 0.141, 0.174, 0.22, 0.27, 0.287, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 

1.333, 1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 

8.525, 9.3, 10.85, 13.33, 14.29, 17.17, 19.18} (in
2
) 

ai  S = {0.716, 0.91, 1.123, 1.419, 1.742, 1.852, 2.239, 2.839, 3.477, 6.155, 6.974, 

7.574, 8.600, 9.600, 11.381, 13.819, 17.400, 18.064, 20.200, 23.00, 24.6, 31.0, 38.4, 

42.4, 46.4, 55.0, 60.0, 70.0, 86.0, 92.193, 110.774, 123.742} (cm
2
) 

Loading data 

P8Y = 44.54 kN = 10 Kips 

Material properties 

E = 6895000 N/cm
2
 =10

4
 ksi ; ρ = 0.0272 N/Cm

3
 =0.1 lb/in

3
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Figure 7 is resulted as optimum design by the MHSM after optimization. 
 

 
Figure 7. Optimal geometry and topology for the 15-bar truss based on the MHSM 

 

Table 4 compares the results of the present method with those other references. 
 

Table 4. Final design of sizing, shape and topology for the 15-bars truss 

Design Variables Wu [27] Tang [29] Rahami [30] MHSM 

A1 - in
2
 (cm

2
) 1.174 (7.574) 1.081 (6.974) 0.954 (6.155) 0.954 (6.155) 

A2 - in
2
 (cm

2
) 0.954 (6.155) 0.539 (3.477) 0.954 (6.155) 0.539 (3.477) 

A3 - in
2
 (cm

2
) 0.440 ((2.839) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

A4 - in
2
 (cm

2
) 1.333 (8.600) 1.081 (6.974) 1.081 (6.974) 0.954 (6.155) 

A5 - in
2
 (cm

2
) 0.954 (6.155) 0.954 (6.155) 0.539 (3.477) 0.539 (3.477) 

A6 - in
2
 (cm

2
) 0.174 (1.123) 0.440 (2.839) 0.539 (3.477) 0.440 (2.839) 

A7 - in
2
 (cm

2
) 0.440 (2.839) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

A8 - in
2
 (cm

2
) 0.440 (2.839) 0.141 (0.91) 0.000 (0.000) 0.000 (0.000) 

A9 - in
2
 (cm

2
) 1.081 (6.974) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

A10 - in
2
 (cm

2
) 1.333 (8.600) 0.270 (1.742) 0.440 (2.839) 0.440 (2.839) 

A11 - in
2
 (cm

2
) 1.174 (7.574) 0.270 (1.742) 0.220 (1.419) 0.539 (3.477) 

A12 - in
2
 (cm

2
) 1.174 (7.574) 0.539 (3.477) 0.111 (0.716) 0.174 (1.123) 

A13 - in
2
 (cm

2
) 0.347 (2.239) 0.141 (0.91) 0.347 (2.239) 0.174 (1.123) 

A14 - in
2
 (cm

2
) 0.347 (2.239) 0.440 (2.839) 0.539 (3.477) 0.539 (3.477) 

A15 - in
2
 (cm

2
) 0.440 (2.839) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 

X2 - in (cm) 123.189 (312.9) 111.85 (284.099) 107.3869 (272.762) 120.0048 (304.812) 

X3 - in (cm) 231.595 (588.251) 242.45 (615.823) 244.4534 (620.911) 240.2393 (610.209) 

Y2 - in (cm) 107.189 (272.26) 104.02 (264.211) 125.4198 (318.566) 132.5079 (336.57) 

Y3 - in (cm) 119.175 (302.705) 109.22 (277.419) 117.2854 (297.905) 107.5799 (273.253) 

Y4 - in (cm) 60.462 (153.573) -- -- -- 

Y6 - in (cm) 16.728 (42.489) 10.82 (27.483) 1.6249 (4.127) 17.5873 (44.671) 

Y7 - in (cm) 15.565 (39.535) 11.13 (28.27) 18.0828 (45.93) 10.0463 (25.517) 

Y8 - in (cm) 36.645 (93.078) 48.84 (124.054) 50.2040 (127.518) 38.5885 (98.014) 

Weight lb (N) 120.528 (536.135) 77.84 (346.116) 75.0966 (334.046) 73.263 (325.889) 

σmax ksi (N/cm
2
) 24.762 (17072.8) 24.9552 (17206) 24.9930 (17232) 24.9896 (17230) 
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4.3. A 25-bar space truss 

In this example, The twenty five-bar space truss with ten nodes shown in Figure 8 is 

optimized. 

 

 
Figure 8. The primary geometry of the 25-bar truss 

 

Table 5 shows the required information for the optimization of the 25-bar truss. 

 
Table 5. Data for design of the 25-bar truss 

Grouping members 

A1 : 1 (1,2) ; A2 : 2(1,4) , 3 (2,3) , 4 (1,5) , 5 (2,6) 

A3 : 6 (2,5) , 7 (2,4) , 8 (1,3) , 9 (1,6) ; A4 : 10 (3,6) , 11 (4,5) 

A5 : 12 (3,4) , 13 (5,6) ; A6 : 14 (3,10) , 15 (6,7) , 16 (4,9) , 17 (5,8) 

A7 : 18 (3,8) , 19 (4,7) , 20 (6,9) , 21 (5,10) ; A8 : 22 (3,7) , 23 (4,8) , 24 (5,9) , 25 (6,10) 

Design variables 

Size variables: Ai ; i = 1, 2, …, 8 

Geometry variables: X4=X5=X3=X6 , X8=X9=X7=X10 

Y3=Y4=Y5=Y6 , Y7=Y8=Y9=Y10 , Z3=Z4=Z5=Z6 

Constraint data 

σ all (Ten) = σ all (Com) = ±27850 N/cm
2
 = ±40 Ksi ; ∆ y

all = 0.889 cm = 0.35 in 

20 in (50.8 cm) < X4 < 60 in (152.4 cm) ; 40 in (101.6 cm) < X8 < 80 in (203.2 cm) 

40 in (101.6 cm) < Y4 < 80 in (203.2 cm) ; 100 in (254 cm) < Y8 < 140 in (355.6 cm) 
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90 in (228.6 cm) < Z4 < 130 in (330.2 cm) ;  = 0.01 in (0.0254 cm) 

List of available profiles 

ai  S = {0.1j (j1, …, 26), 2.8, 3.0, 3.2, 3.4} (in
2
) 

ai  S = {0.645j (j1, …, 26), 18.064, 19.335, 20.645, 21.935} (cm
2
) 

Loading data 

P2Y = P4Y = 445.4 kN = 100 Kips ; P1X = 4.454 kN = 1 Kips 

P1Y = P2Y = P1Z = P2Z = 44.537 kN = 10 Kips 

P3X = 2.227 kN = 0.5 Kips ; P6X = 2.672 kN = 0.6 Kips 

Material properties 

E = 6895000 N/cm
2
 =10

4
 ksi ; ρ = 0.0272 N/Cm

3
 =0.1 lb/in

3
 

 

In this example, optimization process in performed in three states. In state (1), the 

possibility of elimination of each member in topological optimization process is feasible. 

Most of the articles consider the topological optimization process for each group that 

increases the possibility of unsteady design production due to deletion of each group. In 

state (2), the assumptions are considered exactly identical to other references, and 

possibility of deletion of each group in topological optimization process is feasible. This 

leads to the creation of optimum design with more precise shapes. In state (3), according 

to optimum points of state (2), nodal points interval for geometric variables is changed 

as shown in Table 6, and then design space with new intervals are again searched for 

geometric variables. Results of optimum design based on MHSM are shown in Figures 

9, 10 and 11 and also in Table 7. 

 
Table 6. New interval for geometry variable of the 25-bar truss  

20 in (50.8 cm) < X4 < 60 in (152.4 cm) ; 40 in (101.6 cm) < X8 < 80 in (203.2 cm) 

40 in (101.6 cm) < Y4 < 80 in (203.2 cm) ; 100 in (254 cm) < Y8 < 140 in (355.6 cm)  

90 in (228.6 cm) < Z4 < 130 in (330.2 cm) 

 
Table 7. Final design of sizing, shape and topology for the 25-bar truss 

Design 

Variables 
Wu [27] Tang [29] Rahami [30] 

MHSM 

State 1 State 2 State 3 

A1 - in
2
 (cm

2
) 0.1 (0.645) -- -- 0.1 (0.645) -- -- 

A2 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) -- 0.1 (0.645) 0.1 (0.645) 

A3 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 0.8 (5.16) 0.1 (0.645) 0.1 (0.645) 

A4 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 0.8 (5.16) 0.1 (0.645) 0.1 (0.645) 

A5 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 0.8 (5.16) 0.1 (0.645) 0.1 (0.645) 

A6 - in
2
 (cm

2
) 1.1 (7.095) 0.9 (5.805) 0.9 (5.805) 0.6 (3.87) 0.9 (5.805) 1.0 (6.45) 

A7 - in
2
 (cm

2
) 1.1 (7.095) 0.9 (5.805) 0.9 (5.805) 0.6 (3.87) 0.9 (5.805) 1.0 (6.45) 

A8 - in
2
 (cm

2
) 1.1 (7.095) 0.9 (5.805) 0.9 (5.805) 0.6 (3.87) 0.9 (5.805) 1.0 (6.45) 

A9 - in
2
 (cm

2
) 1.1 (7.095) 0.9 (5.805) 0.9 (5.805) 0.6 (3.87) 0.9 (5.805) 1.0 (6.45) 

A10 - in
2
 (cm

2
) 0.2 (1.29) -- -- -- -- -- 

A11 - in
2
 (cm

2
) 0.2 (1.29) -- -- 0.1 (0.645) -- -- 

A12 - in
2
 (cm

2
) 0.3 (1.935) -- -- 0.1 (0.645) -- -- 

A13 - in
2
 (cm

2
) 0.3 (1.935) -- -- -- -- -- 
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A14 - in
2
 (cm

2
) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

A15 - in
2
 (cm

2
) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

A16 - in
2
 (cm

2
) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

A17 - in
2
 (cm

2
) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 0.1 (0.645) 

A18 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) -- 0.1 (0.645) 0.1 (0.645) 

A19 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 

A20 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 

A21 - in
2
 (cm

2
) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 0.2 (1.29) 0.1 (0.645) 0.1 (0.645) 

A22 - in
2
 (cm

2
) 0.9 (5.805) 1.0 (6.45) 1.0 (6.45) 0.9 (5.805) 1.0 (6.45) 0.9 (5.805) 

A23 - in
2
 (cm

2
) 0.9 (5.805) 1.0 (6.45) 1.0 (6.45) -- 1.0 (6.45) 0.9 (5.805) 

A24 - in
2
 (cm

2
) 0.9 (5.805) 1.0 (6.45) 1.0 (6.45) 0.9 (5.805) 1.0 (6.45) 0.9 (5.805) 

A25 - in
2
 (cm

2
) 0.9 (5.805) 1.0 (6.45) 1.0 (6.45) 0.9 (5.805) 1.0 (6.45) 0.9 (5.805) 

X4 - in (cm) 
41.07 

(104.318) 

39.91 

(101.371) 
38.7913 (98.5299) 20.0 (50.8) 

38.9206 

(98.8583) 

38.8645 

(98.7158) 

Y4 - in (cm) 
53.47 

(135.814) 

61.99 

(157.455) 
66.1110 (167.922) 

60.0048 

(152.412) 

60.4932 

(153.6527) 

62.9959 

(160.0096) 

Z4 - in (cm) 
124.6 

(316.484) 

118.23 

(300.304) 
112.9787 (286.966) 

122.4981 

(311.145) 

120.3199 

(305.6125) 

118.0183 

(299.7665) 

X8 - in (cm) 50.8 (129.032) 
53.13 

(134.95) 
48.7924 (123.933) 

41.4456 

(105.2718) 

50.0024 

(127.0061) 

51.1868 

(130.0144) 

Y8 - in (cm) 
131.48 

(333.96) 

138.49 

(351.764) 

138.8910 

(352.7831) 

137.9194 

(350.315) 

137.6654 

(349.6701) 

139.9532 

(355.4811) 

Weight lb (N) 
136.2 

(605.847) 

114.74 

(510.388) 
114.3701 (508.743) 

111.9508 

(497.981) 

114.4200 

(508.965) 

113.5081 

(504.909) 

Max σ ksi 

(N/cm
2
) 

15.589 

(10748.237) 

17.353 

(11964.472) 
17.753 (12240.262) 

35.074 

(24182.67) 

17.239 

(11885.87) 

19.896 

(13717.81) 

Max ∆ in (cm) 
0.347 

(0.88138) 
0.350 (0.889) 

0.34999896 

(0.888997) 

0.350 

(0.889) 

0.350 

(0.889) 
0.350 (0.889) 

 

   
Figure 9. State 1 Figure 10. State 2 Figure 11. State 3 

Optimum design for 25-bar space truss based on MHSM 
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4.4. Design of a 131-bar truss 

In order to study the industrial applicably of the MHSM algorithm, a 131-bar truss, 

which is proposed and studied for the first time in this article, is designed. Figure 12 

shows the geometry and initial topology of the considered structure. 

 

 
Figure 12. Ground structure for the 131-bar truss 

 

In the case, the permissible compressive and tensile stresses and also the permissible 

nodal displacements are selected according to the AISC-ASD [56] as follows: 

when λ<Cc: 
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and when λ≥Cc: 

2

2
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23
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




E
comall   (35) 

 

In the above equations, E is the module of elasticity and Fy is yield stress of steel that 

is taken as 2400 kg/cm
2
. λ is the slenderness ratio which is calculated for compressive 

member around x and y axis as: 

 
yxirl i  ,    (36) 

 

where l is the length of the member and ri is the governing radius of gyration. Maximum 

slenderness ratio is limited to 300 for the members under tension, and to 200 for the 

members under compression loads. 

In Eqs. (34), Cc is the slender ratio dividing the elastic and inelastic buckling regions, 

which is calculated as follow: 

 

y
c

F

E
C

22
  (37) 

 

On the other hand, according to AISC-ASD, the allowed tensile stress is calculated by 

the following equation: 

yTenall F6.0)(   (38) 
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The permissible nodal displacement is also considered as 10.83 cm, according to AISC-

ASD code [56]. 

In this example, in order to make the final executable design, the nodal coordinates 

of the upper members in vertical direction, are determined based on the positive angle of 

each member with respect to horizon. This issue leads to enlargement of the design 

space and increases the design variables (angle design variable), however, in final 

configuration, none of the upper member’s slope should be negative, and an executable 

design will be resulted. 

Designing and optimization information of the structural configuration can be seen in 

Table 8. 

 
Table 8. Data for design of the 131-bar planar truss 

Design variables 

Size variables: Ai ; i = 1, 2, …, 66 

Geometry variables: 

X3 = X4 = X51 = X52 , X5 = X6 = X49 = X50 

X7 = X8 = X47 = X48 , X9 = X10 = X45 = X46 

X11 = X12 = X43 = X44 , X13 = X14 = X41 = X42 

X15 = X16 = X39 = X40 , X17 = X18 = X37 = X38 

X19 = X20 = X35 = X36 , X21 = X22 = X33 = X34 

X23 = X24 = X31 = X32 , X25 = X26 = X29 = X30 ; X2 = X54 , Y2 = Y54 

Angle variables: 

5 = 130 , 10 = 125 , 15 = 120 , 20 = 115 , 25 = 110 

30 = 105 , 35 = 100 , 40 = 95 , 45 = 90 , 50 = 85 

55 = 80 , 60 = 75 , 65 = 70 

Constraint data 

σ all (Com) = Eq. (35) , Eq. (36) ; σ all (Ten) = Eq. (40) ; ∆ all = 10.83 cm 

0°< i < 30°      i=5, 10, 15, …, 125, 130 ;  for angel variable = 1 

1340 cm < X2 < 1260 cm , 1240 cm < X4 < 1160 cm 

1140 cm < X6 < 1060 cm , 1040 cm < X8 < 960 cm 

940 cm < X10 < 860 cm , 840 cm < X12 < 760 cm 

740 cm < X14 < 660 cm , 640 cm < X16 < 560 cm 

540 cm < X18 < 460 cm , 440 cm < X20 < 360 cm 

340 cm < X22 < 260 cm , 240 cm < X24 < 160 cm 

140 cm < X26 < 60 cm , 50 cm < Y2 < 150 cm ;  for geometry variable = 1 cm 

List of available profiles 

S1 = {2UNP80, 2UNP100, 2UNP120, 2UNP140, 2UNP160, 2UNP180, 2UNP200, 2UNP220, 

2UNP240} 

S2 = {UNP80, UNP100, UNP120, UNP140, 2UNP80, 2UNP100, 2UNP120, 2UNP140, 

2UNP160} 

Loading data 

Distributed load on upper members ; w = 17.5 kN/m 

Material properties 

E = 6895000 N/cm
2
 =10

4
 ksi ; ρ = 0.0272 N/Cm

3
 =0.1 lb/in

3
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Figure 13. Optimal geometry and topology for the 131-bar truss based on the MHSM 

 
Table 9. Results of optimum design for the 131-bar truss 

Sizing and topology design variables Geometry design variables 

A1 -- A23 UNP 80 A45 2UNP 160 X2 -- Y2 -- 

A2 2UNP 80 A24 UNP 80 A46 -- X4 1201 Y4 88.76 

A3 2UNP 100 A25 2UNP 140 A47 2UNP 80 X6 1080 Y6 125.666 

A4 -- A26 -- A48 UNP 80 X8 981 Y8 143.122 

A5 -- A27 2UNP 80 A49 UNP 80 X10 876 Y10 146.788 

A6 2UNP 80 A28 UNP 80 A50 2UNP 160 X12 817 Y12 162.597 

A7 2UNP 100 A29 -- A51 -- X14 740 Y14 183.228 

A8 UNP 140 A30 2UNP 160 A52 2UNP 80 X16 640 Y16 210.022 

A9 -- A31 UNP 80 A53 -- X18 540 Y18 222.3 

A10 2UNP 80 A32 2UNP 80 A54 UNP 80 X20 440 Y20 227.541 

A11 UNP 80 A33 UNP 80 A55 2UNP 160 X22 340 Y22 234.534 

A12 2UNP 80 A34 UNP 80 A56 UNP 80 X24 200 Y24 234.534 

A13 -- A35 2UNP 160 A57 2UNP 80 X26 100 Y26 234.534 

A14 UNP 80 A36 -- A58 UNP 80     

A15 2UNP 120 A37 2UNP 80 A59 --     

A16 UNP 80 A38 -- A60 2UNP 160     

A17 2UNP 80 A39 UNP 80 A61 UNP 80     

A18 2UNP 80 A40 2UNP 160 A62 2UNP 80     

A19 UNP 80 A41 UNP 80 A63 --     

A20 2UNP 120 A42 2UNP 80 A64 UNP 80     

A21 -- A43 UNP 80 A65 2UNP 160     

A22 2UNP 80 A44 UNP 80 A66 UNP 80     

 

In order to attain the executive goals and beauty of the structure, design variables of 

sizing, topology, geometry and slope are somehow classified to make the final design 

symmetric. Therefore, the base of structure is considered to be the lower chord and 

middle node (node 27) of the truss to make the structure crosswise symmetric. Thus, 

sizing design variable are classified into 66 groups so that all of them have two members 

except the last one which has one corresponding to the vertical member connecting 

nodes 27 and 28. In this regard, a topologic variable is considered for each group. On the 
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other hand, the variables of the geometry and slope are respectively classified into 14 and 

13 categories as shown in Table 8. The base of the variation for slope design variable is 

the horizontal line in the first node of each member. 

Figure 13 is resulted utilizing the MHSM. As it is illustrated in Figure 13, the 

structure tends to be curved which is referred to logical and correct determination of the 

upper members by MHSM. Zero slopes of the upper members at the middle of structure 

is due to the type and number of sections in S2 collection, because the length of vertical 

and oblique members at the middle of structure, has decreased by zeroing the slope. 

Therefore, the middle members are prevented from becoming slender. 
Table 9 shows the results of the optimum design for design variables on which basis the 

weight of truss is obtained as 2238.137 kg. 

 

 

6. CONCLUSION 
 

 Using the method of island distribution in the proposed algorithm (MHSM), 

answers have remarkable diversity and design space is more vastly searched. This 

is because of allocating different meta-heuristic methods to each island. Hence, 

design space is wisely searched by various algorithms and the probability of local 

optimum is nearly diminished. 

 Using MHSM causes the optimization issue to be studied by several meta-heuristic 

methods, simultaneously, and thus all advantageous of meta-heuristic algorithms 

are incorporated. 

 In meta-heuristic algorithms, due to the effect of parameters and governing 

relations on the results, subsequent executions are used in which the amount of 

parameters are changed to obtain better answers. Although, due to relative 

parameters independence and governing relations of the MHSM, this algorithm is 

free of subsequent executions for not being trapped in local optima. Therefore, it 

moves to global optimum with a constant and reliable rate, and the probability of 

getting trapped in local optimum is declined. 

 Since in the first variant of the proposed algorithm (MHSM.1), best members of 

each island are transferred to other islands, during migration process, or in the 

second variant (MHSM.2), best members are transferred to the selected island 

and substituted with the members of lower fitness, it is anticipated the 

convergence speed and average growth rate of the population fitness to be 

enhanced. 

 Employing different value for the parameters of the meta-heuristic methods based 

on the type of design variables causes each variable to be searched proportional 

to the related space. This process positively effects on the optimization process of 

the configuration according to meta-heuristic methods. 
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